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Abstract

Importance—Low-density lipoprotein cholesterol (LDL-C) is causally related to coronary artery 

disease (CAD), but the relevance of HDL-C and triglycerides is uncertain. LDL-C lowering by 

statins modestly increases diabetes risk, but it is unknown if this effect is specific to statins.
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Objective—To investigate the relationships of three routinely measured lipid fractions with CAD 

and diabetes through Mendelian randomization (MR), using conventional MR and making use of 

newer approaches such as multivariate MR and MR-Egger that addresses pleiotropy of genetic 

instruments.

Design—We used published data from genome wide association studies to construct genetic 

instruments and applied them to investigate associations between lipid fractions and risk of CAD 

and diabetes using MR approaches that took into account pleiotropy of genetic instruments.

Main outcomes and measures—coronary artery disease and diabetes

Results—We constructed genetic instruments composed of 130 SNPs for LDL-C (explaining 

7.9% of its variance), 140 SNPs for HDL-C (6.6% of variance) and 140 SNPs for triglycerides 

(5.9% of variance). A 1-SD (genetically instrumented) elevation in LDL-C (equivalent to 38 

mg/dL) and triglycerides (equivalent to 89 mg/dL) were associated with higher CAD risk: odds 

ratios (OR) and 95% confidence intervals (CI) were 1.68 (1.51-1.87) for LDL-C and 1.28 

(1.13-1.45) for triglycerides. The corresponding OR for HDL-C (equivalent to a 16mg/dL 

increase) was 0.95 (0.85-1.06). All three lipid traits were associated with a lower risk of diabetes. 

The OR and 95% CI limits were 0.79 (0.71-0.88) for LDL-C and 0.83 (0.76-0.90) for HDL-C.

Conclusions and Relevance—Routinely measured lipid fractions exhibit contrasting 

relationships with risk of CAD and diabetes. Increased LDL-C, HDL-C and TG are associated 

with reduced risk of diabetes. This information will be relevant to design of clinical trials of lipid 

modifying agents, which should carefully monitor for dysglycemia and incidence of diabetes.
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Introduction

Understanding the interplay between circulating lipids and risk of type 2 diabetes (T2D) and 

coronary artery disease (CAD) is of emerging public health importance and has implications 

for drug development for cardiovascular disease prevention.1,2 For example, a causal 

influence of low-density lipoprotein cholesterol (LDL-C) on CAD is widely accepted 3–5 

and the proposed causal role of triglycerides (TG) in CAD is gaining acceptance.6,7 In 

contrast, the role of high-density lipoprotein cholesterol (HDL-C) in CAD remains in doubt.

7–9

However, evidence has emerged that LDL-C reduction with statin therapy results in a 

modest increase in risk of T2D10,11 (outweighed by the benefit of statins in protecting from 

CAD).12 Whether this diabetogenic effect is a general consequence of LDL-C lowering or if 

it is specific to inhibition of HMG-CoA reductase remains unclear.13 Moreover, the role of 

TG and HDL-C in the aetiology of T2D remains unclear.14

Residual confounding and reverse causality can limit causal inference from observational 

studies. Where a genetic instrument can be used as an instrument for an exposure, 

Mendelian randomization (MR) generates unbiased, unconfounded effect estimates that are 

sometimes interpreted as evidence of a causal role. This is because genotype is not 
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modifiable by disease, and the random allocation of alleles at gametogenesis helps avoid 

bias from reverse causality and confounding, respectively.

A critical assumption of the MR paradigm is that the genetic instrument influences disease 

risk exclusively through the exposure of interest. However, genetic variant(s) used to proxy 

the exposure of interest can also associate with other traits, a phenomenon termed 

‘pleiotropy’. When pleiotropy arises as a downstream consequence of genetic perturbation 

of the biomarker of interest, it is referred to as vertical pleiotropy and the MR assumption is 

preserved.15 However, when pleiotropy arises because of the association of genetic 

variant(s) with additional phenotypes in alternative disease pathways (termed horizontal 

pleiotropy), the assumption is compromised. When MR analysis is based on multiple SNPs 

drawn from different regions of the genome selected systematically for their association with 

the biomarker of interest, additional non-systematic effects on any other biomarkers might 

be ‘balanced’ and the MR effect estimate could still be valid. However, if horizontal 

pleiotropy is unbalanced, as might occur when the set of biomarkers concerned come from 

closely connected pathways, MR estimates may become systematically biased (termed 

‘unbalanced’ or ‘directional’ pleiotropy16), resulting in invalid effect estimates (see Figure 1 

for more details).

