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Abstract

Genetic association studies have a long history of delivering insightful results for cardiovascular 

disease (CVD) research. Beginning with early candidate gene studies, to genome-wide association 

studies, and now on to newer whole-genome sequencing studies, research in human genetics has 

enriched our understanding of the pathobiology of CVD. As these studies continue to expand, the 

issue of statistical power plays an important role in study design as well as the interpretation of 

results. We provide an overview of the component parts that determine statistical power and 

preview the future of CVD genetic association studies through this lens.

Introduction

Genetic studies have contributed immensely to our knowledge of the etiology and 

mechanisms that underlie cardiovascular disease (CVD). Family-based studies of 

hypercholesterolemic patients led to the discovery of the LDLR gene and its role in lipid 

metabolism and CVD, ultimately leading to mechanistic insights that resulted in the 

development of statins.1 Other studies discovered rare-mutations in the PCSK9 gene 

associated with low-density lipoprotein (LDL) cholesterol levels2 and heart disease3,4 

hastening the development of several PCKS9 inhibitors that are currently undergoing 

clinical trials.5 More recently, genome-wide association studies for a wide variety of 

cardiovascular diseases and traits including coronary artery disease6, atrial fibrillation7, 

plasma lipids8, and blood pressure9 among others have identified hundreds of associated 

loci, highlighting important regions of the genome implicated in CVD.

From a clinical perspective, findings from genetic studies can play an important role in 

genomic medicine by helping to stratify participants in clinical trials based on genotypes at 

specific markers.10 Genetic discoveries have also enabled disease sub-phenotyping based on 
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an individual’s genetic profile.11 Ultimately, to fulfil the promise of disease prevention in the 

era of precision medicine, the goal is to build personalized risk-profiles based on genetics, 

environmental and life-style variables, and clinical measurements.

Implicit in these goals of target identification, drug development, genomic medicine, and 

precision prevention, is the continuing discovery and refinement of genetic variants that 

underlie inherited risk for CVD. In this article, we focus on a critical component of genetic 

association studies of CVD, namely statistical power. Specifically, we provide an historical 

perspective on the power of gene-mapping studies, an overview of the components of 

statistical power, and implications for current and future studies.

Fundamental Concepts in Human Genetics

The human genome is comprised of approximately 3.2 billion bases of double-stranded 

DNA. Humans carry two copies of the genome, one inherited from each parent. Although 

99% of the human genome is identical between individuals, many millions of bases of DNA 

are variable (or “polymorphic”) within human populations.12 Though large, structural 

changes in DNA play an important role in human phenotypic variation (e.g., deletions and 

re-arrangements of large sections of a chromosome), the primary focus of many studies of 

genetic variation takes place at the single-nucleotide level. There are many million known 

single-nucleotide polymorphisms (SNPs) across the human genome.13 Though most SNPs 

exert neutral phenotypic consequences, many are thought to be “deleterious” and underlie an 

individual’s risk for diseases and disorders. Because humans carry two copies of the 

genome, a SNP is defined by its location on the genome and its two “versions” or alleles. 

For instance, the rs1260326 SNP is located at the 27,508,073th base on chromosome 2, and 

both the C and T alleles have been observed in human populations. An individual may carry 

two copies of the more common allele (i.e., homozygous for the common allele), one copy 

of the common allele and one copy of the rare allele (i.e., heterozygous), or two copies of 

the rare allele (i.e., homozygous for the rare allele).

