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ABSTRACT

Serum protein fingerprints associated with MGUS and MM and their changes 
in MM after autologous stem cell transplantation (MM-ASCT, day 100) remain 
unexplored. Using highly-sensitive Proximity Extension ImmunoAssay on 92 cancer 
biomarkers (Proseek Multiplex, Olink), enhanced serum levels of Adrenomedullin 
(ADM, Pcorr= .0004), Growth differentiation factor 15 (GDF15, Pcorr= .003), and soluble 
Major histocompatibility complex class I-related chain A (sMICA, Pcorr= .023), all 
prosurvival and chemoprotective factors for myeloma cells, were detected in MM 
comparing to MGUS. Comparison of MGUS and healthy subjects revealed elevation 
of angiogenic and antia-poptotic midkine (Pcorr= .0007) and downregulation of 
Transforming growth factor beta 1 (TGFB1, Pcorr= .005) in MGUS. Importantly, altered 
serum pattern was associated with MM-ASCT compared to paired MM at the diagnosis 
as well as to healthy controls, namely by upregulated B-Cell Activating Factor (sBAFF) 
(Pcorr< .006) and sustained elevation of other pro-tumorigenic factors. In conclusion, 
the serum fingerprints of MM and MM-ASCT were characteristic by elevated levels of 
prosurvival and chemoprotective factors for myeloma cells.

INTRODUCTION

Monoclonal gammopathy of undetermined 
significance (MGUS) is a precursor lesion to overt 
multiple myeloma (MM), a clonal B-cell malignancy 
characterized by excessive multiplication of a plasma 
cell clone(s) in bone marrow, and accumulation of either 
a monoclonal immunoglobulin (Ig) (M-protein) or an Ig-
free light chain in blood [1]. During the last decade, MM 
treatment and patient outcomes improved remarkably 
after the introduction of novel agents and autologous 
stem cell transplantation (ASCT) [2]. However, even 

with the best combination of currently available drugs, a 
cure is not achieved for most MM patients [2, 3]. Better 
characterization of neoplastic cells and microenvironment 
in particular myeloma stages is therefore needed as well 
as clarifying of reason(s) for treatment failure in most 
MM patients [2, 3, 4]. The neoplastic plasma cells in 
MGUS and MM share similar genetic abnormalities, 
probably occurring as early events [5, 6]. The key role 
in microenvironment play bone marrow stromal cells and 
other microenvironmental cells that secrete a plethora of 
cytokines and growth factors after paracrine stimulation 
and/or direct interaction with neoplastic cells [7]. 
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Moreover, also myeloma cells secrete numerous cytokines 
and growth factors [8, 9]. The secreted molecules may, in 
turn, promote homing, migration, proliferation, survival 
of malignant plasma cells as well as contribute to the bone 
resorption and drug resistance [10].

Given the key role of cytokines and growth factors 
in MM pathogenesis, we investigated the complexity of 
serum microenvironment using novel multiplex highly-
sensitive PEA immunoassay on 92 cancer-related proteins 
followed by pattern-recognition analyses. Besides 
identification of serum fingerprints distinguishing MGUS 
and MM, we for the first time compared paired MM 
samples from the time of diagnosis and after autologous 
stem cell transplantation (MM-ASCT) as well as MGUS 
to healthy subjects.

RESULTS

Serum protein fingerprinting in MGUS and MM 
by PEA immunoassay

To assess the serum protein fingerprints associated 
with MGUS and MM, we compared serum protein 
pattern obtained by PEA immunoassay in MGUS and 
MM and healthy controls. Of ninety-two analyzed 
biomarkers (Supplementary Table S1), levels of six 
biomarkers (sBTC, CA242, sER, GM-CSF, IL2, IL4) 
were below the Proseek limit of detection (LOD) in all 
studied groups and were therefore excluded from further 
analysis. Comparing MGUS and MM, 26 analytes 
were deregulated between these groups, whereas 13 
analytes reached the significance after the adjustment 
for multiple comparisons (Supplementary Table S2A). 
The distribution of serum levels of top-ranked proteins 
(ADM, TRAP, GDF15, suPAR, REG4, TGFB1, sMICA, 
IL1RA, HE4, sHGFR, sVEGFA; see Table 1A), all found 
upregulated in MM, is shown in Figure 1. The protein 
serum fingerprints associated with MGUS and MM and 
the changes in protein levels between MGUS and MM for 
top-deregulated analytes are shown in Figure 2A.

