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Abstract

Yersinia pestis is the causative agent of the bubonic plague, a disease responsible for several dramatic historical pandemics.
Progress in ancient DNA (aDNA) sequencing rendered possible the sequencing of whole genomes of important human
pathogens, including the ancient Y. pestis strains responsible for outbreaks of the bubonic plague in London in the 14th
century and in Marseille in the 18th century, among others. However, aDNA sequencing data are still characterized by short
reads and non-uniform coverage, so assembling ancient pathogen genomes remains challenging and often prevents a
detailed study of genome rearrangements. It has recently been shown that comparative scaffolding approaches can improve
the assembly of ancient Y. pestis genomes at a chromosome level. In the present work, we address the last step of genome
assembly, the gap-filling stage. We describe an optimization-based method AGapEs (ancestral gap estimation) to fill in inter-
contig gaps using a combination of a template obtained from related extant genomes and aDNA reads. We show how this
approach can be used to refine comparative scaffolding by selecting contig adjacencies supported by a mix of unassembled
aDNA reads and comparative signal. We applied our method to two Y. pestis data sets from the London and Marseilles
outbreaks, for which we obtained highly improved genome assemblies for both genomes, comprised of, respectively, five and
six scaffolds with 95 % of the assemblies supported by ancient reads. We analysed the genome evolution between both
ancient genomes in terms of genome rearrangements, and observed a high level of synteny conservation between these
strains.

precise timing of the divergence between these two pathogens
is still controversial [1], but it is widely accepted that the emer-
gence of Y. pestis as a virulent human pathogen was character-
ized, among other elements, by the acquisition of numerous

DATA SUMMARY

1. The implementation of the AGapEs method is available
at GitHub (http://github.com/nluhmann/AGapEs).

2. The data underlying the following results can be down-
loaded from http://paleogenomics.irmacs.sfu.ca/DOWN-
LOADS/AGAPES_data_results.zip.

3. Twelve supplementary tables and twenty supplementary
figures are available with the online Supplementary
Material.

INTRODUCTION

Yersinia pestis is the pathogen responsible for the bubonic
plague, a disease that marked human history through several
dramatic pandemics, including the Justinian Plague and the
Black Death. It diverged a few thousand years ago from a rela-
tively non-virulent pathogen, Yersinia pseudotuberculosis. The

repeat sequences, especially insertion sequences (ISs) that trig-
gered an extensive chromosomal rearrangement activity [2, 3].
Also worth noting, loss-of-function mutations that can be
caused by chromosomal rearrangements have been identified
as evolutionary adaptations for flea-borne transmission from
Y. pseudotuberculosis in the ecological context [4]. This makes
the family Yersinia appear to be an interesting model for the
study of genome rearrangements during pathogen evolution.

Traditionally, the study of genome rearrangements relies on
a comparative approach using the genomes of related extant
organisms. Under appropriate models of evolution, this
comparison provides indirect insight into genomic features
of ancient species and their evolution toward extant species,
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see Darling et al. [2] for example for the specific case of
genome rearrangements in Yersinia. However, this
approach requires well-assembled extant genomes, as other-
wise it is difficult to distinguish breakpoints due to assembly
fragmentation from evolutionary breakpoints. For example,
Auerbach et al. [5] discussed several chromosomal rear-
rangements between two closely related Y. pestis strains, but
could not determine the evolutionary history of these modi-
fications as related strains were only partially assembled and
highly rearranged. Besides challenges for the analysis of
genome rearrangements, fragmented assemblies of bacterial
genomes impede subsequent analysis like genome annota-
tion, the identification of gene duplication, gene loss and lat-
eral gene transfer, or the characterization of gene families, as
well as the analysis of intergenic and especially repeat-rich
genomic regions, which are usually not assembled [6-9].
Finally, while synteny breakpoints often coincide with gaps
in a conservative assembly, unfinished assemblies also pose
the jeopardy of uncorrected mis-assemblies influencing the
reconstruction of genome rearrangement events [10, 11].

In contrast to the approach based on comparing extant
genomes, sequenced ancient DNA (aDNA) extracted from
conserved remains can give direct access to the sequence of
ancient genomes and, thus, theoretically, allows us to study
the evolution from ancestors to descendants directly. Fol-
lowing advances in aDNA high-throughput sequencing
technologies and protocols [12-17], the genomes of several
ancient human, animal and plant pathogens have recently
been sequenced at the level of complete or almost complete
chromosomes, including the agents of potato blight [18, 19],
brucellosis [20], tuberculosis [21] and leprosy [22], Helico-
bacter pylori [23], and the agents of cholera [24] and the
bubonic plague [25-27], leading to important historical and
evolutionary discoveries. However, unlike extant DNA
high-throughput sequencing, which is experiencing a break-
through transition towards long-reads, aDNA sequencing
methods generate extremely short reads with low and non-
uniform coverage [14]. As a result, aside of rare exceptions
[22], the assembly of aDNA reads generates numerous short
contigs. For example, a reference-based assembly of the
Black Death pandemic agent resulted in several thousand
contigs [26], two thousand of them of length 500 bp and
above. While short aDNA reads can be mapped onto one or
several extant reference genomes to detect important evolu-
tionary signals such as Single Nucleotide Polymorphisms
(SNPs) and small indels [28, 29], fragmented assemblies
make it challenging to exploit aDNA sequencing data simi-
lar to fragmented assemblies of extant strains to analyse the
evolution of pathogen genome organization.

