
Imaging Sex Differences in Regional Brain Metabolism during 
Acute Opioid Withdrawal

Giovanni C Santoro1, Joseph Carrion1, and Stephen L Dewey1,2,3,*

1Center for Neurosciences, Laboratory for Molecular and Behavioral Neuroimaging, Feinstein 
Institute for Medical Research, Manhasset, NY, USA

2Psychiatry Department, New York University School of Medicine, NY, USA

3Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, USA

Abstract

The rate of opioid overdose continues to rise, necessitating improved treatment options. Current 

therapeutic approaches rely on administration of either a blocking agent, such as naloxone, or 

chronic treatment with replacement drugs, including methadone and/or buprenorphine. Recent 

findings suggest that males and females respond to these treatments uniquely. In an effort to better 

understand this sex-specific variation in treatment efficacy, we investigated the effects of acute 

opioid withdrawal in male and female rats using 18FDG and microPET. These data demonstrate 

that acute opioid withdrawal produces metabolic alterations in brain regions associated with 

reward and drug dependence, namely corpus striatum, thalamic nuclei, septum, and frontal cortex. 

Furthermore, certain changes are unique to males. Specifically, males demonstrated increased 

metabolism in the anterior cingulate cortex and the ventral hippocampus (CA3) following acute 

opioid withdrawal. If males and females exhibit sex-specific changes in regional brain metabolism 

following acute opioid withdrawal, then perhaps it is not surprising that they respond to treatment 

differently.
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Introduction

The escalating use of prescription pain relievers has contributed to the current opioid abuse 

epidemic in the United States. This has resulted in a surge of acute intoxication related 

deaths [1–3]. Although naloxone (Narcan®) expansion and administration has proven 

effective as a short-term measure, saving countless lives, it fails to address the underlying 

issue [4,5]. Unfortunately, the development of effective treatment strategies targeting 
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patients suffering from opioid abuse and withdrawal has lagged behind its clinical necessity. 

In fact, current options are limited to opioid replacement with methadone and 

buprenorphine. While these medications represent first-line treatments for opioid 

detoxification, their efficacy remains controversial. Furthermore, these replacement therapies 

retain the addictive liability and side effect profile associated with illicit opioids.

Interestingly, there is an understudied observation that males and females respond to these 

treatments uniquely, consistent with knowledge that both substance abuse and dependence 

rates vary between males and females [6–11]. Two studies, a 25-year follow-up of heroin-

dependent patients treated with methadone and a seven-year follow-up of patients prescribed 

buprenorphine both found that women were significantly more likely than men to have 

stopped heroin use [12,13]. This could be attributed to differences in analgesic tolerance, 

which is known to vary between males and females [14–17].

In the current study, we investigated whether sex would influence the metabolic 

representation of opioid withdrawal. Specifically, we examined the effects of acute opioid 

withdrawal on drug-naïve adolescent animals via micro positron emission tomography 

(microPET). Using 18F-fluorodeoxyglucose (18FDG), we compared the regional metabolic 

effects of acute opioid withdrawal between sexes. We hypothesized that males and females 

would respond to opioid withdrawal uniquely as evidenced by regional differences in brain 

glucose metabolism.

Methods

Adolescent male (n=8) and female (n=8) Sprague-Dawley rats were acquired from Taconic 

Farms. Animals arrived on postnatal day (PND) 22. Animals were maintained on a 12-hour 

light-dark cycle and received food and water ad libitum. Following an acclimation period, all 

animals received baseline 18FDG microPET scans (PND 31, Scan 1). Injectable morphine 

sulfate (15 mg/mL, 20 mL/vial) was acquired from Sigma Aldrich. Animals received 

morphine treatment for 5 days at a dose of 10 mg/kg/day subcutaneously (PND 35-39). 

Following a two-day withdrawal period (PND 40-41), animals received a second 18FDG 

scan (PND 42, Scan 2).

Prior to scanning, animals were fasted for 12 hours to ensure blood glucose stability [18,19]. 

All images were acquired using a Siemens Inveon microPET. Each animal received a single 

intraperitoneal injection of 18FDG (1.8–2.0 mCi). After 18FDG administration, animals 

were left undisturbed in their home cage for 40 minutes to ensure radiotracer uptake. 