Comparison of protein pattern obtained in MGUS 
and healthy controls revealed deregulation of 33 
proteins (Figure 2B), of these 21 reached significance 
after multiple comparisons (Supplementary Table S2B). 
The protein levels of top-ranked proteins (midkine, 
THPO, sTNFRSF4, sHER4, INFγ, TGFB1, sPECAM1, 
sIL17RB, KLK6, suPAR) are presented in Table 1B and 
Supplementary Figure S1A.

When comparing MM and controls, we observed 
deregulation of 46 serum proteins (Figure 2C), of these 41 
analytes reached significance after adjustment for multiple 
comparisons (Supplementary Table S2C). The distribution 
of serum levels of top-ranked proteins between MM and 
controls (PGF, GDF15, HE4, sTNFR2, CSF1, midkine, 
sPECAM1, CCL19, sVEGFA, INFγ; see Table 1C) is 
shown in Supplementary Figure S1B. The subanalysis 

based on cytogenetic/FISH analysis was not performed 
due to the high heterogeneity within the group.

Changes in serum protein pattern in 
post-transplant MM

To assess the changes in serum protein pattern 
in MM after ASCT, we compared the post-transplant 
sera (day 100) with paired samples obtained in MM 
patients at the time of diagnosis and healthy control 
subjects. Comparing paired samples from MM-
ASCT and MM, the most upregulated protein in post-
transplant sera was sBAFF (Pcorr= .006), followed by 
CXCL9 (Pcorr= .041). Next twenty-one proteins were 
downregulated (14 proteins after adjustment for multiple 
comparisons) in MM-ASCT comparing to MM (Figure 
2D, Supplementary Table S2D). The top-ranked proteins 
were: elevated sBAFF and downregulated REG4, 
sPECAM1, sIL6R, sPDGFB, midkine, sHGF, TGFB1, 
sAREG, and sMICA in MM-ASCT comparing to MM 
(Table 1D, Figure 3). Importantly, serum levels of MM-
associated pro-tumorigenic factors such as GDF15, 
CSF1, suPAR, and HE4 did not change after ASCT 
comparing to sample at the diagnosis (Supplementary 
Table S2D).

To exclude the influence of treatment regime 
on serum pattern, we assessed the protein profile in 
subgroups based on ASCT induction regime (IMiD-based/
bortezomib-based). We did not detect any differences in 
the cytokine levels as a function of the induction regime 
as well as the hematological response (CR, VGPR/PR) on 
day 100 (Pcorr> .05).

Comparing to healthy subjects, the serum of 
post-transplant MM patients showed permanently 
altered pro-tumorigenic signature characteristic by 
deregulation of 35 proteins (after multiple adjustments: 
28 analytes) (Figure 2E, Supplementary Table S2E). 
Except sTGFA and TGFB1, all deregulated proteins were 
elevated in MM-ASCT. The top-ranked proteins between 
MM-ASCT and healthy controls were as follows: sBAFF, 
CSF1, sTGFA, TRAP, CXCL10, sTNFR2, sTNFRSF4, 
Flt3L, GDF15, HE4, THPO (Table 1E, Supplementary 
Figure S1C). The serum protein pattern in MM-ASCT and 
its comparison to those of healthy controls, MGUS and 
MM, are presented in Figure 4.

Pattern-recognition algorithms

To facilitate the selection of the most promising 
circulating proteins distinguishing studied groups 
(MGUS, MM, MM-ASCT, healthy subjects), we 
applied advanced binary classification algorithm and 
analyzed co-occurrence of analytes in classification 
models. The most accurate classification model for 
separation of MGUS and MM utilized in classification 
rules most frequently sMICA in combination with other 
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Table 1: Serum levels of top-ranked proteins differentiating between A) MGUS vs MM, B) healthy controls vs 
MGUS, C) healthy controls vs MM, D) MM vs MM-ASCT and E) healthy controls vs MM-ASCT.

