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Abstract

IMPORTANCE—Cerebrospinal fluid (CSF) and positron emission tomographic (PET) amyloid 

biomarkers have been proposed for the detection of Alzheimer disease (AD) pathology in living 

patients and for the tracking of longitudinal changes, but the relation between biomarkers needs 

further study.

OBJECTIVE—To determine the association between CSF and PET amyloid biomarkers (cross-

sectional and longitudinal measures) and compare the cutoffs for these measures.

DESIGN, SETTING, AND PARTICIPANTS—Longitudinal clinical cohort study from 2005 to 

2014 including 820 participants with at least 1 florbetapir F-18 (hereafter referred to as simply 

florbetapir)–PET scan and at least 1 CSF β-amyloid 1–42 (Aβ1–42) sample obtained within 30 

days of each other (501 participants had a second PET scan after 2 years, including 150 

participants with CSF Aβ1–42 measurements). Data were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative database.

MAIN OUTCOMES AND MEASURES—Four different PET scans processing pipelines from 2 

different laboratories were compared. The PET cutoff values were established using a mixture-

modeling approach, and different mathematical models were applied to define the association 

between CSF and PET amyloid measures.

RESULTS—The values of the CSF Aβ1–42 samples and florbetapir-PET scans showed a 

nonlinear association (R2 = 0.48–0.66), with the strongest association for values in the middle 

range. The presence of a larger dynamic range of florbetapir-PET scan values in the higher range 

compared with the CSF Aβ1–42 plateau explained the differences in correlation with cognition 

(R2 = 0.36 and R2 = 0.25, respectively). The APOE genotype significantly modified the 

association between both biomarkers. The PET cutoff values derived from an unsupervised 

classifier converged with previous PET cutoff values and the established CSF Aβ1–42 cutoff 

levels. There was no association between longitudinal Aβ1–42 levels and standardized uptake 

value ratios during follow-up.

CONCLUSIONS AND RELEVANCE—The association between both biomarkers is limited to a 

middle range of values, is modified by the APOE genotype, and is absent for longitudinal changes; 

4 different approaches in 2 different platforms converge on similar pathological Aβ cutoff levels; 

and different pipelines to process PET scans showed correlated but not identical results. Our 

findings suggest that both biomarkers measure different aspects of AD Aβ pathology.

Alzheimer disease (AD) pathology is defined by the deposition of extracellular β-amyloid 

(Aβ) plaques and intracellular tau neurofibrillary tangles in the brain.1 These deposits 

correlate with Aβ positron emission tomographic (PET) radiotracer retention2–4 and 

cerebrospinal fluid (CSF) Aβ levels.5–7 As expected, the CSF Aβ1–42 levels and the 

standardized uptake value ratios (SUVRs) of the different PET Aβ ligands are associated8–19 

and show similar classification accuracy and diagnostic agreement. Conversely, plasma Aβ 
levels show a weak association with these biomarkers8,18 and cannot predict the clinical 

diagnosis.20 Whereas recent larger studies have noted a nonlinear association between CSF 

and PET measures of Aβ pathology, which was less obvious in smaller cohorts,15,16 most 

studies have centered on diagnostic utility or have assumed a linear association and applied 
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parametric models without a value transformation. The goal of our study was to (1) assess 

the presence of nonlinear associations between CSF Aβ1–42 samples and florbetapir F-18 

(hereafter referred to as simply florbetapir)–PET scans processed using different pipelines, 

(2) compare amyloid cutoffs across platforms, and (3) study the association between 

longitudinal measures of both amyloid biomarkers in a large longitudinal cohort study.

Methods

Participants

A total of 820 Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with CSF 

Aβ1–42 and florbetapir-PET Aβ imaging measurement values obtained with in 30 days 

were included in our study (Table 1). Florbetapir was not available at the baseline ADNI 1 

visit, and therefore some of these participants had their first florbetapir-PET scan performed 

during subsequent visits. The number of visits in which PET scans were performed were 739 

at baseline, 23 at 24 months, 3 at 36 months, 25 at 48 months, 25 at 60 months, and 5 at 72 

months. For the CSF Aβ1–42 mixture model analysis, 1005 participants with a CSF Aβ1–42 

measurement were included (ie, all participants with at least 1 CSF Aβ1–42 measurement to 

estimate the CSF Aβ1–42 cutoff level). Data were downloaded on September 12, 2014. A 

total of 501 participants had a second PET amyloid scan performed within 2 years, and a 

total of 150 participants also had CSF samples obtained within 30 days of the second PET 

scan. The CSF Aβ1–42 data used in the preparation of this article were obtained from 

UPENNBIOMK and UPENNBIOMK5–7 data generated by the ADNI Biomarker Core.