Animals were then transferred to a clear acrylic chamber, where isoflurane/oxygen was used 

to induce anesthesia. Five minutes post-induction, animals were transferred to the imaging 

platform and were secured. Continuous isoflurane/oxygen at 2.0–2.5% was administered via 

nasal cannula for the entire 10-minute static scan. These imaging protocols have been shown 

to effectively reflect brain glucose metabolism [20–22].

All microPET images were corrected for attenuation and then reconstructed using a 

Maximum a Posteriori (MAP) probability estimate with 20 iterations as described previously 

[23,24]. Raw data files were uploaded into Pixel-wise Modeling Tool software (PXMOD 
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version 3.3, PMOD Technologies LLC), and were aligned to a reference template created 

using the Paxinos and Watson Sprague-Dawley rat brain atlas. After placement in 

anatomical space, images were skull-stripped to subtract extraneous metabolic activity, and 

then were corrected for injected dose to ensure comparability of regional uptake values 

[20,25]. Post-processing including realignment to an atlas, normalization to a mean 

template, and smoothing was accomplished using Statistical Parametric Mapping (SPM5, 

Welcome Trust Centre for Neuroimaging). Between and within group comparisons were 

carried out using paired and 2-sample T-tests, respectively. Post-processed images were 

aligned to the Paxinos and Watson rat brain atlas [26] and regions were identified using x, y, 

and z coordinates. Increases and decreases in relative brain glucose metabolism were 

visually represented using color mapping. Images were overlaid onto an anatomical cryostat 

template with increases set as hot (red-yellow), and metabolic decreases set as winter (blue-

green). The color scale used represents all T distributions achieving statistical significance 

[27–29]. All corresponding brain areas are significant at a value of p ≤ 0.001 (corrected) 

with a cluster-extent threshold of k=0 voxels.

Results

There were no regional differences in brain metabolism between males and females at 

baseline (Figure 1A). However, acute opioid withdrawal produced significant changes in 

both cortical and subcortical brain metabolism (Figure 1B). When all animals were grouped 

together and compared to baseline, subjects experiencing acute morphine withdrawal 

demonstrated bilateral metabolic increases in the corpus striatum and thalamic nuclei, as 

well as in prelimbic and frontal cortices. Additionally, marked decreases were observed in 

the septum, ventral striatum, and ventral hippocampus compared to baseline (Figure 1B). 

When separated by sex, male and female groups exhibited significant differences. 

Specifically, males demonstrated increased metabolism in the anterior cingulate cortex and 

the dorsal hippocampus (CA3) compared to females (Figure 1C). No significant decreases in 

glucose metabolism were noted between males and females.

All reported increases and decreases were significant at a strict p-value threshold of p ≤ 

0.001 (corrected) with a cluster-extent threshold of k=0 voxels. These constraints were 

chosen based on previous studies where liberal primary cluster extent thresholds were kept 

at a minimum. These parameters ensure the statistical validity of reported regions of interest 

by eliminating large activations in overlapping anatomical areas [30].

Discussion

In the present study, no regional differences in brain metabolism were observed between 

adolescent males and females at baseline. However, following acute opioid withdrawal, 

brain metabolism was altered both cortically and subcortically. Specifically, metabolic 

increases were measured in the corpus striatum and the deep thalamic nuclei, in addition to 

increases in both the prelimbic and frontal cortices. Furthermore, metabolic decreases were 

noted in the septum, ventral striatum and ventral hippocampus. These findings reflect 

metabolic averages of male and female animals grouped together. When images were 

disaggregated according to sex, males demonstrated increased metabolism in the anterior 
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cingulate and the dorsal hippocampus (CA3) compared to females. There were no metabolic 

decreases observed between sexes.

Before treatment with morphine, both males and females exhibited similar patterns of brain 

glucose metabolism. However, following a five-day challenge with morphine and subsequent 

acute spontaneous withdrawal, males and females exhibited significantly different metabolic 

profiles, notably increased metabolism in anterior cingulate cortex among males. This is 

interesting given that disruption of the cingulate cortex can lead to an imbalance in 

dopaminergic signaling. This has been associated with impairment of executive function, 

reward-directed behavior, and conditioning, all of which have been implicated in 

impulsivity, compulsive drug use, and addiction [31–33]. More recently, Zakiniaeiz et al. 

demonstrated that the cingulate cortex may be a key region in the disruption of functional 

connectivity during cue-induced processing, while changes in its function may serve as a 

marker of subsequent alcohol relapse [34].