Analyte Mean Linear ddCq (95% CI) FC P Pcorr

A MGUS MM

ADM 46.9 (28.4-65.4) 191 (121-262) 2.80 4.0 × 10-6 3.5 × 10-4

TRAP 28.9 (22.3-35.6) 85.1 (42.8-127) 2.33 3.7 × 10-5 1.6 × 10-3

GDF15 12.6 (9.19-16.0) 53.3 (22.5-84.1) 2.72 1.1 × 10-4 3.0 × 10-3

suPAR 295 (251-338) 486 (368-603) 1.60 2.7 × 10-4 5.9 × 10-3

REG4 5.96 (5.46-6.46) 9.58 (6.78-12.4) 1.30 1.2 × 10-3 .021

TGFB1 42.9 (39.0-46.8) 85.5 (43.7-127) 1.41 1.9 × 10-3 .023

sMICA 15.4 (9.98-20.8) 39.4 (26.8-52.1) 2.29 2.1 × 10-3 .023

IL1RA 9.22 (7.23-11.2) 60.0 (0-145) 1.71 2.6 × 10-3 .023

HE4 18.4 (15.6-21.3) 89.8 (0-190) 1.72 3.0 × 10-3 .023

sHGFR 259 (240-278) 580 (199-960) 1.26 3.0 × 10-3 .023

sVEGFA 892 (728-1056) 1628 (1082-2173) 1.47 3.0 × 10-3 .023

B healthy controls MGUS

Midkine 30.3 (25.8-34.8) 75.0 (60.8-89.3) 2.24 8.2 × 10-6 7.0 × 10-4

THPO 13.1 (11.7-14.6) 24.2 (18.8-29.6) 1.79 9.8 × 10-5 4.2 × 10-3

sTNFRSF4 4.12 (3.29-4.94) 7.39 (6.05-8.72) 1.54 1.6 × 10-4 4.4 × 10-3

sHER4 174 (163-184) 270 (228-311) 1.45 2.4 × 10-4 4.5 × 10-3

IFNγ 1.58 (1.52-1.64) 2.17 (1.95-2.39) 1.31 3.1 × 10-4 4.5 × 10-3

TGFB1 61.9 (54.2-69.5) 42.9 (39.0-46.8) .71 3.7 × 10-4 4.5 × 10-3

sPECAM1 15.6 (12.6-18.7) 28.7 (23.3-34.1) 1.56 3.7 × 10-4 4.5 × 10-3

sIL17RB 5.56 (3.84-7.28) 10.9 (9.09-12.7) 1.81 1.1 × 10-3 .010

KLK6 28.6 (24.5-32.8) 44.0 (37.9-50.2) 1.29 1.1 × 10-3 .010

suPAR 425 (373-476) 295 (251-338) .69 2.0 × 10-3 .017

C healthy controls MM

PGF 59.2 (52.5-66.0) 137 (97.2-177) 1.72 1.6 × 10-5 1.4 × 10-3

GDF15 8.34 (6.14-10.5) 53.3 (22.5-84.1) 3.69 9.8 × 10-5 4.2 × 10-3

HE4 12.9 (10.4-15.5) 89.8 (0-190) 2.56 1.6 × 10-4 4.4 × 10-3

sTNFR2 9.52 (7.93-11.1) 17.9 (14.3-21.6) 1.88 2.4 × 10-4 5.3 × 10-3

CSF1 100 (94.4-106) 195 (115-275) 1.64 3.7 × 10-4 5.3 × 10-3

Midkine 30.3 (25.8-34.8) 158 (82.9-232) 3.42 3.7 × 10-4 5.3 × 10-3

sPECAM1 15.6 (12.6-18.7) 69.6 (17.4-122) 2.38 7.7 × 10-4 9.3 × 10-3

CCL19 463 (317-609) 929 (733-1125) 1.76 1.1 × 10-3 9.3 × 10-3

sVEGFA 765 (700-830) 1628 (1082-2173) 1.57 1.1 × 10-3 9.3 × 10-3

IFNγ 1.58 (1.52-1.64) 5.17 (0-11.1) 1.47 1.1 × 10-3 9.3 × 10-3

D MM MM-ASCT

REG4 9.58 (6.78-12.4) 7.01 (4.50-9.51) .74 3.1 × 10-5 2.6 × 10-3

sBAFF 18.4 (10.5-26.3) 62.3 (51.8-72.9) 4.38 1.5 × 10-4 6.1 × 10-3

(Continued )
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analytes (Figure 5A). In MGUS vs healthy controls, 
the classification rules used most often TGFB1 and 
midkine (Figure 5B) and in MM vs healthy controls most 
often sMICA, CXCL11, and midkine (Figure 5C). The 
classification model for MM and MM-ASCT used in the 
classification rules most frequently sBAFF and CCL21 
(Figure 5D) and for MM-ASCT and controls used sTGFA 
and sBAFF (Figure 5E).

Classification of MGUS, MM, and MM-ASCT

To detect the minimum number and the best 
combination of serum analytes able to discriminate 
between MGUS and MM, and MM-ASCT, we applied 
Multilinear Discriminant Analysis, Naive Bayes 
classifiers, Random Forests, and extended Support Vector 
Machine (kSVM). The probability of correct classification 
to particular patient subgroup (intervals: >90, 90-80, 
80-70, 70-60, and 60-50%) was calculated for every 
combination of two or three analytes from individual 
patients, and the misclassification error was determined. 
The best visual separation of studied patient groups was 
achieved by kSVM and therefore used in further study. The 