The ADNI (http://www.adni-info.org) was launched in 2004 by the National Institute on 

Aging, the National Institute of Biomedical Imaging and Bioengineering, the US Food and 

Drug Administration, private pharmaceutical companies, and nonprofit organizations, and 

has been extensively reviewed elsewhere21 (eAppendix in the Supplement). A diagnosis of 

mild cognitive impairment or AD was established based on the criteria by Petersen et al22,23 

for mild cognitive impairment and the National Institute of Neurological and 

Communicative Disorders and Stroke–Alzheimer’s Disease and Related Disorders 

Association criteria24 for probable AD. Protocols were submitted to institutional review 

boards for each participating location and their written unconditional approval obtained and 

submitted to Regulatory Affairs at the ADNI Coordinating Center (ADNI-CC) prior to 

commencement of the study. Written informed consent for the study was obtained from all 

participants and/or authorized representatives.

CSF Collection and Aβ1–42 Measurement

The CSF samples were obtained in the morning after an overnight fast and processed as 

previously described25,26 (eAppendix in the Supplement). The Aβ1–42 level was measured 

using the multiplex xMAP Luminex platform (Luminex Corp) with Innogenetics (INNO-

BIA AlzBio3, for research use–only reagents) immunoassay kit–based reagents. The capture 

and detection antibodies for Aβ1–42 were 4D7A3 and 3D6, respectively.26 All longitudinal 

CSF samples belonging to the same participant were measured in the same plate to avoid 

assay-to-assay variation.
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Florbetapir-PET Scan Processing

Florbetapir image data were acquired from a variety of PET scanners at ADNI sites 

nationwide. Image data were acquired in four 5-minute frames 50 to 70 minutes after 

injection of approximately 10 mCi, and the 4 frames were coregistered to each other, 

averaged, interpolated to a uniform image (160 × 106 × 96) and voxel size (1.5 mm3), and 

smoothed to a uniform resolution (8-mm full width at half-maximum) to account for 

differences between scanners.27

We included florbetapir SUVRs developed in 2 different laboratories (the University of Utah 

in Salt Lake City and the University of California, Berkeley), each including 2 different 

measures obtained using a different reference (eAppendix in the Supplement). Both 

laboratories used the same scans that were preprocessed as already detailed. From the 

University of Utah analysis, we included averaged regional values from medial and lateral 

frontal, temporal, and parietal cortices that were normalized either using the cerebellar 

region (the average cerebellum) or the white matter (the average white matter) as reference 

region. Two summary measures were obtained at the University of California, Berkeley 

using Aβ deposition in frontal, cingulate, lateral parietal, and temporal cortices and either 

the whole cerebellum as reference (the summary cerebellum) or the whole cerebellum, 

brainstem/pons, and eroded subcortical white matter (the summary composite) as reference 

region. There were 450 and 501 participants who had 2 PET scans obtained within 2 years at 

the University of Utah and University of California, Berkeley laboratories, respectively.

Statistical Analysis

For univariate group comparisons, analysis of variance and χ2 tests were applied for 

quantitative and qualitative variables. Power transformations were applied to normalize 

distributions in the analyses performed for the demographic variables included in Table 1. 