Without long-read sequencing data, comparative scaffold-
ing based on the comparison of the contigs of a genome of
interest with related assembled genomes has proven to be a
useful approach to improve the assembly of fragmented
genomes, especially bacterial genomes [30-33]. Among
such methods, FPSAC [31] was introduced to improve
ancient genome assemblies within a phylogenetic context. It

IMPACT STATEMENT

In this work, we present a method to improve the scaf-
folding and gap filling of fragmented ancient DNA (aDNA)
assemblies using a combination of a template obtained
from related extant genomes and aDNA reads. We
obtained highly improved genome assemblies for two
data sets of Yersinia pestis from victims of the London
Plague in the 14th century and of the Marseille Plague in
the 18th century. Our comparative analysis of the
improved assemblies led to the surprising observation of
high genome structure conservation, despite a time dif-
ference of almost 400 years between the ancient strains
and a high rate of genome rearrangements in the VY.
pestis family.

was applied to aDNA contigs from the Y. pestis strain
responsible for the medieval London bubonic plague out-
break - that was shown to be ancestral to several extant Y.
pestis strains [26] — and resulted in an improvement of the
initial contig assembly from thousands of contigs to a chro-
mosome-scale scaffolding. Moreover, taking advantage of
the high sequence conservation in Y. pestis genomes, the
inter-contigs gaps of the ancient Y. pestis strain were filled
with putative sequences reconstructed from multiple
sequence alignments of conserved extant gaps. This gap-fill-
ing step shed an interesting light on genomic features hid-
den within the assembly gaps, in particular Insertion
Sequences (ISs) and their correlation with rearrangement
breakpoint reuse, but also allowed the potential reconstruc-
tion of regions that were not recovered or were absent from
the aDNA material. However, the scaffolding of adjacencies
and gap sequences obtained in this previous work [31],
which accounted for roughly 20 % of the genome size, were
inferred through computational methods within a parsi-
mony framework, which can be sensitive to convergent evo-
lution that cannot be ruled out for genomes with a high rate
of genome rearrangements, such as Y. pestis [2].

In the present work, we address this issue by using the large
set of aDNA reads that are unassembled after the contig
assembly stage, to confirm the scaffolding of contigs as well
as sequences for inter-contigs gaps. We introduce the
method AGapEs (Ancestral Gap Estimation), which
attempts to fill the inter-contig gap between two adjacent
ancient contigs by selecting a set of overlapping aDNA reads
that minimizes the edit distance to a template gap sequence
obtained from the extant genome sequences that support
the adjacency. We directly included annotations of potential
ISs in the extant genomes in the analysis to use the aDNA
reads when the presence of an IS in the ancient genome is
doubtful due to a mixed signal of presence/absence in the
supporting extant genomes.

We have applied this strategy to two data sets of aDNA
reads for ancestors of the human pathogen Y. pestis [3, 34].
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The first aDNA data was obtained from a London victim of
the Black Death pandemic in the 14th century [26], and the
second consisted of five samples from victims of the Great
Plague of Marseille around 400 years later [27]. For both
data sets, we obtained an assembly with reduced fragmenta-
tion and were able to fill a large number of inter-contig gaps
with aDNA reads. We identified several genome rearrange-
ments between the ancient strains and extant Y. pestis
genomes; however, observed only a single small inversion
between both ancient strains, suggesting that the genome
organization of the agent of the second major plague pan-
demic was highly conserved.

METHODS

Herein, we first describe AGapEs, the novel gap-filling
method we introduce, followed by a description of the data
and pre-processing steps for our analysis of two ancient Y.
pestis strains.

AGapEs: assembly of ancestral gap sequences
from aDNA reads

The main methodological contribution we introduce is a
template-based method to assess the validity of a potential
ancestral adjacency through gap-filling. The general princi-
ple is to associate to every ancestral gap a template sequence
obtained from the supporting extant gap sequences. We can
then map aDNA reads onto this template and assemble the
mapped aDNA reads into a sequence that minimizes the
edit distance to the template sequence. The rationale for this
template-based approach is that, due to the low coverage of
the aDNA reads and their short length, existing gap-filling
methods might fail to fill a large number of ancestral gaps.

Input

AGapE:s takes as input a set of aDNA reads, together with a
set of aDNA contigs, a set of assembled extant reference
genomes and a phylogenetic tree relating all considered
species.

Computing orthologous marker families

A family of orthologous markers is a set of genomic sequen-
ces, one from each extant genome and one from the ancient
genome of interest. They are assumed to be highly similar,
suggesting they evolved from a single ancestral genomic
locus. So, each marker family contains one marker per
extant genome (called extant markers from now on) and
one ancient marker. Each extant marker is naturally associ-
ated with the genomic coordinates and orientation of its
locus along the corresponding extant genome. This orienta-
tion of extant markers allows us to define two extremities
for each sequence, namely its tail (5" extremity) and its head
(3 extremity). Assuming an unassembled ancient genome,
ancient markers are not associated to genome coordinates.
Given the aDNA contigs and extant reference genomes,
marker families are computed using the FPSAC algorithm
[31]: the aDNA contigs are aligned onto each of the refer-
ence genomes, and then an iterative alignment refinement
procedure is applied until all the initial pairwise alignments

have been fragmented into breakpoint-free segments, which
then define a set of marker families.