best dual-combination able to discriminate MGUS vs MM 
was achieved by the combination of sMICA and suPAR, 
able to separate these groups with a classification error of 
0.062 (1 false/16 samples) (Figure 6A). The best triple-
combinations for separating MGUS and MM were sMICA-
ADM-GDF15 (Figure 6A) as well as the combination of 
sMICA-ADM-REG4, sMICA-suPAR-REG4, sMICA-
suPAR-sHGFR, ADM-suPAR-REG4, TRAP-REG4-
sHGFR (data not shown). The triple-combinations 
increased the probability of correct classification of 
MGUS and MM; the classification error remained 0.062 
(1 false/16). For discrimination of MGUS and MM, MM-
ASCT from controls and MM from MM-ASCT, several 
combinations of only two analytes were sufficient to 
classify all samples correctly (with no misclassification 
error). For MGUS vs controls, the combinations were as 
follows: midkine-sTNFRSF4 (Figure 6B) or midkine-
TGFB1, TGFB1-THPO, TGFB1-sHER4, TGFB1-IFNγ, 
and TGFB1-sIL17RB (data not shown). Best separation 
of MM and controls was observed for combinations 
PGF-sVEGFA (Figure 6C) and PGF-midkine. Regarding 
serum from MM and MM-ASCT, the best analyte pairs 
able to discriminate these groups were sBAFF-sAREG 

Analyte Mean Linear ddCq (95% CI) FC P Pcorr

sPECAM1 69.6 (17.4-122) 17.3 (13.1-21.6) .41 2.1 × 10-4 6.1 × 10-3

sIL6R 174 (99.3-249) 81.6 (64.6-98.6) .55 5.8 × 10-4 .012

sPDGFB 544 (299-789) 274 (222-327) .56 7.6 × 10-4 .013

Midkine 158 (82.9-232) 54.5 (42.7-66.3) .54 1.0 × 10-3 .014

sHGF 47.1 (32.5-61.6) 26.9 (20.7-33.1) .63 1.3 × 10-3 .014

TGFB1 85.5 (43.7-127) 41.6 (34.9-48.3) .72 1.3 × 10-3 .014

sAREG 19.0 (5.32-32.8) 7.52 (6.17-8.87) .67 1.7 × 10-3 .016

sMICA 39.4 (26.8-52.1) 22.5 (15.8-29.2) .59 2.1 × 10-3 .018

E healthy controls MM-ASCT

sBAFF 14.1 (12.9-15.3) 62.3 (51.8-72.9) 4.32 8.2 × 10-6 7.0 × 10-4

CSF1 100 (94.4-106) 152 (131-173) 1.44 2.4 × 10-4 6.0 × 10-3

sTGFA 24.4 (19.6-29.2) 11.9 (9.03-14.8) .36 2.4 × 10-4 6.0 × 10-3

TRAP 32.2 (25.0-39.4) 71.2 (42.5-100.0) 1.82 3.7 × 10-4 6.0 × 10-3

CXCL10 130 (61.2-199) 667 (323-1011) 4.05 5.4 × 10-4 6.0 × 10-3

sTNFR2 9.52 (7.93-11.1) 21.2 (17.6-24.9) 2.45 5.4 × 10-4 6.0 × 10-3

sTNFRSF4 4.12 (3.29-4.94) 10.9 (7.21-14.6) 2.22 5.4 × 10-4 6.0 × 10-3

Flt3L 254 (225-284) 522 (411-633) 2.07 7.7 × 10-4 6.0 × 10-3

GDF15 8.34 (6.14-10.5) 22.7 (16.5-28.8) 2.50 7.7 × 10-4 6.0 × 10-3

HE4 12.9 (10.4-15.5) 43.6 (3.61-83.5) 1.88 7.7 × 10-4 6.0 × 10-3

THPO 13.1 (11.7-14.6) 28.5 (21.7-35.3) 2.23 7.7 × 10-4 6.0 × 10-3

FC (Fold Change) between group medians of linear ddCq
*Pcorr value corrected for multiple comparisons (Benjamini-Hochberg correction)
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(Figure 6D) or the combination of sBAFF with sPECAM1 
or sHGF (data not shown). For MM-ASCT vs controls, 
the combination of following analyte pairs resulted in 
100% correct separation: sBAFF-GDF15 (Figure 6E) or 
sBAFF in combination with other analytes such as CSF1, 
sTGFA, TRAP, sTNFR2, sTNFRSF4 or HE4. Also, the 
combination of sTGFA with CSF1, sTNFR2 or Flt3L 
discriminated fully between MM-ASCT and healthy 
controls (data not shown).