We used 5 different models to test which one better explained the association between CSF 

Aβ1–42 levels and PET SUVRs: lineal, polynomial, exponential, hyperbolic, and 

multivariate adaptive regression splines (MARSs). An MARS creates piecewise regression 

models (hinges) for each variable in the model, and these models are separated by knots to 

capture changes in the association according to different ranges of the measures, using a 

data-driven approach. To test the models, the sample was divided into a training set and a 

test set, which included two-thirds and one-third of the participants, respectively. Each 

participant was only included once in this analysis. The different statistical models were 

developed in the training set using a 10-fold cross-validation and afterward applied to the 

test set. The coefficient of determination (R2) is reported to summarize the goodness of fit of 

each model. Cutoffs for amyloid biomarkers were obtained using a previously reported 

strategy that uses finite mixture models (eTable 1 and eFigure 1 in the Supplement).28,29

Results

Cross-sectional Association Between Individual CSF and Florbetapir-PET Aβ Measures

The first and second columns in Figure 1 show the CSF and PET Aβ levels for the 

participants included in the training and test sets, respectively, and the fitted models (the 

solid gray areas show disagreement in participant classification between both biomarkers). 
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Coefficients of determination (R2) for the different models are summarized in eTable 2 in the 

Supplement. In all comparisons, the linear model showed the worst performance in the 

training and test sets, whereas the hyperbolic and MARS models showed overall the best 

performance.

APOE genotype influenced the relationship; an increasing number of ε4 copies were 

associated with lower CSF Aβ1–42 levels for the same PET SUVR in all models. In all 

MARS models, the first hinge was located in a narrow range of Aβ1–42 levels (225–288 

pg/mL for participants with 0 copies of the APOE ε4 allele and 208–214 pg/mL for 

participants with 1 copy of the APOE ε4 allele), and the second hinge showed a slightly 

higher variability (137–144 pg/mL for participants with 0 copies of the APOE ε4 allele and 

119–132 pg/mL for participants with 1 copy of the APOE ε4 allele). The PET SUVRs could 

not accurately predict CSF Aβ1–42 levels before the first hinge (R2 = 0.01–0.10) and after 

the second hinge (R2 = 0.11–0.26). We tested whether clinical diagnosis was a significant 

predictor, but it was not selected in any of the MARS models. Similar results that included 2 

hinges in the MARS were obtained when CSF Aβ1–42 level was selected as the predictor 

and the florbetapir measures were selected as outcomes (data not shown).

eTable 3 in the Supplement shows PET SUVRs that corresponded to the CSF Aβ1–42 cutoff 

level of 192 pg/mL for participants with 0 copies or 1 copy of the APOE ε4 allele. Table 2 

summarizes the κ coefficients and overall percentage agreement for each pair of biomarkers. 

There was a substantial agreement between the CSF Aβ1–42–defined groups and the groups 

that were defined based on the different florbetapir-derived measures (κ = 0.69–0.76), but it 

was lower than the excellent agreement observed for the different florbetapir-PET measures 

(κ = 0.80–0.91). Most of the participants who were classified differently by CSF and PET 

Aβ measures presented with abnormal CSF Aβ1–42 levels and normal PET SUVRs 

(8.9%-12.5%) compared with participants with normal CSF Aβ1–42 levels and abnormal 

PET SUVRs (0.7%-4.5%). We compared clinical characteristics in the groups with 

mismatched biomarker results (eTables 4 and 5 in the Supplement). Although there were a 

larger number of participants who were cognitively impaired in the group that had only 

abnormal CSF Aβ1–42 levels compared with the group that had only abnormal summary 

cerebellum values, the differences were not significant (P = .50). Whereas there were no 

differences in the Alzheimer’s Disease Assessment Scale– cognitive subscale (ADAS-cog) 

scores between groups at the 12-month follow-up, the participants who had only abnormal 

CSF Aβ1–42 levels showed memory decline, and the participants who had only abnormal 

summary cerebellum values showed executive decline.

The different PET SUVRs obtained with the different references and pipelines were highly 

correlated (eFigure 2 in the Supplement), with correlation coefficients between 0.81 and 

0.95, although the values were not comparable and needed a transformation between 

pipelines (eTable 6 in the Supplement). When we tested the ability of florbetapir-PET 

measures and CSF Aβ1–42 levels to predict the ADAS-cog score, the summary composite 

measure (R2 = 0.36) outperformed the Aβ1–42 level (R2 = 0.25) in a cross-validated MARS 

model that included age as a covariate (Figure 2A and B).The MARS model fits calculated 

for each of the clinical diagnostic groups are summarized in eTable 7 in the Supplement. 

