Skip to main content
. 2017 Aug 7;8(41):70653–70668. doi: 10.18632/oncotarget.19969

Figure 1. Fibronectin purification from homo and porcine plasma.

Figure 1

(A) Flow diagram of the purification steps used to isolate fibronectin from homo and porcine plasma. In step 1, cleared plasma was passed through a pre-column of Sepharose CL-4B in order to collect high molecular weight proteins. In step 2, the flow-through materials obtained from Sepharose CL-4B was loaded on a pre-column of gelatin-Sepharose Fast Flow 4B. After removing unbound proteins by sequentially washed with TBS-EDTA, 1 M NaCl and 0.2 M Arginine (Arg), the fibronectin was eluted with 1 M Arg and then dialyzed against TBS for 48 h at 4°C. In step 3, dialyzed material was applied to an Arg-Sepharose Fast Flow 4B column. After washing the column with TBS-EDTA, the fibronectin was eluted from the gel using 0.3 M NaCl/TBS-EDTA, and then dialyzed against TBS for 24 h at 4°C. Finally each of the fibronectins were concentrated using a Vivaspin 20 centrifugal concentrator (Molecular Weight Cut Off: 100 kDa). (B) The eluted fractions obtained from the Arg-Sepharose Fast Flow 4B column were analyzed by Western blotting using antibodies against fibronectin (FN) and Coomassie blue staining. (C) HFF1, Hela and U2OS cells plated on 6-well plates coated with 0 and 10 μg/ml homo or porcine plasma fibronectin for 16 h were assayed for wound-healing migration, which was monitored by time-lapse microscopy. The still images were obtained at the indicated times after wounding. The dotted lines mark the edge of the wound at the 0-h, 6-h and 12-h time points of wound-healing migration. Bar, 200 μm. Bottom: the percentage of wound closure was calculated using Metamorph software. Data are mean ± s.e.m. (n = 5 independent experiments).