DISCUSSION

In this study, we investigated the complexity of 
serum microenvironment in MGUS, MM and MM 
after ASCT using highly-sensitive PEA immunoassay. 
We hypothesized that serum of pre-cancer MGUS and 
MM differ by the presence of pro-tumorigenic factors. 
Indeed, we detected elevated levels of adrenomedullin 
(ADM), TRAP, GDF15, TGFB1, suPAR and other pro-
tumorigenic proteins in serum of MM patients compared 
to MGUS. These proteins were already reported in MM 
but not investigated simultaneously. Pro-angiogenic factor 
ADM was identified as the most highly upregulated gene 
in hypoxia-dependent/independent fashion in MM cells, 
suggesting to be a major driving force for the angiogenic 
switch during MM evolution [11]. Highly upregulated 
TRAP is a marker of osteoclasts driving the bone 
resorption in MM [12]. The crucial role of TGFB1 in MM 
is supported by the observation that the inhibition of TGF-β 
signaling by TGF-β type I receptor kinase inhibitor causes 
a suppression of MM cell growth and an enhancement 

of bone formation [13]. Regarding GDF15 in MM, high 
serum levels were associated with poor prognosis [14, 15] 
and treatment response [16] and osteolysis [17]. GDF15 
enhances the tumor-initiating and self-renewal potential 
of myeloma cells [18], contributes to drug resistance in 
both stroma-dependent/independent MM cells [14, 15], 
and promotes osteoclast differentiation while inhibits 
osteoblast differentiation [17]. Regarding suPAR, high 
suPAR expression in MM predicts progression, shorter 
survival and early extramedullary infiltration [19].

In order to detect the most promising circulating 
protein(s) distinguishing MGUS and MM, we analyzed 
co-occurrence of analytes in MGUS/MM classification 
models and identified sMICA as the most useful classifier. 
High serum levels of sMICA were already detected in MM 
as an adverse prognostic factor [20, 21], but not elevated 
in MGUS [20]. sMICA may originate from MICA-
expressing MM cells, fibroblasts or other stromal cells 
upon stimulation [8, 22]. There is evidence that sMICA 
impairs the function of the NKG2D + T CD8+ and NK 
cells, contributing to myeloma cell immune escape [20]. 
Additionally, patients with MGUS, but not MM, generate 
high-titer anti-MICA antibodies that antagonize the 
suppressive effects of sMICA [20]. It has been therefore 
suggested that alterations in the NKG2D pathway by 
sMICA and anti-MICA antibodies are critically involved 
in the suppression of innate and adaptive immunity during 
the progression from MGUS to MM [20]. Importantly, 
some drugs may reconstitute the capabilities of sMICA-
inhibited cytotoxicity of CD8+ and NK cells [23, 24], thus 
further highlights the potential of NKG2D + T CD8+ and 

Figure 1: Distribution of serum levels of top-ranked proteins in patients with MGUS vs MM. Group means are indicated by 
horizontal bars, error bars indicate 95%CI; Pcorr values for differences between two groups of patients after multiple corrections are stated.
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Figure 2: Serum fingerprints and changes in top-deregulated proteins in MGUS, MM, and MM-ASCT. Fingerprints 
were presented as FC (fold-change of group medians) of serum levels of deregulated serum proteins between particular groups (P< .05); 
changes in top-deregulated proteins are presented as percentage of changes between group medians of particular groups: A. MGUS vs MM, 
B. controls vs MGUS, C. controls vs MM. (Continued )  
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NK cell-mediated immunotherapeutic interventions in 
MM [24, 25, 26].

Next, we investigated the minimum number and 
best combination of serum analytes able to discriminate 
between MGUS and MM. Advanced data mining 
methods revealed that the combination of sMICA and 
suPAR separates these groups with a classification error 
0.062. The combination of triplets sMICA-ADM-GDF15 
or sMICA-suPAR-REG4 increased the probability of 
correct classification of MGUS and MM with the same 
classification error (1/16) significantly. Although larger 
cohort studies are needed to confirm our results, our study 
nominated sMICA, ADM, GDF15, suPAR, and REG4 as 
key MM-associated serum proteins able to discriminate 
MGUS and MM.