Inferring ancestral adjacencies

An ancestral adjacency between two marker families con-
sists of two ancient marker extremities, representing the
hypothesis that these two marker extremities are contigu-
ous, in a given orientation, along the unassembled ancient
genome of interest, where by contiguous we mean that no
other ancient marker is located between them. A gap is the
sequence between the two marker extremities defining an
adjacency. The gap-filling step of AGapEs takes as input a
set of potential ancestral adjacencies, each provided with
one (or two) template DNA sequence(s) representing a pos-
sible hypothesis for the sequence located in the gap between
the marker extremities.

We infer such potential ancestral adjacencies using the
Dollo parsimony principle: two ancient marker extremities
are potentially adjacent if there exist two extant genomes
whose evolutionary path contains the most common recent
ancestor of the ancient strain of interest and where the two
corresponding extant marker extremities are contiguous
[see Fig. S7 (available with the online Supplementary Mate-
rial) for an example].

It follows that every potential ancestral adjacency is sup-
ported by a set of extant adjacencies, i.e. adjacencies
between extant marker extremities. Therefore, each putative
ancestral gap is likewise supported by a set of extant gap
sequences.

Computing template sequences for ancestral adjacencies
The key element of the approach we describe lies in defining
the template sequence, or a set of alternative template
sequences, associated to each ancestral gap. We follow again
the general parsimony-based approach described in [31],
designed for the case of pathogens whose sequence evolve
slowly over a historical time-scale. For each ancestral adja-
cency, we compute a multiple sequence alignment of the
supporting extant sequence gaps and apply the Fitch-Harti-
gan parsimony algorithm [35] to each alignment column to
reconstruct a most parsimonious ancestral sequence. If the
multiple sequence alignment of extant gaps shows little vari-
ation, then a single template sequence can be considered, as
we expect that minor variations compared to the true ances-
tral sequence (substitutions, small indels) will be corrected
during the local assembly process outlined below. Alterna-
tively, if larger variations are observed, such as larger indels
or a contradicting pattern of presence/absence of an IS in
the supporting extant gaps, then alternative templates can
be considered, under the hypothesis that the true variant
can be recovered from the provided aDNA reads.

The gap-filling algorithm

For each given ancestral adjacency, AGapEs aims at filling
the gap between the marker extremities using aDNA reads
mapped onto the template sequence. Assume we are given a
template sequence ¢ for the gap associated to an adjacency
between two marker extremities of marker families m; and
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my. Let a; and a, be the sequences of the ancient genome
associated to marker m; and marker m,, respectively,
accounting for the orientation implied by the extremities
forming the adjacency. We define R=a;+t+a, as the
concatenated nucleotide sequence of the oriented ancient
markers and the template.

We first align the aDNA reads with R using BWA [36], where
only mappings are considered further whose start and/or
end position is in t (i.e. either fully included in t or overlap-
ping the junction between a marker and the gap template).
We denote by M, this set of mappings. Next, we construct a
graph G where vertices are mappings meM, and there is an
edge between two vertices (i.e. mappings) if the two map-
ping coordinates (segments of R) overlap. For each such
edge/overlap, we define s as the non-overlapping suffix of
the mappings with the highest end coordinate. We can then
associate a weight to each edge given by the edit distance
between s and the subsequence R; of R it aligns to. A
sequence of overlapping reads that minimizes the distance
to t can then be found by searching for a shortest path
between the vertex labelled with the smallest start position
(i.e. the first mapping covering the junction between a; and
t) and the vertex labelled with the largest start position (i.e.
the last mapping covering the junction between t and a,).
See Fig. S13 for an illustration.

If such a path exists, it can be found with Dijkstra’s algo-
rithm [37] implemented based on a min-priority queue in
O(|E|+|V] log |V]) time, where V is the vertex set and E the
edge-set of G. If no such path exists, then there are either
regions in R that are not covered by any mapped aDNA
read or breakpoints in the mapping, where two consecutive
bases in the sequence are covered, but not both by the same
read. In these cases, uncovered regions and breakpoints
need to be identified in the mapping beforehand to identify
start and end vertex of the shortest path. We can then
obtain a partial gap filling, precisely for the regions covered
by mapped reads. If a gap template sequence is only par-
tially covered by mapped aDNA reads, we correct the cov-
ered regions as described above and use the template
sequence of the uncovered regions to complete filling the

gap.

Scaffolding ancient genomes

We say that two potential ancestral adjacencies are conflict-
ing if they share a common marker extremity, hence, show-
ing some ambiguous scaffolding signal (Fig. S8). Further,
ISs are repeats that are known to be involved in genome
rearrangement in bacterial pathogens [38] and thus to
impact comparative scaffolding, creating potential ambigu-
ity and conflicting adjacencies. We define an IS-annotated
adjacency as an ancient adjacency that is supported by at
least one extant adjacency whose gap contains an IS annota-
tion. An adjacency that is neither conflicting nor IS-anno-
tated is said to be simple. We separate all potential ancestral
gaps into groups of simple, conflicting and IS-annotated
gaps, according to the status of the corresponding
adjacency.

For simple and conflicting gaps without IS annotation, we
can follow the AGapEs algorithm as described above to fill
the gap. For IS-annotated gaps, we reduce the described
large variations in the multiple alignment by further divid-
ing its supporting extant gaps into sets of IS-annotated and
non-IS-annotated sequences. Building the multiple align-
ment on each of these sets separately allows us to define two
alternative templates that can be used as a basis to fill the
gap. Ideally, differences in read coverage or breakpoints nat-
urally identified by AGapEs then point to one of the alterna-
tive templates for each IS-annotated gap. See Fig. S12 for an
overview.