Results were similar for other PET Aβ measures.
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Longitudinal CSF and PET Aβ Measurements

Figure 2C–F shows baseline SUVRs for each of the PET measurements (x-axis) and the 

corresponding yearly change (y-axis) for participants with 2 PET measurements, and Figure 

2G shows the changes in the CSF Aβ1–42 level for the same period. For 304 participants 

who had 2 PET scans and CSF samples obtained during the baseline visit, only the group 

with abnormal Aβ1–42 levels and abnormal PET SUVR summary measures showed a 

greater increase during follow-up (Figure 2H and I).

A total of 150 participants (53 cognitively normal participants, 90 participants with mild 

cognitive impairment, and 7 participants with AD) had 2 CSF and PET Aβ measurements 

obtained during the same visits, with the second set of measurements occurring within 2 

years (ie, mean [SD], 729.7 [20.8] days) of the first. Figure 3 displays scatter plots with the 

yearly value changes during follow-up for the CSF Aβ1–42 and florbetapir-PET 

measurements below the diagonal and their correlation above the diagonal (eFigure 3 in the 

Supplement also shows associations between the PET SUVRs). There was no correlation 

between CSF and PET amyloid value changes, while the different PET Aβ amyloid 

measurements correlated with a higher degree. The correlation between CSF Aβ1–42 level 

and florbetapir-PET measure did not improve when only participants with Aβ1–42 levels 

between both MARS hinges (140–215 pg/mL) were included (data not shown).

Discussion

Cross-sectional CSF Aβ1–42 levels and florbetapir-PET measures were associated for a 

limited middle range of values that included the cutoffs, and they were consistent with AD. 

The association was significantly modified by the number of APOE ε4 alleles. Nevertheless, 

there was a large agreement for the classification of participants as having an AD-like Aβ 
burden between the different measures. Different approaches converged on a similar cutoff 

for pathological Aβ deposition across platforms. However, there was no correlation between 

longitudinal changes observed after 2 years of follow-up.

Previous studies16,19 have mainly analyzed the agreement between CSF and PET Aβ 
measures in the same cohort using a single florbetapir-PET measure or using Pearson 

correlation or linear regressions assuming a linear association.18 Good agreement between 

CSF Aβ1–42 level and florbetapir-PET SUVR has been previously reported using a single 

pipeline for the latter.16,19 In the present study, we found an excellent correlation-

classification agreement using 4 separate SUVRs obtained in 2 different laboratories using 2 

distinct pipelines. Including different processing pipelines used in the 2 laboratories allowed 

us to analyze how the use of different pipelines and references can affect comparisons across 

studies. We showed that cross-sectional SUVRs were highly correlated and that different 

processing pipelines and choices of references led to a disagreement of 5% to 10%, and κ 
coefficients between 0.80 and 0.91 in a large sample of participants processed in 4 different 

ways, which could be a potential important source of variability between studies. Thus, each 

pipeline needs to establish its own cutoffs. Recently, a new method has been proposed to 

compare values across different PET ligands and processing pipelines.30 Nevertheless, CSF 

Aβ1–42 levels and florbetapir-PET measures showed much higher agreement and much 
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higher κ coefficients than the ones observed when the different neuronal injury biomarkers 

were studied in the same cohort.31

The validity of the cutoffs has been previously demonstrated in a 3-fold manner: (1) the CSF 

Aβ1–42 level cutoff was initially demonstrated using autopsy-validated diagnoses25 to 

prevent biases due to clinical diagnostic uncertainties,5 (2) this cutoff was then validated 

using a “diagnosis-free”–driven mixture model analysis of CSF Aβ1–42 levels,28 and (3) for 

florbetapir-PET SUVRs, investigators used young controls32 and autopsy cases.2 In the 

mixture model analysis of summary CB values that we performed, 1.12 was designated as 

the cutoff that corresponds to an SUVR of 1.11 using the semiautomated quantification 

applied by Avid and, therefore, overlaps with their validated cutoff32 (eFigure 4 in the 