Despite new therapies and ASCT increasing 
remission rates, nearly all MM patients ultimately succumb 
to disease relapse and progression. Because tumor 

microenvironment may contribute to these processes, we 
investigated for the first time serum pattern from paired 
samples from MM patients from the time of diagnosis and 
after ASCT (day 100). Interestingly, the post-transplant 
sera possessed high levels of soluble B-Cell Activating 
Factor (sBAFF), a survival factor for myeloma cells [9]. 
Enhanced serum levels of sBAFF, found produced by 
MM cells, immune and stromal cells [9, 27], correlated 
inversely with overall survival in MM and resistance to 
dexamethasone and lenalidomide [27, 28]. Since the 
elimination of sBAFF in an MM mouse model resulted 
in a decrease of tumor burden and protected against 
lytic bone disease [29], the sBAFF signaling represents 
a promising therapeutic target in MM [27], especially 
in the setting of post-transplant sBAFF elevation. After 
ASCT, the MM-associated proteins sMICA and ADM 
were downregulated but still elevated compared to healthy 
controls. On the other hand, serum levels of other pro-

Figure 2: Serum fingerprints and changes in top-deregulated proteins in MGUS, MM, and MM-ASCT. D. MM vs MM-
ASCT and E. controls vs MM-ASCT. MGUS is colored yellow, MM red, MM-ASCT blue, and control subjects green.



Oncotarget69415www.impactjournals.com/oncotarget

Figure 4: Comparison of protein fingerprints in MGUS, MM, MM-ASCT and healthy subjects for selection of top-
deregulated proteins.

Figure 3: Changes in serum protein levels between paired samples from MM at the diagnosis and after ASCT (day 
100). Pcorr values for differences between two groups of patients after multiple corrections are stated.



Oncotarget69416www.impactjournals.com/oncotarget

tumorigenic factors such as GDF15, CSF1, suPAR, and 
others did not change after ASCT comparing to paired 
MM sample at the diagnosis. Similar observation was 
reported in treated MM patients showing that cytokine 
pattern in those achieving remission is not restored to 
physiological levels [30], thus suggesting that once an 
individual has MM, the microenvironment is permanently 
altered and primed for a relapse. These results highlight 
the role of microenvironment for treatment success and 
may explain why MM remains an incurable disease.

We were also interested in MGUS associated serum 
pattern comparing to healthy controls. Our analysis 
revealed for the first time that MGUS is characteristic 

by low levels of TGFB1 and high levels of midkine, a 
heparin-binding growth factor involved in angiogenic and 
anti-apoptotic functions and tumor expansion in various 
cancers [31, 32]. Enhanced gene expression of midkine 
and other angiogenic factors were already reported in 
MM [33, 34] and also in this study we detected higher 
serum levels of midkine in MM vs MGUS. Importantly, 
lower gene expression of midkine and other angiogenic 
genes was detected in IMiD-responders compared to 
non-responders [34]. Elevation of midkine, produced by 
normal and malignant B-cells, tumor and stromal cells [35, 
36], was also reported in other B-cell malignancies such 
as chronic lymphocytic leukemia and lymphomas [35]. 

Figure 5: Network visualization of classification models obtained by pattern-recognition analysis that identified 
key serum biomarkers distinguishing between MGUS, MM, and MM-ASCT based on co-occurrence of analytes in 
classification models. A. MGUS vs MM, B. controls vs MGUS, C. controls vs MM, D. MM vs MM-ASCT and E. controls vs MM-
ASCT. The size of the vertices (font-size) and connections among vertices show those proteins, which were used in classification rules of 
the particular patient group in the most accurate classification model.
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Figure 6: Extended Support Vector Machine (kSVM) analysis for identification of the minimum number and the 
best combination of proteins distinguishing MGUS, MM, and MM-ASCT. The dots represent the individual patient data 
(combinations of two or three analytes). The contour plots show the probabilities (intervals: > 90, 90-80, 80-70, 70-60, and 60-50%) for 
input data from individual patients to belong to the particular patient group. MGUS is colored yellow, MM red, MM-ASCT blue, and 
control subjects green. The more saturated color the higher probability of correct classification. A. MGUS vs MM, B. controls vs MGUS, 
C. controls vs MM D. MM vs MM-ASCT, E. controls vs MM-ASCT.
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Regarding TGFB1, low levels of TGFB1 were shown to 
control MM cell growth [13]. Our observations highlight 
the role of TGFB1 and midkine in the progression of 
MGUS to MM thus deserving further investigation.

We are aware that this study has several limitations. 
Because this study was focused on determination of serum 
protein fingerprinting, we did not analyze plasma bone 
marrow and did not investigate the functional effect of 
deregulated proteins. This should be performed in future 
studies.

In conclusion, we identified serum protein 
fingerprints associated with MGUS and MM as well 
changes ongoing in MM after ASCT. The knowledge of 
serum pattern may contribute to the identification of key 
myeloma cell survival factors, which may in turn influence 
treatment response and disease development.