In order to study genome rearrangements, we generate for
each ancient genome a set of Contiguous Ancestral Regions
(CARs; equivalent for ancient genomes to scaffolds for
extant genomes), each defined by a set of ordered markers,
with gaps filled as described above. Conflicting adjacencies
are related by the marker extremities they share, defining
clusters of related conflicting adjacencies. Within such a
cluster, each adjacency is supported if the corresponding
gap is completely filled by aDNA reads. In order to propose
a conflict-free scaffolding, we chose to remove all unsup-
ported conflicting adjacencies. Moreover, if two (or more)
conflicting adjacencies share a marker extremity and are
supported by aDNA reads, indicating an ambiguity in the
support from ancient reads, we remove them all. The set of
ancestral adjacencies can then be ordered into CARs. Last,
to generate a final assembly, we convert the reconstructed
sequences of markers back to genome sequences by filling
the gaps with the read sequences if possible and resorting to
the template sequence otherwise as described above.

Data and pre-processing

We now describe the input to our analysis of Y. pestis,
namely ancient sequencing data, ancient and extant assem-
blies, and annotations of ISs.

Sequencing data

The first aDNA data set was obtained from a London victim
of the Black Death pandemic in the 14th century [26] (indi-
vidual 8291), the second consists of five samples from vic-
tims of the Great Plague of Marseille around 400 years later
[27]. The aDNA reads were obtained following a capture
approach, where probes from extant Yersinia genomes are
used to design a capture array that allows to enrich DNA
from ancient remains for Yersinia genomes, followed up by
high-throughput DNA sequencing (see [12, 13] for a gen-
eral description of this approach). As a consequence,
ancient genome segments that do not occur in the extant
strains used to design the capture arrays are missing in the
sequenced aDNA reads.

For the London strain, the array was built using Y. pestis
strain CO92 together with probes taken from other Y. pestis
strains to cover 933 SNPs and selected virulence regions;
sequencing was then performed on the Illumina Genome
Analyzer IIx platform. For the Marseille data set, the array
was built also using the CO92 strain, supplemented with
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additional chromosomal regions from Y. pestis biovar
Microtus strain 91,001, Y. pseudotuberculosis IP 32,953 and
Y. pseudotuberculosis IP 31,758, with sequencing performed
on an Illumina HiSeq 2000 platform (Table S3). The
mean read length was 53bp in the London dataset and
75 bp in the five Marseille samples (Fig. S3).

Reference strains and phylogeny

We relied on seven extant Y. pestis and four Y. pseudotuber-
culosis as reference and outgroup genomes (see Table S1).
The phylogeny of the considered strains is depicted in Fig.
S1 and is taken from [26, 27].

Contig assembly

We de novo assembled aDNA reads into contigs using
Minia [39] for both aDNA data sets (London outbreak and
Marseille outbreak). Minia is a conservative assembler based
on an efficient implementation of the de Bruijn graph meth-
odology. In general, Minia produces shorter contigs than
competing assemblers, as it avoids assembly decisions in
case of ambiguity in the sequence data. We will refer to the
Minia assemblies as de novo assemblies in the following.

The Marseille strain data set consists of five samples as
described in [27] that we assembled separately with Minia.
We first compared the quality of the resulting assemblies by
mapping contigs with a fixed minimal length to the genome
of the extant strain Y. pestis CO92 and summing the total
length of the mappings as seen in Fig. S5. While restricting
the minimal contig length, two of the samples covered an
extensively larger part of the CO92 strain genome and, thus,
indicated a better sequencing quality. Fig. S6 shows that if
we restrict the minimal contig length, only a small part of
the Y. pestis reference genomes is covered by contigs from
all five samples. We used the assembly of sample OBS116
with a minimal contig length of 500bp to segment the
extant genomes into markers.

Insertion sequence annotation

ISs are strongly related to rearrangements in Y. pestis evolu-
tion, and their annotation in the considered extant genomes
is crucial. In order to annotate ISs, we designed our own
annotation pipeline. Because IS elements in the original
GenBank files were rather disparately annotated, we relied
on automated annotations from the Basys annotation server
[40]. Basys identified 11 families of IS transposase proteins
(see Table S2 and Fig. S2). For each of these families, we
produced a multiple alignment of their annotated sequences
using muscle [41], which was subsequently used to train
Hidden Markov Model (HMM) profiles. Using HMMER [42],
we then annotated those regions as associated to IS elements
that showed significant correlation to any of the HMM
profiles. We eventually combined the GenBank annotations
with these derived annotations.

The number of these IS annotations per reference genome
ranged from 151 in Y. pestis KIM10+ to 293 in Y. pestis
Antiqua (see Table S1). The length of the annotations
ranged from 60 to 2417 bp. Some short annotations deviated
from the expected length for ISs; however, in order to avoid

filtering any true annotations, we included them all as
potential IS coordinates in the downstream analysis.