Monogenic and Complex Diseases

In human genetics, a distinction is often drawn between “complex” disease and 

“Mendelian”, or “monogenic”, disease. “Monogenic” diseases are those in which the disease 

state in a family is determined by a single mutation (for a variety of reasons, mutations 

typically differ from family to family even for the same disease). Typically, these are highly 

penetrant mutations, meaning that individuals who inherit the rare allele have a very high 

likelihood of developing the disease. When this is the case, the disease “segregates” within a 

family pedigree in a manner consistent with Mendel’s Law of Segregation, hence the term 

“Mendelian” disease. In contrast, “complex” diseases are often highly “polygenic” with 

many genetic variants (that potentially interact) influencing susceptibility. In addition, the 

mutations that underlie monogenic disorders often occur within the portion of the genome 

that encodes for proteins. These mutations often “knock-out” the function of a gene, with 

sometimes drastic phenotypic consequences. Recently, we have found that the variants 

underlying complex diseases are typically found in non-protein-coding parts of the genome 
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and are thought to affect disease risk through regulatory mechanisms determining how and 

when genes are expressed.14

The Components of Statistical Power

Genetic Variation

Most genetic variation in the human genome is very rare. For instance, in a recent large-

scale DNA sequencing project, the minor allele was observed in only 3 or fewer individuals 

at approximately 72% of all variable sites.15 This result holds significant implications for 

gene-mapping studies, because – assuming all other parameters are held constant – the 

power to detect a true association between the variant and a phenotype of interest decreases 

as alleles become rarer. Here we define “power” to be the probability of detecting a true 

association between a SNP and a phenotype of interest. Figure 1 shows the relationship 

between allele frequency and other components of statistical power.

Effect Size

In addition to the allele frequency, genetic effect sizes play an important role in statistical 

power. Effect sizes are typically represented as odds-ratios (for binary phenotypes such as 

cases and controls) or continuous variables (for quantitative phenotypes). For instance, an 

odds ratio of 2 implies that the odds of disease increase 2-fold with the addition of each risk 

allele. As effect sizes increase, power increases as well. In other words, it is easier to detect 

an association with genetic variants that have larger effects.

When considering statistical power with quantitative phenotypes (for instance, circulating 

lipids), it is helpful to interpret effect sizes in terms of phenotypic standard deviations. For 

example, in population-based samples of “healthy” individuals, the standard deviation in 

plasma LDL-cholesterol and HDL-cholesterol concentration is approximately 30mg/dl and 

15mg/dl, respectively.16 Thus an effect size of approximately 30mg/dl for an LDL 

associated SNP corresponds to approximately one phenotypic standard deviation, whereas 

an effect size of 30mg/dl for an HDL associated SNP corresponds to approximately 2 

phenotypic standard deviations. The HDL associated SNP would be considered as having a 

much larger effect size (scaled by the standard deviation) than the LDL associated SNP and 

would thus be much easier to detect in an association study.

Sample Size

Sample sizes also play a crucial role in determining statistical power. All other things being 

equal (e.g., effect sizes and allele frequencies), larger sample sizes result in higher power. 

This is because the effect sizes are estimated with higher precision as sample sizes grow, 

thus resulting in higher power. However, not all increases in sample size are the same (see 

Figure 1). For instance, given a fixed overall sample size of 1,000, a 1:1 case-control ratio 

(500 cases and 500 controls) is more powerful than a 1:2 case-control ratio (333 cases and 

667 controls). Often, investigators will attempt to enhance the sample size by adding 

additional controls to a case-control design. However, there are diminishing returns to this 

strategy. A general rule of thumb is that beyond a 1:10 case-control ratio, it is typically “not 
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worth the trouble” to keep adding controls to the study as any power gains will be 

minimal.17

Multiple Testing Correction

A final consideration regarding statistical power is the penalty for performing multiple 

statistical tests. The simplest and most widely used multiple testing penalty is called the 

“Bonferroni” correction. If a study includes n number of tests (e.g. n number of genetic 

variants being tested for association with disease) and one is willing to tolerate a 5% chance 

of observing a false positive (i.e., the typical 5 percent cutoff for declaring “statistical 

significance”), the cutoff for declaring statistical significance should be p=0.05/n. Because 

many SNPs are correlated (i.e., they are in linkage disequilibrium) this Bonferroni correction 

can be overly conservative. To address this issue, the HapMap Consortium used a technique 

called “permutation testing” to estimate an effective number of independent tests. They 

found that a significance threshold of 5.5×10−8 is an appropriate cutoff for a typical genome-

wide association study (GWAS).18 For newer types of studies that go beyond standard 

GWAS to investigate many millions of variants (both common and rare in a population), a 

threshold of 6×10−9 has been suggested.19 These cutoffs are related to power in the 

following way: the lower the cutoff, the lower the power. Thus, a study that looks only at a 

single SNP (or a “candidate gene approach”) could declare significance at a cutoff of 

p=0.05, resulting in much higher power compared to a GWAS that was considering this SNP 

along with thousands of other SNPs.