Recent methodological advances in MR analysis, including ‘multivariate’ MR17 and ‘MR-

Egger’,16 provide new approaches for dealing with pleiotropic genetic instruments. In 

multivariate MR, adjustment is made for genetic associations with measured traits, but may 

not fully account for unbalanced pleiotropy18. In contrast, MR-Egger can detect and correct 

for unbalanced pleiotropy of the genetic instrument, even when unbalanced pleiotropy is 

mediated through unmeasured or unknown traits.

We used summary data from multiple major cardiometabolic genome wide association 

studies (GWAS) to investigate the underlying relationships between lipids, T2D and CAD 

using three MR approaches: (i) conventional MR that does not account for pleiotropy, (ii) 

multivariate MR, that adjusts for traits that may mediate unbalanced pleiotropy, and (iii) 

MR-Egger, that more fully accounts for unbalanced pleiotropy.

Methods

Data sources

We used summary-level data for lipids from the Global Lipids Genetics Consortium 

(GLGC),19 T2D data from the DIAbetes Genetics Replication And Meta-analysis 

(DIAGRAM),20 and CAD data from the Coronary ARtery DIsease Genome-wide 

Replication And Meta Analysis (CARDIoGRAM) plus The Coronary Artery Disease (C4D) 

Genetics, collectively known as CARDIoGRAMplusC4D consortium.21 Details of the 

consortia and webpages for data download are provided in Table 1. All datasets were limited 

to individuals of European ancestry. Beta coefficients and standard errors were obtained for 

the per allele association of each SNP with all exposures and outcomes from these data 

sources. Where SNPs were not present in a dataset we used proxies (R2>0.9) as indicated in 

Figure 2.
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Selection of SNPs

We used 185 lipid-associated SNPs identified by Willer et al19 to generate a series of 

genetic instruments for each of the exposures: LDL-C, HDL-C and TG. This was conducted 

by first restricting to a set of SNPs in low linkage disequilibrium (pairwise R2<0.2). We then 

organized these SNPs by descending order of proportional variance (R2, estimated from the 

summary statistics using the gtx() package in R) between SNP with the corresponding lipid 

exposure to generate a range of instruments from 5 to 150 SNPs. The process used to 

determine the final tally of SNPs for inclusion in a genetic instrument for each lipid trait is 

described below.

Handling of SNPs

We matched SNPs across the data sources by aligning them to the same effect allele. Effect 

allele frequencies were checked for concordance.

Mendelian randomization analyses

We used three MR approaches.

First, we used conventional 2-sample instrumental variable (IV) analyses, which does not 

make any allowance for pleiotropy. Basing our approach on the method first proposed by 

Johnson,22 we incorporated the bootstrap suggested by Bowden,16 as a way to incorporate 

the error in the published estimates of SNP effect on both exposure and outcome.

Second, we conducted multivariate MR analyses, which statistically adjusts for pleiotropy 

with additional phenotypes measured in the dataset.23 Multivariate MR is an extension of 

the conventional weighted regression in which the betas for additional phenotypes are 

included as covariates. In this case we used all three lipid traits in the model (e.g. for the 

HDL-C instrument we included, thereby adjusting for, LDL-C and TG).

Third, we used MR-Egger,16 which accounts for unbalanced pleiotropy of a genetic 

instrument. MR-Egger is a linear regression of estimated SNP effects (for the exposure-

raising allele) on exposure against the corresponding estimates of SNP on outcome, 

weighted by the inverse variance of the SNP on outcome effect estimates. This differs from 

conventional 2-sample MR in that the regression line is not forced through the origin. 

Bowden et al16 show that the MR-Egger estimate is unaffected by net pleiotropic effects of 

the instrument and, indeed, the presence of unbalanced pleiotropy can be inferred if the 

intercept term is not zero.