RESULTS

Assembly of the London and Marseille strains

Assembling the London strain

The de novo assembly of the London data consisted of 4183
contigs of length at least 300 bp that covered 2631422 bp
(see the Supplementary Material A4). Using the marker seg-
mentation described in the previous section, we subse-
quently obtained 3691 markers covering 2215596bp in
total. Only contigs whose segments aligned uniquely and
universally onto the reference genomes are represented in
the markers set, explaining the lower number of markers
compared to contigs. We obtained 3691 potential ancestral
adjacencies: 3483 were simple, 201 were IS-annotated and
non-conflicting, and only 7 were conflicting. Among the
conflicting adjacencies, five were also IS-annotated, illustrat-
ing that most rearrangements in Y. pestis that can create
ambiguous signal for comparative scaffolding are associated
with IS elements (see also Table S5).

For most potential ancestral adjacencies, the lengths of the
sequences in extant genomes associated with the supporting
extant adjacencies were very similar, indicating well-con-
served extant gaps (Fig. S9a, b). There were 21 gaps whose
lengths difference fell into the length range of potential
annotated IS elements, thus, raising the question of the pres-
ence of an IS within these adjacencies in the ancestral
genome. We noted a small number of five potential ances-
tral adjacencies with strikingly large extant gap length dif-
ferences. All of these gaps accumulated more than one IS
annotation in some extant genomes. Most problematic was
a gap with a length difference of more than 100 000 bp. As
this gap was not well conserved in general (apart from the
inserted sequences), it was difficult to obtain a good tem-
plate sequence based on a very fragmented multiple align-
ment. We will get back later to this special gap.

We applied AGapEs to all potential ancestral gaps. We
assumed a gap to be filled, if we found a sequence of reads
that covered the whole ancestral gap. For an IS-annotated
gap, we considered it filled if only one alternative was cov-
ered or if both templates were covered but the IS was only
annotated in a single extant genome. In the latter case, we
expected the non-IS gap version to be ancestral. If both
alternative template sequences were covered, we could not
recover the true positive gap at this point and marked it as
not filled. Fig. 1 summarizes the gap-filling results (see also
Table S5). A large number of gaps was supported by suffi-
cient aDNA read coverage that enabled us to fill the gap
with a sequence of overlapping aDNA reads. Especially con-
sidering partially covered gaps improved the length of the
genome that is supported by reads. Note that we also
found covering reads for all gaps of length 0, spanning the
breakpoint between directly adjacent markers.
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Fig. 1. Result of gap filling for both data sets. Note that if a gap is
conflicting and I1S-annotated, we assigned it to the conflicting group.
We differentiated between gaps of length O (i.e. both markers are
directly adjacent), completely and partially filled gaps, and not filled
gaps (Tables S6 and 57).

We further computed the edit distance between each recon-
structed gap sequence and its previous gap template. For IS-
annotated gaps, we computed the distance to a template
sequence based on all extant gap occurrences, i.e. without
considering alternative templates as described previously.
We identified one case where the parsimonious gap
sequence based on all extant occurrences of the adjacency
excluded the IS. However, if aDNA reads were mapped sep-
arately to alternative templates based on IS and non-IS
annotated extant gaps, only the IS-annotated gap template
was covered.

For IS-annotated gaps, 95 ancestral gaps contained an IS,
while 106 ancestral gaps were reconstructed without the IS.
From these 95 IS gaps, 22 contained annotations that were
shorter than 400 bp; however, they all contained additional
longer annotations in the same gap. Analysing the number
of ancestral ISs with a Dollo parsimony criterion consider-
ing only the extant IS annotations, we had 96 ancestral gaps
that contained an IS, indicating a large agreement between
the ISs that are conserved by the parsimony criterion and
the ISs supported by aDNA reads.

We identified two clusters of conflicting adjacencies (see
Fig. S14). One consisted of three adjacencies that were all
annotated with IS elements, while the other consisted of
four adjacencies, including two IS-annotated adjacencies. In
total, only two of these conflicting adjacencies were sup-
ported by aDNA reads. All other adjacencies contained
uncovered regions indicating potential breakpoints. See Fig.
S15 for the read coverage of discarded adjacencies. The
resulting assembly contained five CARs.

As mentioned earlier, we observed one gap with highly dif-
fering extant gap lengths and very little conservation in the
reconstruction. The multiple alignment based on extant gap
sequence was very fragmented and the mapping of reads
onto this template was poor: the gap contained 211

uncovered regions of 9319bp in total. See Fig. S16 for an
overview of the read coverage for this gap in the de novo
assembly. As the reconstructed sequence had a high edit dis-
tance after partial gap filling, we removed this gap sequence
completely at this point to avoid dubious and non-robust
reconstructed ancestral sequences.

In addition, we aligned all reads again to the final assembly
to assess the amount of uncovered regions in the recon-
structed sequences. In total, 88 529 bp are not covered by
any read; however, most uncovered regions were rather
short (see Figs S19 and S20). Based on this mapping, we ran
the assembly polishing tool Pilon [43] on the final assembly.
It identified several positions where the assembled base
(also present in the template) was the minority in compari-
son to all reads mapping at this position. As Pilon was not
taking the respective bases of the extant genomes into
account, it ran the risk of correcting the assembly according
to sequencing errors in the reads. In fact, the most frequent
proposed substitutions corresponded to the common dam-
age pattern of cytosine deamination observed in aDNA
[44]. As a consequence, we only kept small indel corrections
by Pilon, but rejected all single-base corrections.

In the improved assembly, 49.88 % of the sequence was
based on markers and, hence, directly adopted from the ini-
tial assembly. Together with the gaps that have been filled
by read sequences, we can say that in total 95.25 % is recon-
structed using only the available aDNA reads.