Tools for Determining Statistical Power

The Genetic Power Calculator (http://pngu.mgh.harvard.edu/~purcell/gpc/) and the Genetic 

Association Study Power Calculator (http://csg.sph.umich.edu/abecasis/cats/

gas_power_calculator/index.html) are two popular, easy-to-use tools that provide power 

calculations for a variety of different study designs and significance levels.

Power in Association Studies

Early Candidate Gene Studies

The theoretical and motivational underpinnings of complex genetic association studies have 

existed for nearly a century.20 However it was not until the development of gene cloning and 

sequencing that DNA variation maps (initially using restriction-length fragment 

polymorphisms and later with single nucleotide polymorphisms) could be used in 

association studies. The high cost and low throughput of genotyping, however, made true 

genome-wide studies impractical; as a result, the initial rounds of association studies focused 

on studying candidate genes. This type of study design relies on assumptions about the 

causal biological pathways underlying a disease and focuses only on testing association with 

disease for variants in these nominated “candidate genes.”

Limitations of the Candidate Gene Approach

With time, the candidate gene approach revealed substantial limitations. First, because only 

a few markers are genotyped in a candidate gene study there is essentially no ability to 

correct for a type of confounding known as population stratification. It is now widely 
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appreciated that genetic variation unrelated to disease can be seemingly correlated to 

phenotype due to subtle population differences.21 Although genotypes across the genome 

can successfully be used to correct for this,22 population stratification can lead to false 

positive results in candidate gene studies because these genome-wide genotypes are not 

available. Second, given the fact that an individual locus for a complex trait accounts for a 

small fraction of the heritability of the trait, the statistical power for discovering modest 

effects is low. When coupled with liberal p-value thresholds (p<0.05 was often used in 

candidate gene studies), this increases the likelihood of making a false positive discovery. In 

fact, only a small fraction of candidate gene study results have been subsequently validated 

in replication studies.23 Finally, and likely most importantly, by design there was no ability 

to discover novel biology because candidate gene studies only focused on genes thought to 

be important in the disease. One of the powerful advantages of genome-wide association 

studies is the unbiased ascertainment and assessment of genetic variation, often revealing 

associations in unexpected genes thereby revealing novel insights into the pathobiology of 

disease.

Genome-wide association studies

Technological advances in genotyping technology enabled the first generation of GWAS. 

Compared to contemporary studies, the initial GWAS had far fewer samples and thus had 

limited power to detect associations at the 5×10−8 significance level.24,25 In contrast to 

candidate gene studies, GWAS assume an unbiased or “agnostic” approach across the 

genome, where all SNPs are weighted equally during association testing. In other words, 

prior information on the likelihood of a gene or region being related to the trait is ignored. 

The result of these unbiased scans has implicated many new regions of the genome for 

which little was previously known.16 In particular as mentioned above, GWAS have 

generally implicated non protein-coding portions of the genome, suggesting that genetic 

variation influences phenotypic variation through gene regulatory mechanisms.26

Advantages of GWAS

Along with enforcing standards for unbiased-ness and statistical significance, replication has 

become an important component of GWAS. The goals of replication can be thought of as 3-

fold: to provide convincing statistical evidence for association, to rule out associations due to 

biases such as technical artifacts, and to refine estimates of effect sizes.27 As a result, GWAS 

do not suffer from the same “lack of replication” that plagued the candidate-gene era.