For all three approaches (conventional MR, multivariate MR and MR-Egger), we conducted 

10,000 bootstraps, and our effect estimate is the mean of the bootstraps with the confidence 

interval (CI) determined empirically and set to Bonferroni adjusted (for 6 tests) 95% (i.e. 

99.2%).

Quantifying the proportion of variance explained by the genetic instruments

i) R-Trend—The proportion of variance (R2) of the trait explained by the genetic 

instrument will rise with the addition of more SNPs. However, the improvement beyond the 
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optimum number of SNPs in the instrument will come increasingly as a result of model 

over-specification. We examined the ratio of R2 for the current instrument to R2 for an 

instrument comprising 30 more SNPs (we term this the ‘R-Trend’). The trend in the ratio 

gives an indication of the transition from useful additional information to over-specification 

since it becomes asymptotic when each new SNP adds the same amount of information than 

the last. We judged the beginning of the asymptotic phase of the line to mark the largest 

useful instrument obtainable from the available data. The 30 SNP window was chosen 

empirically because it emphasises trend; a smaller window gave a more erratic line, 

obscuring the trend. Calculation and use of the R-trend effectively limited the analysis to 

instruments comprising 155 or fewer SNPs, further restricted to 150 for presentational 

purposes.

ii) Gain from adding a SNP to the instrument—We estimated the benefit to R2 from 

adding the current SNP to the previous instrument by bootstrapping the summary statistics 

and calculating R2 for the instruments with n and (n-1) SNPs. Over 10,000 bootstraps we 

noted the number of occasions when the current instrument gave higher R2 than the previous 

instrument. This value was summarised as a percentage; the point at which the current 

instrument was no better than the previous instrument being when 50% of the runs showed a 

benefit.

Selection of optimal number of SNPs in genetic instrument

The optimum number of SNPs was chosen by consideration of the R-ratio and the gain from 

adding the current SNP when presented graphically (eFigures 1-6 in the Supplement). The 

optimum instrument was identified when both estimates of R2 gain were asymptotic. As we 

discuss later, the exact point (± 20 SNPs) makes little difference to the conclusions. Two 

authors (JW and MVH) considered this independently and reached a consensus as to the 

number of SNPs to include for each genetic instrument for each lipid trait.

Selection of MR model to derive estimates of the underlying relationship

Once we determined the optimal number of SNPs to incorporate in each instrument, we used 

the following decision-tree to select the MR approach to derive the estimate:

(i) if there was no evidence of unbalanced pleiotropy using the intercept derived 

from MR-Egger, we selected the conventional MR instrumental variable 

estimate as the most reliable indicator to the underlying relationship (as it retains 

maximal power and makes fewest assumptions)

(ii) if there was evidence of unbalanced pleiotropy, we used the estimate from MR-

Egger

(iii) in cases where there was discordance between conventional MR and MR-Egger, 

we used multivariate MR to inform whether differences could arise from 

pathways shared between the three lipids traits.
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The inSIDE assumption

Because the underlying models assume a linear dose-response, instrumental variable (IV) 

effect estimates must be independent of the exposure effect in MR analysis (the so-called 

‘inSIDE rule’).16 We tested the null hypothesis that the instrumental variable effect (derived 

from the ratio of outcome to exposure) estimates for the SNPs in an instrument were 

independent of the exposure (lipid) effect estimates for the same SNPs for both CAD and 

T2D. In all scenarios, the ‘inSIDE’ assumption was satisfied (eTable 1 in the Supplement).

Power

We followed the method of Brion et al24 implemented at http://cnsgenomics.com/shiny/

mRnd/. Using the average number of individuals and estimated R2 for the instrument 

together with the reported proportion of cases, we adjusted the estimate of the true effect of 

exposure on outcome to obtain the value for which we had 80% power at a Bonferroni 

adjusted alpha of 0.05/6.

Ethical Review of Study and Informed Consent of Study Participants

As this report used published GWAS data available in the public domain, specific ethical 

review and/or consent from study participants was not sought (and had been obtained in the 

original studies).

Results

The pooled dataset included up to 188,577 individuals with measures of blood lipids, 63,199 

CAD cases and 34,840 T2D cases. The optimal number of SNPs for each lipid traits was 

130 for LDL-C (explaining 7.9% of its variance), 140 for HDL-C (6.6% of HDL-C variance) 

and 140 for TG (5.9% of TG variance) (eFigures 1-6 in the Supplement).