MATERIALS AND METHODS

Study population and materials

The study cohort includes patients with MGUS 
(n=16) and MM (n=16); all patients were diagnosed 
according to the criteria of International Myeloma Working 
Group [37, 38]. Serum samples were taken at the time of 
diagnosis from previously untreated patients, aliquoted and 
stored at -80°C until analysis. In all enrolled MM patients, 
paired serum sample collected at day 100 after ASCT 
(MM-ASCT) was also analyzed. Patient characteristics are 
described in Table 2. Serum samples from healthy control 
subjects (n=7, mean age 51 yrs; range 45-72 yrs, 4 males/3 
females) were taken from members of medical staff; all 
completed a questionnaire regarding their health status. 
All patients provided written informed consent about the 
usage of peripheral blood for the purpose of this study. The 
study was approved by the ethics committee of University 
Hospital and Palacky University Olomouc.

Proximity extension immunoassay

Serum profiles of ninety-two cancer-related proteins 
were assessed by the Proseek Multiplex Oncology I kit 
(Olink Bioscience, Uppsala, Sweden) according to the 
manufacturer’s recommendation. Briefly, serum samples 
(1 µl) were incubated in the presence of 92 proximity 
antibody pairs tagged with DNA reporter molecules. Once 
the pair of antibodies bound to their corresponding antigens, 
the respective DNA tails formed by proximity extension an 
amplicon that was quantified by high-throughput real-time 
PCR (BioMark™ HD System, Fluidigm Corporation). 
The generated fluorescent signal directly correlates with 
protein abundance. Olink Wizard (Olink) was used for data 
normalization: the raw Cq-value (log2 scale) for each data 
point was normalized by subtracting the Cq-value for the 
extension control and compared to that of the corresponding 
background reaction resulting in a ddCq-value [39]. 
For further analysis, linearized values (2ddCq) were used. 

For panel description see Supplementary Table S1, for 
sensitivity and specificity parameters of PEA analysis see 
Assarsson et al. [39].

Pattern-recognition algorithms

Binary classification by a stochastic nature-inspired 
symbolic regression method and evolutionary fuzzy-rules 
[40] was conducted in order to learn symbolic models 
for particular patient groups (MGUS, MM, MM-ASCT, 
healthy subjects) based on their serum protein pattern. For 
each tested patient group pair, the procedure was repeated 
more than 500 times to accommodate the stochastic nature 
of the algorithm and to obtain representative results. 
The most accurate classification models, separating all 
patients in the correct patient groups, were utilized for 
the identification of key molecules and those co-occurring 
in the classification rules characteristic for the particular 
patient group.

The proteins from the classification rules were 
further used to form a network model of patient 
classification with molecules as vertices and co-
occurrences in successful classification models as edges. 
An algorithm based on analysis of the nearest neighbors 
between the studied molecules was applied to determine 
vertex and edge weights in the network model [41]. 
The size of the vertices (font-size) and connections 
among vertices show those proteins, which were used in 
classification rules of the particular patient group in the 
most accurate classification model.

Classification methods for separation of patient 
groups

To assess the minimum number and best 
combination of serum analytes distinguishing between 
the patient groups (MGUS vs MM, MM vs MM-
ASCT), we applied several classification methods from 
the area of information retrieval such as Multilinear 
Discriminant Analysis, Naive Bayes classifiers, Random 
Forests, and kSVM to calculate the class probabilities 
for every input data (combinations of two or three 
analytes) and to determine the misclassification error 
[42, 43]. All methods were calculated using R statistical 
software with package Caret (http://topepo.github.io/
caret/index.html).

Statistical analysis

Statistical analyses (Mann-Whitney-Wilcoxon 
and paired Wilcoxon tests) were performed using R 
statistical software package (http://www.r-project.
org/). All data analyses were performed on linearized 
expression data (2ddCq) for each protein. A combination 
of box plots and swarm plots (a one-dimensional hybrid 
between scatter plot and strip chart) was employed 
to visualize the distribution of signals across subjects 
in particular subgroups. Radar charts were created 
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for each pair of compared subgroups to visually 
assess the quantitative changes in levels of the most 
significant molecules, determined for each group pair 
by the Mann-Whitney-Wilcoxon test, and for paired 
samples (MM and MM-ASCT) by paired Wilcoxon 
test. P-value for each protein was adjusted for multiple 
comparisons using the False Discovery Rate (FDR) by 
the Benjamini-Hochberg procedure. A P-value < .05 
was considered as significant.