As the search for genetic loci underlying complex diseases has progressed, later iterations of 

GWAS have greatly expanded sample sizes. Because summary statistics can often easily be 

shared across institutions, meta-analyses have become quite common in this context. With 

hundreds of thousands of samples, these studies were well powered to discover common 

variants with large-to-modest effect sizes.8, 28

More recently, imputation-based studies have become a popular design for exploring genetic 

variants with allele frequencies as low as 0.5%. Genotype imputation (also called “in silico 

genotyping”) is a statistical technique for predicting genotypes at variants that were not 

directly measured.29 This technique utilizes a set of reference samples to identify segments 
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of the genome (i.e., haplotypes) that are shared with the study or “target” samples. These 

shared haplotypes are then “imputed” from the reference samples into the target samples. In 

this manner, samples with genome-wide array data (representing hundreds of thousands of 

SNPs) can be extended to represent millions of imputed SNPs. Genotype imputation has 

been successfully applied to discover many new genetic loci that underlie cardiovascular 

disease and associated risk factors.30, 31 Imputation-based GWAS provide statistical power 

similar to traditional GWAS for common variants. The advantage of this approach is the 

ability to interrogate variants of less common allele frequency.32

Limitations of GWAS

Although meta-analysis and imputation have substantially contributed to the success of 

GWAS by permitting large-scale analyses of common markers, several limitations remain. 

First, GWAS have rarely identified the “causal variant” or functional allele that drives the 

observed association. By design, GWAS implicate genomic regions or loci associated with a 

trait or disease. They are not designed to identify the precise nucleotide change that is 

responsible for the effect on phenotype. Additionally, GWAS are not well-powered to detect 

associations of variants with rare allele frequencies, particularly if these rare alleles have 

only a modest effect on the phenotype of interest. Due to these limitations, recent attention 

has shifted beyond standard GWAS to utilize new technologies for understanding the role of 

rare-variation on human diseases.

Sequencing studies and rare-variant associations

Though GWAS were successful in finding common variant associations, many recent studies 

have become focused on rare-variant associations. Standard GWAS arrays were designed to 

capture only common genetic variation, and thus do a poor job of representing rare-variants. 

Although imputation represents a powerful approach for studying less common variants, the 

accuracy of this approach is dramatically reduced for variants below 0.1%–0.5% frequency. 

As a result, the gold-standard approach for testing rare-variant associations is through direct 

DNA sequencing.Comprehensive sequencing of an entire human genome is relatively 

expensive compared to alternative approaches such as GWAS arrays or whole-exome 

sequencing (WES). WES is a technique for capturing the protein-coding portion of the 

genome (i.e., the “exome”) and submitting the captured DNA to high-throughput 

sequencing. Because the exome represents less than 3% of the entire human genome, WES 

is considerably less expensive than whole-genome sequencing (WGS). Importantly, WES is 

able to capture very rare variants that reside in the exome, making them amenable to 

association analyses. Because population genetics predicts that rare variants should exert 

larger phenotypic effects compared with common variants, the sample sizes initially used in 

WES were significantly smaller than a standard GWAS. (Recall that because statistical 

power is related to effect size, the rationale for using smaller sample sizes in WES studies 

was sound.) WES data are also much more expensive to generate than GWAS-array data. On 

the other hand, because WES studies consider very rare variants, the power to detect 

associations is significantly compromised compared to studies of common variation (Figure 

1).

Auer and Stitziel Page 6

Trends Cardiovasc Med. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Statistical Approaches to Detecting Rare-Variant Associations

Due to the lack of power in detecting individual rare-variant associations, a number of 

statistical approaches have been developed to enhance power in the analysis of WES data. 