LDL-C

The genetic instrument for LDL-C showed unbalanced pleiotropy for CAD and T2D. For 

CAD, the estimate derived from MR-Egger was OR 1.68 (95%CI: 1.51, 1.87) per 1-SD 

(equivalent to 38 mg/dL) genetically-instrumented higher LDL-C. This was of greater 

magnitude, but directionally consistent with conventional and multivariate MR estimates 

(Figure 3 and eFigure 1 in the Supplement).

For T2D, the OR was 0.79 (95%CI: 0.71, 0.88) per 1-SD higher LDL-C from MR-Egger, 

which, was again of greater magnitude yet directionally consistent with conventional and 

multivariate MR estimates (Figure 3 and eFigure 2 in the Supplement).

HDL-C

A 1-SD genetically instrumented elevation in HDL-C (equivalent to 16 mg/dL) did not 

provide conclusive evidence of a relationship between HDL-C and risk of CAD. There was 

evidence of unbalanced pleiotropy of the HDL-C genetic instrument and the estimate for 

CAD from MR-Egger was OR 0.95 (95%CI: 0.85, 1.06). There was a step-wise weakening 

of the effect towards the null from conventional MR (OR 0.80; 95%CI: 0.75, 0.86), through 
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adjusting for LDL-C and TG in multivariate MR (OR 0.86; 95%CI: 0.78, 0.96) to the MR-

Egger estimate (Figure 3 and eFigure 3 in the Supplement).

For T2D, there was no evidence of unbalanced pleiotropy of the genetic instrument 

comprising 140 SNPs. The conventional MR provided an estimate of OR 0.83 (95%CI: 0.76, 

0.90), consistent with estimates from both multivariate MR and MR-Egger (Figure 3 and 

eFigure 4 in the Supplement).

Triglycerides

The TG genetic instrument showed unbalanced pleiotropy for both CAD and T2D. A 1-SD 

genetically instrumented increase in TG (equivalent to 89 mg/dL) yielded an OR for CAD 

from MR-Egger of 1.28 (95%CI: 1.13, 1.45), weaker than the multivariate MR estimate and 

roughly half the magnitude of the conventional MR estimate (OR 1.49) (Figure 3 and 

eFigure 5 in the Supplement).

TG was associated with reduced risk of T2D (OR 0.83; 95%CI: 0.72, 0.95 from MR-Egger). 

This was dissimilar to both conventional and multivariate MR estimates (Figure 3). The 

scatter plot identified that the intercept of the MR-Egger slope was positive (eFigure 6 in the 

Supplement).

Power

There was adequate powered to detect the reported estimates (eTable 2 in the Supplement), 

making it unlikely that associations arose from the play of chance.

Putting the pieces together: framework of relationships

We demonstrate that elevations in LDL-C, TG and HDL-C are associated with reduced risk 

of T2D, with the magnitude (per 1-SD increase) being greatest for LDL-C, then TG 

followed by HDL-C (although the 95%CI for the effect on T2D for the three lipids overlap) 

(Figure 4). In contrast, only LDL-C and TG were associated with increased risk of CAD 

(with the magnitude again stronger for LDL-C than TG).

Discussion

We exploited data from multiple GWAS to conduct MR analyses exploring the relationships 

between lipids and risk of T2D and CAD. Our findings reveal a series of relationships that 

will help inform on potential downstream consequences of pharmacological modification of 

lipid levels.

While all three lipids were associated with reduced risk of T2D, it does not necessarily 

follow that lowering of LDL-C or TG through inhibition of specific druggable proteins (such 

as PCSK9) will alter risk of T2D. Large-scale genetic and clinical investigations are needed 

to clarify the effects of pharmacological lowering of LDL-C and TG to gauge dysglycaemic 

associations.25,26

Our findings are complimentary to a study by Fall et al13, that, to address pleiotropy, 

excluded SNPs showing strong associations with T2D, glycaemia-related traits or potential 
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confounders such as adiposity. This manual pruning weakened the associations, yielding 

inconsistent conclusions. In our study, we applied novel approaches for: (i) SNP selection 

(to optimize the SNPs in each genetic instrument); (ii) MR (using MR-Egger, obviating the 

need to manually prune SNPs); that collectively allows us to make more robust conclusions 

about the role of lipids in T2D.