Abbreviations

ADM, Adrenomedullin; ASCT, Autologous 
stem cell transplantation; CA125, Cancer antigen 125; 
CA242, CA 242 tumor marker; CCL19, Chemokine 
(C-C motif) ligand 19; CCL21, Chemokine (C-C 
motif) ligand 21; CEA, Carcinoembryonic antigen; 
CR, Complete remission; CSF1, Colony stimulating 
factor 1; CXCL5, C-X-C motif chemokine 5; CXCL9, 
Chemokine (C-X-C motif) ligand 9; CXCL10, 
C-X-C motif chemokine 10; CXCL11, C-X-C motif 
chemokine 11; CXCL13, Chemokine (C-X-C motif) 
ligand 13; EPO, Erythopoietin; FABP4, Fatty acid 
binding protein 4; FDR, False Discovery Rate; Flt3L, 
FMS-like tyrosine kinase 3 ligand; GDF15, Growth 
differentiation factor 15; GM-CSF, Granulocyte-
macrophage colony-stimulating factor; HE4, Human 
Epididymis Protein 4; hGH, Human Growth Hormone; 
IFNγ, Interferon gamma; Ig, Immunoglobulin; IL1RA, 
Interleukin-1 receptor antagonist; IL2, Interleukin 
2; IL4, Interleukin 4; IL6, Interleukin 6; IL12, 
Interleukin 12; IMiD, Immunomodulatory drug; 

KLK6, Kallikrein-6; KLK11, Kallikrein-11; kSVM, 
Extended Support Vector Machine; MIA, Melanoma-
derived growth regulatory protein; MGUS, Monoclonal 
gammopathy of undetermined significance; MM, 
Multiple myeloma; MYD88, Myeloid differentiation 
primary response 88; OPG, Osteoprotegerin; PEA, 
Proximity extension immunoassay; PGF, Placental 
growth factor; PR, Partial remission; PRL, Prolactin; 
REG4, Regenerating islet-derived protein 4; SMM, 
Smoldering multiple myeloma; TGFB1, Transforming 
growth factor beta 1; THPO, Thrombopoietin; TRAP, 
Tartrate-resistant acid phosphatase; sAREG, soluble 
Amphiregulin; sBAFF, soluble B-cell activating factor; 
sBTC, soluble Betacellulin; sCAIX, soluble Carbonic 
anhydrase 9; sCD30L, soluble CD30 ligand; sE selectin, 
soluble E-selectin; sEGFR, soluble Epidermal growth 
factor receptor; sEMMPRIN, soluble Extracellular 
matrix metalloproteinase inducer; sEpCAM, soluble 
Epithelial cell adhesion molecule; sEpiregulin, soluble 
Epiregulin; sER, soluble Estrogen receptor; sFasL, 
soluble Fas ligand; sFOLR1, soluble Folate receptor 
alpha; sHBEGF, soluble Heparin-binding EGF-like 
growth factor; sHER3, soluble Receptor tyrosine-protein 
kinase erbB-3; sHER4, soluble Receptor tyrosine-protein 
kinase erbB-4; sHGF, soluble Hepatocyte growth factor/
scatter factor; sHGFR, soluble Hepatocyte growth 
factor receptor; sIL2RA, soluble Interleukin-2 receptor 
alpha chain; sIL6R, soluble Interleukin 6 receptor; 
sIL17RB, soluble Interleukin-17 receptor B; sMICA, 
soluble MHC class I polypeptide-related sequence A; 
sPDGFB, soluble Platelet-derived growth factor subunit 
B; sPECAM1, soluble Platelet endothelial cell adhesion 

Table 2: Patient characteristics.

Parameter MGUS (n=16) MM (n=16)

Age, years, median (min-max) 59 (46-83) 57 (39-64)

Gender, n, male/female 8/8 5/11

Paraprotein type, n (%)

  IgG 11 (69) 7 (44)

  IgA 4 (25) 4 (25)

  IgD 1 (6) 0 (0)

  Light chain only 0 (0) 5 (31)

Bone lesions, n, yes/no 0/16 12/4

ASCT Induction regime, n (IMiD-based/bortezomib-based)* NA 16 (8/8)

Time difference from diagnosis to day 100 after ASCT, days, mean 
(min-max)

NA 314 (231-567)

Response on day 100 after ASCT, CR/VGPR/PR, n (%) NA 11/4/1 (69/25/6)

*1 patient received tandem ASCT
NA not applicable, CR complete remission, VGPR very good partial remission, PR partial remission
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molecule; sSCF, soluble Stem cell factor; sTF, soluble 
Tissue Factor; sTGFA, soluble Transforming growth 
factor alpha; sTIE2, soluble Receptor tyrosine kinase 
Tie2; sTNFR1, soluble Tumor necrosis factor receptor 
1; sTNFR2, soluble Tumor necrosis factor receptor 2; 
sTNFRSF4, soluble Tumor necrosis factor receptor 
superfamily member 4; suPAR, soluble Urokinase 
plasminogen activator receptore; sVEGFA, soluble 
Vascular endothelial growth factor A; VGPR, Very good 
partial remission
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