As noted earlier, previous studies suggest that sex differences likely affect the successful 

treatment of opioid abuse [12,13]. Here we demonstrate that it also impacts the primary 

metabolic representation of opioid withdrawal. The effects of opioids on the brain have been 

studied extensively [35]. Our findings support previous data indicating that opioids disrupt 

known reward pathways, notably in the corpus striatum [36]. Additionally, opioid 

withdrawal produces increases in thalamic cyclic AMP, which likely plays a role in the 

behavioral physiology of withdrawal [37]. The septum is also an integral part of the 

neurocircuitry underlying reward, pleasure, and drug seeking [38]. However, despite this 

knowledge, recent studies have shown that sex likely influences these pathways, and may 

affect treatment outcomes [17].

The morphine dose used in the present study was selected based on data indicating that a 

dose of 10 mg/kg was adequate to achieve conditioned place preference within this time 

period [39,40]. A single dose of morphine (10 mg/kg) was able to elicit conditioned place 

avoidance after a naloxone challenge [41]. Further, morphine, at this dose for this same 

period of time, also produced analgesic tolerance [42], and after only 4 days, produced 

withdrawal behaviors including increased defecation, urination, salivation, jumping, and wet 

dog shakes [43]. Finally, this dosing schedule activated glial cells and enhanced 

proinflammatory cytokine expression in the spinal cord, which has been implicated in 

morphine tolerance and withdrawal-induced hyperalgesia [39].

The 18FDG doses used are consistent with those reported previously using rats/mice and 

microPET [44–46]. This 18FDG dosing was designed to produce count rates that do not 

exceed the dead time correction capabilities of our scanner and images that could be 

reconstructed using an iterative method (i.e., maximum a posteriori). Relative to body 

weight, 18FDG is injected at significantly higher doses in rodents than in humans. These 

higher doses are necessary to achieve sufficient counting statistics and maximal spatial 

resolution in the substantially smaller brains of rodents [47]. Additionally, published reports 

have established that roughly the same amount of radiotracer used in humans should be used 

in rodents, since higher doses are necessary for equivalent image quality [48].
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To our knowledge, this is the first study to assess and demonstrate sex-specific changes in 

regional brain metabolism following acute opioid withdrawal in drug-naïve adolescent 

animals. These findings are consistent with earlier reports suggesting that sex differences 

play an important role in the clinical presentation of opioid use disorders, specifically 

regarding drug craving and impairment of function [49]. Sex also appears to alter the 

expression of spontaneous withdrawal. Males often experience more severe and prolonged 

withdrawal compared to females [50]. However, while men often experience higher rates of 

substance abuse, women generally experience more adverse outcomes, significant 

impairment, and comorbid psychiatric disturbances [51], thus requiring more individualized 

approaches to treatment [52]. Future studies should examine both gender and sex 

differences, and importantly similarities, to build a better profile of the neurobiological, 

psychiatric, and sociocultural factors characterizing male and female opioid dependent states 

[53,54]. Only then can we begin to devise more effective, and perhaps sex-specific, 

treatment strategies designed to address this urgent healthcare concern.
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Figure 1. 
18FDG microPET images highlighting significant brain regions. Coronal slices showing the 

(A) baseline brain metabolism comparison of males and females, (B) changes in brain 

metabolism of all animals following acute opioid withdrawal, and (C) increases in male 

brain metabolism relative to female metabolism during acute opioid withdrawal. Slice 

distance in millimetres from bregma is noted in the lower left hand corner of each image. 

Significant increases and decreases in regional brain glucose metabolism are visually 

represented using hot (red-yellow) and winter (blue-green) color maps, respectively. MAX 

and MIN refer to the degree of regional radioisotope decay (percent injected dose per gram). 

The color scale used represents all T distributions achieving statistical significance. All 

corresponding brain areas are significant at a value of p ≤ 0.001 (corrected) with a cluster-

extent threshold of k=0 voxels.
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