Supplement). Furthermore, the 1.12 summary CB cutoff value is close to the average of the 

transformation of the CSF Aβ1–42 autopsy-validated cutoff level for participants with 0 or 1 

APOE ε4 allele. In addition, using a mixture-modeling approach in a sample of 1005 levels 

of CSF Aβ1–42, we reached the same level as the one previously described in our autopsy 

study.25

Therefore, we confirmed the previous florbetapir-PET cutoff established based on young 

controls using an unsupervised classification method, in a sample that included a large 

number of cognitively normal participants, participants with mild cognitive impairment, and 

participants with AD, and the CSF Aβ1–42 autopsy-validated cutoff level in a larger sample 

using the approach applied by De Meyer et al28 in a larger sample. Most importantly, we 

demonstrated that the conversion of the values across different platforms and methods 

converges robustly on the similar burden of Aβ pathology. However, we emphasize that 

recommended SUVR cutoffs vary according to the pipeline that was used, and therefore any 

modification in the pipeline must be followed by a validation of new cutoffs. Previous 

studies16,19 have described groups of participants that show disagreement in classification 

between CSF Aβ1–42 levels and florbetapir-PET measures. The size of these groups varies 

depending on the reference region, and the disagreement decreases when white matter 

regions are used as a reference. This might be explained by the fact that the cerebellum is 

affected in latter stages of AD,33 and therefore reference regions might be affected 

differently in later stages of disease.

Recently, a lower cutoff level for CSF Aβ1–42 (ie, 157 pg/mL) and an average cerebellum 

with a cutoff SUVR of 1.26 that is skewed toward more abnormal values of pathological Aβ 
biomarkers were suggested.19 These values were obtained using clinical diagnosis as the 

gold standard and contradict evidence from previous autopsy-based studies using 

unsupervised diagnosis-independent methods.25,28,32 This can be explained by our current 

understanding of the pathological Aβ biomarker model for AD,34 which describes 

biomarker and neuropathological changes that precede cognitive changes and that are being 

used for the staging of preclinical AD in cognitively normal participants,35 and by autopsy 

studies36–38 showing that 44.2% of cognitively normal participants have Consortium to 

Establish a Registry for Alzheimer’s Disease B and C scores and that 22.5% of cognitively 

normal participants have an intermediate probability of AD neuropathological changes. 

Hence, these and other studies2 emphasize that optimizing cutoffs based on clinical 

diagnosis to classify all participants with normal cognition as healthy controls will 
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contradict the neuropathological findings for many participants and prevent an accurate 

preclinical diagnosis of the underlying Aβ pathology. This is of critical importance for the 

design and conduct of clinical trials of new therapies targeting pathological Aβ biomarkers 

in participants with underlying AD pathology who are cognitively normal.39–41

One previous study9 pursued efforts to transform CSF Aβ1–42 levels to Pittsburg 

Compound B–PET SUVRs, and vice versa, and used a log2 transformation for both values 

owing to the lack of a linear association. However, the goal of our study was to transform the 

values between the different methods and to understand how both are related (in order to 

interpret differences in the timing of the biomarker changes for both biomarkers across the 

whole clinical spectrum) and the implications there of. Based on the MARS models, it can 

be concluded that there is only a strong association between CSF and florbetapir-PET Aβ 
values for the midrange values of both measures, which include the currently applied CSF 

Aβ1–42 level measured using the multiplex xMAP Luminex platform25 and the florbetapir-

PET Aβ amyloid measure normalized to cerebellum2,32 cutoff values. It is also in this range 

where most of the discrepant classification appears. This could be due, in part, to the 

variability inherent to any clinical measure that can have an important effect for cases with 

values close to a dichotomic cutoff.

Another explanation for this disagreement might be the lower affinity of PET amyloid 

ligands for diffuse plaques2,42 and the differential effect of the APOE genotype on 

biomarker values. Different amyloid PET ligands share their binding site and show a higher 

affinity for neuritic amyloid plaques compared with diffuse amyloid plaques, which can lead 

to false negatives.3,42–45 While it is thought that the decrease in CSF Aβ1–42 levels, but not 

in other Aβ levels,18 reflects brain Aβ deposition, more mature forms might not be in 

equilibrium with CSF and, therefore, might lead to the plateau observed in the CSF Aβ1–42 

level, or later stages might represent Aβ levels that are not in equilibrium with the CSF. 