Specifically, because WES data are restricted to gene-regions, the analysis can consider a 

gene as a specific unit of analysis and aggregate rare-variants within a gene. The simplest 

approach is to sum the number of rare alleles observed in a particular gene, and test for 

association between that summation and the phenotype of interest.33 A somewhat 

orthogonal approach is to test whether the rare-alleles in a particular gene display 

“heterogeneity” of effect.34 There are many different variations on these two types of 

approaches,35 and they gain power in two different ways. First, the number of genes 

(~20,000) is much smaller than the number of rare-variants. Therefore, the multiple testing 

penalty for these gene-level approaches is much more generous than for testing each variant 

individually. Second, by testing for association across a gene-region the cumulative effect of 

rare-variants within a gene are aggregated, rather than considered in isolation.

Array-Based Assays for Studying Rare Variation

Though WES is an effective approach for assaying rare, protein-coding variation, it is still 

expensive compared to array-based technologies. Recently, custom arrays have been 

designed that capture rare variation at much lower cost. For example, the Exome-Chip was 

designed based on information from WES studies, captures most nonsynonymous protein-

coding variation at > 0.1% in European American populations, and is available at ~10% of 

the cost of WES, making it feasible to collect data from very large sample sizes. With the 

wide availability of commercial Exome-Chips, multiple studies have collected data on 

>100,000 individuals. Such studies have led to important discoveries on rare, protein-coding 

genetic variants that influence triglyceride levels and CVD36, circulating lipid levels,37 

blood-pressure,9 and coronary disease.38

Discoveries such as these have been met with considerable excitement, as many of these 

variants “knock-out” the function of a gene, and exist in healthy individuals.36,39 Every 

disease associated variant contains two alleles, one that “protects” against the disease and 

one that is associated with risk. Protective alleles that “knock-out“ (i.e., are loss-of-function 

(LOF) alleles) the function of a gene are akin to the effects of a therapeutic agent and 

discovery of protective alleles has stimulated the investigation of strategies for implementing 

therapeutic gene-knockouts by multiple pharmaceutical companies.40 In this way, the 

discovery of LOF variants has the potential to transform drug development by accelerating 

drug target identification.

Interpreting Evidence from Genetic Association Studies

Finally, we offer a brief checklist of items that should be considered when interpreting the 

evidence from genetic association studies: (a) was the study adequately powered to detect 

the observed associations? Using any number of web-based tools, it is straightforward to 

calculate power given a study design, an allele frequency, and an effect size. If the study was 

under-powered, the results should be interpreted with caution as under-powered studies are 

more likely to report false positive associations; (b) did the study utilize a correction for 

multiple testing? Without a proper correction, the chance of a false positive association 
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greatly increases; (c) what is the p-value of reported association? P-values less than 5×10−8 

represent solid evidence for association while associations with p-values that do not meet 

this threshold should be interpreted with caution; (d) do the reported loci/genes match our 

understanding of the biological processes involved in the disease? If a study identifies a gene 

in a pathway seemingly un-related to the disease process, then the signal for the association 

should be very strong (e.g., p ≪ 5×10−8); and (e) have the results been replicated in an 

independent study? If the results from a study pass do not pass all of these criteria, then they 

should be regarded with caution. As we have learned from the candidate gene era, false 

positive associations are often reported from under-powered studies that do not rely on 

independent replication.

Implications for Future Studies and Clinical Research

As technological development in DNA sequencing continues to advance, WGS has started 

replacing WES for studies of complex human diseases. Indeed, the NIH has funded several 

very large-scale projects to sequence the whole genomes of many tens of thousands of 

individuals. These types of studies will permit comprehensive investigations of all variation 

across the genome, including rare and common, and single-nucleotide as well as structural 

variants. Though comprehensive in scope, these studies also face enormous challenges with 

statistical power. Sample sizes will remain somewhat limited due to cost (i.e., WGS on 

hundreds of thousands of individuals is still prohibitively expensive), and rare-variants will 

be assayed across the entire genome rather than just protein-coding regions (in comparison 

to WES). This will have two major implications for statistical power: (1) outside of gene-

regions, there are no clear units of analysis in which to aggregate signal and implement the 

“gene-level” statistical approaches that were developed for WES data; and (2) WGS will 

supply data on tens of millions of variants, dramatically increasing the multiple testing 

penalty and reducing power for individual genetic variants. Future research on overcoming 

these obstacles to statistical power will be important for the future of WGS studies.