The protective effect of TG and risk of T2D that we report is novel, yet potentially counter-

intuitive. Observational studies report that increases in TG are associated with an increase in 

risk of T2D27, however insulin resistance results in perturbations in TG metabolism, 28 

meaning that the direction of the casual relationship is not clear. While our data (suggesting 

TG may be protective of T2D) should be interpreted with caution, our findings are consistent 

with recent genetic studies in both Europeans and African-Americans. 29,30 Further 

investigations are needed to identify which TG pathways, if any, may lead to a reduction in 

risk of T2D.

LDL-C and TG showed robust effects on risk of CAD, however the evidence for HDL-C 

was far less convincing, with the estimate from MR-Egger failing to identify an effect. This 

is in keeping with prior MRs7,8, including the paper by Voight et al8 that manually pruned 

pleiotropic SNPs. However, selecting only non-pleiotropic SNPs could introduce selection 

bias in the genetic instrument by focusing on a subset of SNPs that is not representative of 

any meaningful proxy of HDL-C, with the removal of potentially informative HDL-C 

related pathways. Our data show that adjusting for TG and LDL-C in multivariate MR does 

not fully account for the unbalanced pleiotropy of the HDL-C genetic instrument. MR-Egger 

identifies that the likely underlying relationship is that a genetically-determined higher 

HDL-C does not result in a reduced risk of CHD. While these findings are consistent with 

recent trials of therapeutics targeting HDL-C,9,31 this does not preclude the possibility that 

a drug modifying HDL-C (or HDL particles) could reduce risk of CAD or other outcomes 

such as stroke.

The association of TG with CAD recapitulates findings from several prior MR and genetic 

studies.6,7 Of note, the MR-Egger estimate for TG was less than half the magnitude for an 

equivalent increase in LDL-C (ORs 1.28 and 1.68 for TG and LDL-C, respectively, per 1-SD 

increment). Specific triglyceride-lowering approaches have had, at best, modest efficacy 

whereas statin trials have had consistently and potently positive results.32,33 Our data 

suggest that pharmacological lowering of TG should translate into CAD benefit.

This study has several advantages. First, we use the most up-to-date data available for lipids 

to generate the most comprehensive genetic instruments available. Second, MR-Egger 

enabled inclusion of GWAS-identified lipid-related SNPs in the genetic instruments, 

irrespective of presence of unbalanced pleiotropy. Third, using summary-level data from 

different sources represents an efficient study design to facilitate original investigations such 

as these without the cost or need for de novo pheno-/genotyping.

Some limitations are also worthy of note. First, estimates could be sensitive to SNPs 

included in the genetic instruments. However, MR estimates were stable at the point at 

which we selected the genetic instrument. Second, our MR analyses pertain to biomarkers 
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rather than specific drug targets. Third, patients targeted for lipid modification may be at risk 

for other diseases such as heart failure or atrial fibrillation – the relevance and direction of 

effects on these and other endpoints could be important but were not evaluated here. Fourth, 

we are not able to account for statin treatment in the analyses; given that we detect the 

protective effect of LDL-C on risk of T2D (the scenario that statins are most likely to 

confound), major bias is unlikely to arise in this setting. Finally, while our data casts yet 

further doubt on the relevance of HDL-C in the aetiology of CAD, it remains possible that 

HDL lipoproteins and/or lipid compositions could play a role in the aetiology of CAD. New 

methods, such as 1H-NMR metabolomics,34 that quantify lipoprotein subclasses and lipid 

compositions are likely to facilitate future MR studies of HDL subclasses.

In conclusion, our comprehensive MR investigations identify distinct relationships of major 

lipid subfractions and risk of CAD and T2D. LDL-C and TG increase risk of CAD. In 

contrast, LDL-C and HDL-C are very likely to be protective of T2D with new evidence 

suggesting that TG may also play a protective role. While further studies are needed to 

examine if specific pathways or lipid subtypes are implicated, our findings inform on 

potential expected downstream consequences of intervening on lipid traits and provide 

cautionary evidence that therapeutics that lower LDL-C and TG may have dysglycaemic 

effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key points

Question: Do routinely measured lipids affect risk of cardiometabolic disease?