Therefore, the wider range of CSF Aβ1–42 levels in the lower range of florbetapir-PET 

SUVRs might imply a stronger association of the CSF Aβ1–42 level with diffuse amyloid 

plaques, which appear in earlier phases without the presence of neuritic plaques.46

Another explanation is that different sensitivities or ceiling effects of the assays could 

account for the strong association between CSF Aβ1–42 levels and florbetapir-PET Aβ 
measures only for the midrange values of these 2 most widely used measures of pathological 

Aβ deposition. However, the CSF Aβ1–42 level plateau is well above the lower detection 

limit of the Luminex assay. Furthermore, APOE ε4 is associated with a higher proportion of 

fibrillar amyloid and neurotic plaques,47,48 which show a higher affinity for amyloid PET 

ligands and, therefore, would explain the higher SUVRs, and this would explain why the 

presence of APOE ε4 had different effects on both the CSF Aβ1–42 levels and the 

florbetapir-PET measures across all pipelines. For the same CSF Aβ1–42 levels, participants 

with no ε4 alleles had lower florbetapir-PET SUVRs. We performed several analyses to 

assess the clinical correlations of participants who showed either abnormal CSF Aβ1–42 

levels or abnormal florbetapir-PET measures and found differences in the cognitive changes, 

but a longer follow-up (including autopsies) will be needed to characterize these small 

groups of participants.
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Surprisingly, there was no correlation between the changes in CSF Aβ1–42 levels and the 

changes in florbetapir-PET measures after a 2-year follow-up. There are several non– 

mutually exclusive explanations for this finding: (1) the changes are small and might not be 

detected owing to the inherent variability of the measurements, (2) a longer follow-up is 

needed to see larger changes, and (3) the different dynamic ranges of these 2 biomarkers 

could lead to different rates of changes in them across the biomarker spectrum. This might 

be due to the fact that these 2 biomarkers reflect different aspects of disease mechanisms, 

leading to Aβ fibrillation and deposition, as well as different floor and ceiling effects as 

already noted. However, another factor that might explain these differences is the sensitivity 

of the measures of CSF Aβ1–42 level and florbetapir-PET SUVR to track small changes 

during a 2-year follow-up. In any case, it is not surprising that the methods used to measure 

CSF Aβ1–42 level and brain Aβ amyloid deposits do, in fact, measure different aspects of 

pathological Aβ amyloid as previously discussed.

Florbetapir-PET SUVRs showed a stronger association with ADAS-cog scores, which can 

be explained by the absence of the floor effect observed for CSF Aβ1–42 levels, and thus 

can offer a larger dynamic range along disease progression. Nevertheless, the association 

with cognition is lower than the one observed for neuronal injury neuroimaging 

biomarkers.49

Conclusions

Thus, in conclusion, although CSF Aβ1–42 levels and florbetapir-PET Aβ measures show a 

high-classification agreement for dementia due to underlying AD pathology, these are 

clearly different measures of pathological Aβ amyloidosis that converge to similar 

diagnostic cutoffs across different cohorts, methods, and amyloid biomarkers, but they do 

not closely correlate in the cross-sectional low and high range of values. Notably, this 

extends to a lack of correlation for the longitudinal changes in these 2 biomarkers during a 

2-year follow-up. Hence, our novel findings are significant for understanding how to 

interpret CSF Aβ1–42 levels and florbetapir-PET Aβ measures for diagnosis and for 

understanding the mechanisms of Aβ amyloidosis.
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Figure 1. Association Between CSF Aβ1–42 Levels and Florbetapir F-18 PET SUVRs
A model for participants with 2 APOE ε4 copies is not included. The solid gray areas 

indicate disagreement in the classification based on the pair of Aβ measures. Aβ indicates β-

amyloid; AD, Alzheimer disease; CB, cerebellum; CSF, cerebrospinal fluid; MARS, 

multivariate adaptive regression spline; MCI, mild cognitive impairment; PET, positron 

emission tomographic; SUVR, standardized uptake value ratio; and WM, white matter.
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Figure 2. Clinical Associations and Longitudinal Changes of PET SUVRs
Scatterplots showing the association between Alzheimer’s Disease Assessment Scale–

cognitive subscale (ADAS-cog) scores on the y-axis and the summary composite 

standardized uptake value ratios (SUVRs) (A) and the cerebrospinal fluid (CSF) β-amyloid 