Assembling the Marseille strain

We used the assembly of sample OBS116 with a minimal
contig length of 500 bp to segment the extant genomes into
markers. The assembly consisted of 3089 contigs with a total
length of 3636 663 bp (Fig. S4). The segmentation resulted
in 2859 markers with a total length of 3 143 627 bp. We ana-
lysed 2859 potential adjacencies: 27 of these gaps had a
length of 0, leaving 2832 gaps to fill. Based on the observa-
tions above, we joined all sample read sets for filling the
gaps in the reconstruction to achieve a better coverage.

We can see in Fig. 1 that with the combined set of reads, we
could fill nearly all simple gaps by read sequences. In addi-
tion, we obtained a larger number of IS-annotated gaps that
were filled in comparison to the London data set. For the
IS-annotated gaps, 95 were reconstructed containing the IS,
21 contained IS annotations shorter than 400 bp. Hence, we
identified the same number of potential ancestral ISs as for
the London strain.

We identified two conflicting components in this set of
potential adjacencies (see Fig. S17). Both of them aligned in
terms of gap lengths and extant occurrences with the two
components observed in the assembly for the London
strain. In the first component, again only one conflicting
adjacency was covered by reads. However, this was a differ-
ent adjacency in comparison to the London strain, while we
had no read support for the gap that was covered in the
London data set. This could indicate a potential point of
genome rearrangement (see Discussion). In the second
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component, all involved adjacencies were covered by reads
from the five samples. In order to obtain a set of high confi-
dence ancestral CARs, we removed all conflicting adjacen-
cies in this component from the set of potential adjacencies.
The coverage of all discarded adjacencies is shown in Fig.
S18.

This resulted in six CARs for the ancestral genome. Again,
we used BwA [36] to align reads from all five samples to the
assembly to assess the amount of uncovered regions in the
reconstructed sequences. In total, only 54672bp in this
mapping were not covered by any read and the length of the
uncovered regions was rather short (see Fig. S20).

Comparison of the London and Marseille strains

As the Marseille Y. pestis strain is assumed to be a direct
descendant of the London strain [27], we aligned the
obtained CARs in both reconstructions to identify genome
rearrangements. As shown in Fig. 2, apart from one larger
deletion and one larger insertion in the Marseille strain
related to the removed gap sequence in the London strain

and a small inversion of length 4138 bp (marked in black),
the reconstructed CARs showed no larger rearrangements
between both genomes (grey links). The difference in con-
flicting adjacencies kept is a possible indication for a rear-
rangement that, however, cannot be explicitly identified at
this point. It causes the split pattern observed between
CAR3 and CARI in the London strain, and CAR2 and
CARS5 in the Marseille strain. Given that the available read
data did not allow us to further order the resulting CARs
into a single scaffold, additional potential rearrangements
could be assumed to be outside of the reconstructed CARs.
In contrast, Fig. 2 depicts several inversions and transloca-
tions between both ancient sets of CARs and the extant Y.
pestis CO92 (red and blue links, respectively).

To clarify this further, we computed all potential orderings
for both sets of CARs and determined the Double-Cut-and-
Join (DCJ) [45] genome rearrangement distance (see Sup-
plementary Material A11) for all such orderings between
both ancient strains as well as in comparison to Y. pestis
CO92. We obtained a weighted mean distance of 4.04

London
(ancient)

Marseille
(ancient)

Fig. 2. Comparison between the de novo assembly of the London strain (blue) and the Marseille strain (red) with the reference Y. pestis
C092. The inner links connect corresponding CARs in the reconstructions and the reference. Note that there is only a small inversion,
marked in black among the grey links. The positions in both reconstructions covered by markers are indicated in green. All gaps that
have IS annotations in the extant genomes are shown in orange. For C092, all IS annotations are shown as well. In addition, gaps that
are only partially filled or have very unconserved extant gap lengths are indicated in red. Finally, the outermost ring shows the
mean read coverage in windows of length 200 bp in log scale. The figure was made with Circos [57].
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between both ancient strains and a mean distance of 11.16
to CO92, with a sp of 0.89 and 0.83, respectively. This sug-
gests a much slower evolution in terms of rearrangements
between both ancient strains and the extant strain.

Evaluation

Influence of initial assembly

Bos et al. [26] described a reference-based assembly of the
London strain consisting of 2134 contigs of length at least
500 bp. It was obtained with the assembler Velvet [46] using
the extant strain Y. pestis CO92 as a reference. In order to
assess the influence of the reference sequence in the assem-
bly of the ancient genome, we ran our pipeline using this
initial assembly to compare to our results based on the de
novo assembly (see Table S4 and Figs S10 and S11).

We compared the two sets of CARs obtained from both ini-
tial assemblies by aligning the resulting genome sequences
using MUMmer [47]. We observe no rearrangements
between both resulting sets of CARs (see also Fig.
S19 and Table S8), showing that, in terms of large-scale
genome organization, the final result does not depend on
the initial contig assembly.

Assembly comparison

We compared our results to assemblies obtained with sev-
eral other assembly pipelines. We used the iMetAMOS pipe-
line [48] to determine the best de novo assembly for both
data sets testing different assemblers. The winning assembly
computed by SPAdes [49] for both data sets, as well as the
Minia assemblies on both datasets, were subsequently used
as input for two comparative scaffolding programs, Ragout
[32] and MeDuSa [33], to obtain a scaffolding of the initial
contigs considering the extant reference genomes in a phy-
logenetic context. For all scaffolds, we ran Gap2Seq [50] to
close the gaps. We will distinguish the results according to
the scaffolding tool used in the following.