In addition to WGS, there is an expanding interest in performing genetic association studies 

in multiple ancestry groups. The majority of human genetic variation is currently unknown 

and represents an untapped resource for discovering genetic associations.12 To date, most 

GWAS and WES studies have been specific to populations of European ancestry,8, 41, 42 

though recently this has started to change.43 Because many genetic variants are population 

specific (i.e., they are invariant in certain populations, but polymorphic in others), studies 

representing diverse ancestry groups are well situated to detect associations with these 

population specific alleles. As genetic studies expand beyond samples of European ancestry, 

the power to detect associations with population specific alleles will increase.

Although not always routinely considered, statistical power will continue to be a relevant 

factor for not only research but clinical practice as well. For example, to optimally realize 

the goal precision medicine, the full complement of genetic and non-genetic determinants of 

disease will need to be defined. The component parts determining statistical power will play 

a substantial role in sculpting our ability to fully define the genetic architecture underlying 

these traits and diseases of biomedical relevance. Through realizing cost savings and higher 

efficiencies of sequencing technologies in the future, investigators will be able to increase 
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sample sizes of future studies, thereby increasing statistical power. In addition, creative 

study design choices focused on sub-populations of interest may increase relative genetic 

effects, also serving to increase the power of discovery. Finally, newer statistical approaches 

are likely to be developed allowing investigators to augment power in the analysis of 

existing data. Regardless of the specific approach, recognizing that statistical power is a 

relevant issue to be considered will allow investigators to implement optimal strategies 

focused on discovering genetic associations and translating those findings to improve 

clinical care.
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Figure 1. 
Panel A shows the power to detect association (y-axis) by the effect sizes measured in odds-

ratios (x-axis) at 3 different minor allele frequencies (0.2 in blue, 0.1, in black, 0.05 in red). 

Panel B shows powers on the y-axis by sample size (N) on the x-axis at 3 different 

case:control ratios (1:1 in blue, 1:2 in red, 1:4 in black). Panel C shows the variability in 2 

different quantitative traits. The regions colored in blue are the effect sizes that could be 

detected at a given sample size, allele frequency. The red line represents an effect size of 1, 

which is easily detected in the trait with smaller variance (bottom) and undetected in the trait 

with larger variance (top).
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Table 1

Overview of population-based gene-mapping study designs and sentinel publications

Type of Study Noteworthy papers Comments

Candidate gene studies Brown et al. (1986)1 (established LDLR as a driver of cholesterol 
homeostasis)
Cohen et al. (2005)3 (identified mutations in PCSK9 associated 
with LDL levels)
Ioannidis et al. (2001)44 (critique of candidate gene studies and 
lack of replication)

Generally under-powered; 
hypothesis driven; often 
susceptible to false positives

Genome-wide association studies Deloukas et al. (2013)28 (recent large-scale GWAS on coronary 
artery diseases)
Willer et al. (2013)45 (recent large-scale GWAS on lipids)
Stitziel et al. (2016)38 (large-scale exome based study of coronary 
disease)

Moderately-powered for 
common variants; hypothesis 
generating; low false positive 
rate; genome wide coverage of 
common variants

Whole-exome sequencing Do et al. (2015)46 (exome-sequencing study on myocardial 
infarction)
Lange et al. (2015)47 (exome-sequencing study on lipids)

Under-powered; hypothesis 
generating; low false positive 
rate; coverage of common and 
rare protein coding variants

Whole-genome sequencing The UK10K project48 (whole-genome sequencing of 3,781 
individuals to find rare-variants associated complex disease)
The GoNL project49 (whole-genome sequencing of 250 Dutch 
parent-offspring families)
The SardiNIA project50 (whole-genome sequencing of 2,500 
Sardinians to find variants associated with longevity and related 
traits).

Currently under-powered; 
hypothesis generating; low false 
positive rate; genome wide 
coverage of common and rare 
variants
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