Findings: In this Mendelian randomization analysis, a lifelong higher low density 

lipoprotein-cholesterol (LDL-C) or triglycerides was found to be associated with higher 

risk of coronary artery disease. In contrast, higher levels of all three lipid traits (LDL-C, 

high density lipoprotein-cholesterol [HDL-C] and triglycerides) associated with a 

reduced risk of diabetes.

Meaning: Lower LDL-C and TG levels may increase risk of diabetes; clinical trials of 

lipid-modifying agents should carefully monitor for the incidence of diabetes
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Figure 1. Pleiotropy and the validity of estimates derived from Mendelian randomization.
SNPs are used in a genetic instrument for an exposure to assess the association with risk of 

disease. For each exposure there is a ‘true relationship’, which we try to approximate from 

Mendelian randomization. For the purposes of simplicity, conventional MR is compared to 

MR-Egger.

Vertical pleiotropy explains where the genetic instrument associates with biomarkers (other 

than the exposure) that are on the causal pathway from exposure through to disease. 

Horizontal pleiotropy is where the genetic instrument associates with additional traits not 

on the causal pathway of the exposure of interest. When horizontal pleiotropy is balanced, 

there should be no bias in the effect derived from MR. In this scenario, the estimate obtained 

from conventional MR is similar to that from MR-Egger.

When horizontal pleiotropy is unbalanced (also termed ‘directional pleiotropy’), the 

pleiotropy systematically biases the estimate (which can be exaggerated or diminished) in a 

naïve analysis using conventional MR. In the example in Figure 1, the unbalanced pleiotropy 

exaggerates the magnitude of the association. Conventional MR will derive a biased 

estimate, whereas MR-Egger, correcting for unbalanced pleiotropy, should yield a valid 

estimate. An example of unbalanced horizontal pleiotropy is the relationship of HDL-C and 

risk of CAD; the association derived from conventional MR is different to that of MR-Egger 

with the latter indicating that, once unbalanced pleiotropy is accounted for, there is no effect 

of HDL-C on risk of CAD (see Figure 3).
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Figure 2. Pipeline for derivation of the dataset used for Mendelian randomization analyses of 
lipid subtypes with risk of coronary artery disease and diabetes.

White et al. Page 14

JAMA Cardiol. Author manuscript; available in PMC 2017 October 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 3. Associations of routinely measured lipids with risk of coronary artery disease (CAD) 
and type 2 diabetes (T2D) from Mendelian randomization analyses.
See Methods for description of the three Mendelian randomization (MR) models. Estimates 

for conventional MR are derived from two-sample MR that forces the slope through the 

origin, thereby not accounting for pleiotropy. Multivariate MR (MVMR) statistically adjusts 

for other lipid traits, and MR-Egger adjusts for unbalanced pleiotropy. R2 refers to 

proportion of variance of lipid trait explained by the genetic instrument. 95% confidence 

intervals (CI) are Bonferroni-adjusted. To convert HDL-C and LDL-C to mmol/L, multiply 

by 0.0259; to convert triglycerides to mmol/L, multiply by 0.0113
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Figure 4. Cross-hair plot of a one standard deviation increase in lipids and risk of CAD and T2D.
All estimates derived from MR-Egger. Error bars represent 95% confidence intervals (CI) 

that are Bonferroni-adjusted.
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Table 1
Details of the consortia

Consortium name Trait/Disease Numbers Data Source; file

GLGC 19 LDL-C, HDL-C, TG 188,577 http://www.sph.umich.edu/csg/abecasis/public/lipids2013

CARDIoGRAMplusC4D 21 CAD 63,746 CAD cases, 
130,681 controls

http://www.cardiogramplusc4d.org

DIAGRAM 20 T2D 34,840 T2D cases and 
114,981 controls

http://diagram-consortium.org (v3 dataset)

Abbreviations: CAD: coronary artery disease; CARIoGRAMplusC4D: Coronary ARtery DIsease Genome-wide Replication And Meta Analysis 
(CARDIoGRAM) plus The Coronary Artery Disease (C4D) Genetics; DIAGRAM: DIAbetes Genetics Replication And Meta-analysis; GLGC: 
Global Lipids Genetic Consortium; T2D: type 2 diabetes
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