As shown in Table 1, for both datasets, Ragout recon-
structed the smallest number of contigs; however, the scaf-
folds still contained a high number of unfilled gaps that
could not be closed by Gap2Seq. See Table S10 for the

results of all tool combinations and Tables S11 and S12 for
gene predictions. Our AGapEs reconstruction — although
slightly more fragmented - achieved the best assembly like-
lihood according to both the LAP [51] and CGAL [52] score.
The MeDuSa scaffolder was not able to estimate the gap
sizes needed as input for Gap2Seq. Hence, the better likeli-
hood in comparison to Ragout can be accounted to the
missing gaps characterized by Ns in the Ragout assembly.
Also worth noting with the Marseille strain, MeDuSa was
not able to correct a larger than expected contig assembly
obtained with SPAdes. Finally, the Minia-AGapEs assem-
blies did not contain Ns due to the filling of the gaps uncov-
ered by reads by the template sequence, we have indicated
the length of template sequence used in parentheses instead.

IS reconstruction

In order to validate the IS reconstruction in our assemblies,
we ran the tool ISseeker [53] that allows annotation of IS
elements in draft genome assemblies by blasting flanking
sequences against a reference. We tested both SPAdes and
Minia assemblies for the presence of 10 Y. pestis species-spe-
cific IS elements found in the ISFinder database [54] and
using all potential IS gaps as references.

While ISseeker was not able to annotate IS elements in the
Minia assembly, in Table 2 we note 30 annotations that are
found in the SPAdes assembly. Seven of these were not
annotated in the AGapEs reconstruction, and they all con-
cern gaps that are only partially covered by reads. However,
a manual check of these gaps determined the presence of
the respective IS element in five gaps, indicating that
ISseeker was not able to correctly annotate these elements
in these cases.

Simulations

We further evaluated AGapEs on simulated data by remov-
ing Y. pestis CO92 from the set of considered references and
simulating six aDNA single-end read datasets with gargam-
mel [55] based on this genome sequence with a mean read
length of 60 bp. To test factors influencing the initial assem-
bly of the aDNA reads, we varied the mean coverage of
reads from 20x to 10x and in addition simulated different

Table 1. Assembly statistics for both data sets, based on contigs with a minimal length of 500 bp. All program parameters are given in Table S9

The AP and cGAL likelihoods have been computed based on all reads mapping to any of the reference sequences. Ragout and MeDuSa depend on the
quality of the initial assembly in terms of assembled sequence length; hence, we omit results for the Minia assembly here and refer to Table S10.

Strain Assembly No. of contigs Total length (bp) No of Ns N50 LAP CGAL

London SPAdes 2555 3792691 0 1888 —11.01048 —6.90196e+08
Minia 4183 2631422 0 930 —15.69016 —7.98656e+08

SPAdes-Ragout 1 4068 385 776139 - —12.52232 —4.8192e+08
SPAdes-MeDuSa 77 4333801 1917 700415 —7.97066 —5.00106e+08
Minia-AGapEs 5 4441,104 0 (313628) 3511710 —7.26576 —3.55155e+08

Marseille SPAdes 3201 6072375 0 4592 —11.03336 —6.0411e+08
Minia 3089 3636663 0 1368 —15.05058 —8.71446e+08
SPAdes-Ragout 2 4564323 542013 4530296 —13.34526 —5.84186e+08
SPAdes-MeDuSa 2155 6052372 618 1643585 —10.88342 —6.12532e+08
Minia-AGapEs 6 4350872 0 (184003) 3459919 —8.05526 —4.32647e+08
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Table 2. IS annotations in the London dataset identified by ISseeker in
either draft assembly, AGapEs reconstruction or both

SPAdes AGapEs SPAdes  Minia AGapEs Minia

and and

AGapEs AGapEs

IS gap 7 55 23 0 78 0

rates of bacterial contamination from 0 to 40 % as provided
by the gargammel software. We assembled the simulated
reads with Minia [39], setting k=19, and subsequently used
all contigs with a minimal length of 300 bp as input to our
pipeline, considering all adjacencies conserved at the ances-
tor of Y. pestis 2176003 and Antiqua (see Fig. S1).

For all sets of parameters indicated in Fig. 3, we had a single
conflicting component consisting of three adjacencies. Since
all are covered by reads, we removed them from the recon-
struction, resulting in eight CARs for each simulated experi-
ment. There were no rearrangements between all six
reconstructed sequences, they only differ by the ratio of
sequence defined by markers, filled and unfilled gaps as
depicted in Fig. 3.