1–42 (Aβ1–42) levels (B) on the x-axis. The blue continuous line represents the multivariate 

adaptive regression spline for a 65-year-old participant. The red dashed line represents the 

cutoff for the biomarker represented in the plot, and the green dashed line represents the 

value at which the CSF Aβ1–42 level plateaus. Longitudinal SUVR yearly changes (after a 

2-year follow-up) for the average cerebellum (CB) (C), the average white matter (WM) (D), 
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the summary CB (E), and the summary composite (F) are shown on the y-axes, with the x-

axes representing baseline SURVs. G, Longitudinal changes in CSF Aβ1–42 level after a 2-

year follow-up are shown. The red dashed line represents the value that corresponds to the 

CSF Aβ1–42 level of 192 pg/mL. Yearly changes in the summary CB (H) and the summary 

composite (I) values during follow-up (y-axis) are based on the presence of normal or 

abnormal baseline CSF Aβ1–42 levels and florbetapir F-18–positron emission tomographic 

(PET) measures. The horizontal line in each box indicates the median, while the top and 

bottom borders of the box mark the 75th and 25th percentiles, respectively. The whiskers 

above and below the box mark the 90th and 10th percentiles, respectively. The points 

beyond the whiskers are outliers beyond the 90th and 10th percentiles.
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Figure 3. Association Between CSF Aβ1–42 Level and Florbetapir F-18–PET Measure 
Longitudinal Changes
Matrix showing the individual scatterplots depicting the association between cerebrospinal 

fluid (CSF) β-amyloid 1–42 (Aβ1–42) level (x-axis) and florbetapir F-18–positron emission 

tomographic (PET) standardized uptake value ratio (y-axis) changes during a 2-year follow-

up (below the diagonal) and the corresponding Pearson correlation coefficient and P value 

(above the diagonal). The panels in the diagonal direction depict histograms showing the 

distribution of CSF Aβ1–42 levels and PET SUVRs. Average_CB indicates average 

cerebellum; Average_WM, average white matter; Sum_CB, summary cerebellum; and 

Sum_Comp, summary composite.
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Table 1

Characteristics of the ADNI Participants Included in the Study at the Time of the Scan

Characteristic

Cognitively Normal
Participants

(n = 259)
Participants With MCI

(n = 415)
Participants With AD

(n = 146) P Value

Age at time of scan, mean (SD), y 72.8 (5.9) 71.3 (7.4) 73.5 (8.5) .002

Male sex, % 45.2 56.0 58.3 .009

ADAS-cog score, mean (SD) 9.0 (4.4) 15.0 (6.8) 30.9 (8.9) <.001

SUVR, median (Q1-Q3)

  Average CB 1.17 (1.12–1.32) 1.27 (1.13–1.53) 1.54 (1.37–1.68) <.001

  Average WM 0.66 (0.63–0.72) 0.74 (0.66–0.84) 0.87 (0.83–0.90) <.001

  Summary CB 1.06 (1.00–1.17) 1.18 (1.02–1.39) 1.42 (1.27–1.53) <.001

  Summary composite 0.73 (0.70–0.82) 0.83 (0.72–0.99) 1.03 (0.94–1.09) <.001

Aβ1–42 level, median (Q1-Q3), pg/mL 209.3 (159.2–237.6) 160.9 (131.9–214.4) 131.8 (114.4–150.7) <.001

Abbreviations: Aβ, β-amyloid; AD, Alzheimer disease; ADAS-cog, Alzheimer Disease Assessment Scale–cognitive subscale; ADNI, Alzheimer’s 
Disease Neuroimaging Initiative; CB, cerebellum; MCI, mild cognitive impairment; Q1, first quarter; Q3, third quarter; SUVR, standardized uptake 
value ratio; WM, white matter.
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