The results show that both a reduced read coverage, as well
as an increased contamination in the sequencing data, can
be handled by our method. The dataset with 10x coverage
already shows a reduced marker coverage due to the quality
of the assembly, and a further reduced coverage will likely
result in missed rearrangement events hidden in very large
gaps between markers. The datasets with simulated bacterial
contamination show that our method can handle contami-
nation, since contigs are aligned to reference sequences to
obtain markers, hence, higher rates of contamination are fil-
tered out. However, it should be noted that assembly soft-
ware not specifically designed to handle metagenomic

97.47% 99.45% 99.59% 99.03% 99.32% 99.52%

4x108
3x10°8 —
£
2 2x108
]
W Markers
15106 [ Filled
O Partially filled
O Not filled

Cov20 Cov20 Covis Covi0O Cov20 Cov20
Cont0 Cont20 Cont20 Cont20 Cont30 Cont40

Fig. 3. Length of reconstructed sequence defined by markers,
completely filled gaps, partially filled gaps (only the covered parts are
considered) and unfilled gaps. The simulation parameters vary in
terms of read coverage (cov) and simulated bacterial contamination
(cont). Above each bar, the percentage of the reconstructed sequence
supported by the aDNA reads is given.

datasets will likely not produce a good quality assembly suf-
ficient to compute markers for reconstruction.

DISCUSSION

In this paper, we have presented a method to fill the gaps
between contigs assembled from aDNA reads that combines
comparative scaffolding using related extant genomes and
direct aDNA sequencing data, and we have applied it to two
ancient Y. pestis strains isolated from the remains of victims of
the second plague pandemic. Although initially designed for
the analysis of ancient Y. pestis strains, the method imple-
mented in AGapEs is quite generic and can in principle be
applied to arbitrary ancient pathogens for which appropriate
data is available. More precisely, AGapEs has been designed to
work better with aDNA sequencing data with good coverage
of the considered ancient genome and available related extant
genomes that can be used to generate template sequences for
the assembly gaps to be filled. Indeed, in the absence of reliable
template sequences or ancient reads for large parts of the
ancient genome, AGapEs will result in large unfilled or par-
tially filled gaps that will improve the initial contig assembly,
but leave open ambiguities in terms of scaffolding and ancient
genome sequence. For example, a challenging data set for
AGapEs would be the data set obtained from plague victims
in Ellwangen [56], which is characterized by the fact the
sequenced aDNA reads are expected to cover only three quar-
ters of the ancient genome. However, AGapEs is robust to an
initially very sparse contigs assembly, as illustrated by the low
10x depth-of-coverage (DoC) simulated data set, where we
observed that a very low coverage by contigs-based markers
resulted into 99% of the improved assembly covered by
ancient reads, although a large number of gaps is only partially
filled, a feature that does not manifest with a simulated 15x
DoC data set. On real data, the comparison of the two assem-
blies for the London strain illustrates also that relying on a
shorter initial de novo contig assembly does not impact signifi-
cantly the final result. The results we obtained with the Mar-
seille data set illustrate that if a good coverage of reads over
the whole genome can be provided (as through multiple
sequencing experiments for multiple samples), even a cautious
initial contig assembly can be improved in such a way that
most gaps are filled using unassembled aDNA reads. With
both data sets, we obtained largely improved genome assem-
blies, with a reduced fragmentation (from thousands of con-
tigs to a handful of CARs) and a very small fraction of the
final assembly that is not supported by aDNA reads.

Applied to the same data set for the London strain, the
method FPSAC [31] was able to obtain a single scaffold
based on parsimonious optimization. Comparing our result-
ing assembly to this single scaffold, we could identify two
breakpoints between both assemblies; hence, both methods
did not entirely support the same scaffold structure for the
London strain. These disagreements should be seen as weak
points in both assemblies, as they were not reconstructed by
different scaffolding objectives and would need to be con-
firmed more confidently by additional sequencing data.
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We see a clear connection between conflicts in the set of
potential adjacencies and the presence of IS elements in the
corresponding gaps. Solving these conflicts based on aDNA
read data provides a useful way to identify ancestral adja-
cencies in a conflicting component if the quality of the
aDNA data is sufficient. The mapping of aDNA reads has
shown to be mostly difficult at repetitive regions like ISs,
where the presence of the IS in the ancestral gap cannot be
clearly detected by the aDNA sequencing data.

Interestingly, the improved assemblies of the London and
Marseille strains showed no explicit large genome rear-
rangements except for a small inversion. Even if potential
genome rearrangement might not be observed due to the
fragmentation of the assemblies into CARs, the synteny
conservation between two strains separated by roughly
400 years of evolution is striking compared to the level of
syntenic divergence with extant strains. This might be
explained by the fact that both the London and Marseille
strains belong to a relatively localized, although long-lasting,
pandemic [27]. Also of interest is the observation that con-
flicting adjacencies in the Marseille data set were covered by
aDNA reads, thus, making it difficult to infer robust scaf-
folding adjacencies. This raises the question of the presence
of several strains in the Marseille pandemic that might have
differed by one or a few inversions. It is also important to
recall that both the London and Marseille strains data were
obtained through an aDNA capture protocol that uses DNA
baits from extant strains. This data acquisition protocol,
together with a comparative approach for scaffolding and
gap filling, will not recover any ancient genome sequence
that has not been conserved in the modern strain genomes.
Recovering such genome segments that have disappeared
during evolution is an important question for which new
methods are needed.

Answering these questions with confidence would require
additional targeted sequencing of a few regions of the
genomes of the London and Marseille strains, or the
sequencing, with sufficient coverage, of additional strains
involved in the second plague pandemic from outbreaks
that occurred at various time points. Nevertheless, it is likely
that progress in aDNA sequencing technologies and proto-
cols, coupled with methods such as AGapEs to scaffold and
fill gaps in contigs assemblies, will soon lead to a better
understanding of the evolution of genome organization in
Y. pestis during the second plague pandemic.
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