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Stochastic biomechanical modeling has become a useful tool most commonly implemented using Monte Carlo simulation,
advanced mean value theorem, or Markov chain modeling. Bayesian networks are a novel method for probabilistic modeling in
artificial intelligence, risk modeling, and machine learning. The purpose of this study was to evaluate the suitability of Bayesian
networks for biomechanical modeling using a static biomechanical model of spinal forces during lifting. A 20-node Bayesian
network model was used to implement a well-established static two-dimensional biomechanical model for predicting L5/S1
compression and shear forces. The model was also implemented as a Monte Carlo simulation in MATLAB. Mean L5/S1 spinal
compression force estimates differed by 0.8%, and shear force estimates were the same. The model was extended to incorporate
evidence about disc injury, which can modify the prior probability estimates to provide posterior probability estimates of spinal
compression force. An example showed that changing disc injury status from false to true increased the estimate of mean L5/S1
compression force by 14.7%. This work shows that Bayesian networks can be used to implement a whole-body biomechanical
model used in occupational biomechanics and incorporate disc injury.

1. Introduction

Stochastic modeling has become a useful analytical
method in biomechanics over the last twenty years.
Applications have included lumbar region muscle forces
[1], musculoskeletal injury risk prediction [2–4], upper
extremity joint mechanics [5–8] muscle modeling [9],
population morphological modeling [10], probabilistic
sensitivity analyses [11], tissue repair [12], and orthopae-
dic implant design [13, 14]. Past stochastic biomechani-
cal models use Monte Carlo simulation, advanced mean
value theorem, or Markov chain models. Unfortunately,
these methods are all “forward” simulation methods that
produce probability estimates of outcomes based on model
inputs represented as random variables.

Bayesian networks are well established in artificial intelli-
gence [15, 16], risk analysis [17], and reliability engineering
[18–21] and have the potential to enhance biomechanical

modeling. A Bayesian network is a graphical probabilistic
model containing nodes and directed edges that can be used
to compute probabilities when evidence has been entered at a
variety of nodes in the graph, some of which are descendants
of the primary variable of interest [22]. Consider the problem
of predicting lumbar spine compression force during lifting,
which is a common task in occupational biomechanics. Exist-
ing biomechanical models require task-related inputs like
mass in the hands, anthropometry, and joint angles to predict
compression force [23, 24]. Physiologically driven models
also require electromyographic measurements [25–28]. The
results of these models are predictions of spinal compression
and shear forces. In theory, a Bayesian network could be used
to also incorporate intervertebral disc injury status, which
existing models cannot.

Therefore, the purpose of this project was to evaluate
the feasibility of implementing a well-established static
two-dimensional biomechanical model of lifting as a
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Bayesian network and extend it to include disc prolapse as a
model input.

2. Methods

The design of this study consisted of five steps: (1) implement
a well-established deterministic static two-dimensional bio-
mechanical model for predicting L5/S1 shear and compres-
sion force as a Bayesian network, (2) extend the Bayesian
network to include uncertainty in model inputs, (3) verify
the implementation, (4) augment model to include disc
injury status, and (5) evaluate effect of including disc injury
status on L5/S1 compression force estimates.

A well-established deterministic model for predicting L5/
S1 compression force during lifting was selected as the basis
for this model [29] (pp. 130-131). This model computes
intersegmental reaction forces and moments at the elbow,
shoulder, and L5/S1 disc. Body segment lengths and masses
are scaled from status and total body mass, respectively.
The location of the center of mass for each segment is scaled
to segment length. All necessary body segment anthropomet-
ric parameters are described in Chaffin et al. [29] (pp. 41–47).
The model allows for a downward directed hand force repre-
senting the holding of an object in the hands. The model is
bilaterally symmetric. A 50th-percentile female (161.8 cm
stature and 65.6 kg body mass) was used for all simulations.
The erector spinae moment arm was 5.3 cm according to
Chaffin et al.’s recommendation for models not incorporat-
ing intra-abdominal pressure (p. 134).

The deterministic and stochastic versions of the lifting
model were also coded in MATLAB R2014a (The Math-
works, Natick, MA) for purposes of validation. Monte Carlo
simulation was used for the stochastic simulation, and each
simulation contained 107 iterations. Hand calculations were
also performed for selected deterministic cases for code
verification.

The next step was to implement the same model as a
Bayesian network [30] using AgenaRisk software (Agena,
Cambridge, UK). A Bayesian network is a graphical probabi-
listic modeling framework developed initially in artificial
intelligence [15, 16]. A Bayesian network is a directed acyclic
graph in which the directed edges represent conditional
independence assumptions and node probability tables
are associated with each node. Each node represents a ran-
dom variable. The probability table associated with a node
consists of a full statement of conditional probabilities for
all nodes that are parents of the node. It is also possible to
code deterministic relationships between nodes. Probability
distributions can be defined for nodes, as well as observed
values of the random variables. Junction tree methods are
used to propagate probability distributions through the
network [31].

In the Bayesian network implementation of the lifting
model, nodes for input data were defined: mass in hands,
elbow angle, shoulder angle, torso angle, knee angle, and ankle
angle (Figure 1). Note that in this paper, variables are indi-
cated in italics. Intermediate nodes were also defined for pur-
poses of computation. Nodes were introduced for the
reaction forces and moments at the elbow (elbow reaction

force and elbow reaction moment), shoulder (shoulder reac-
tion force and shoulder reaction moment), and L5/S1 level
(L5/S1 reaction force and L5/S1 reaction moment). A node
was created for the erector spinae moment arm, and another
for erector spine force. The effect if intra-abdominal pressure
was excluded because of the nonlinearity of the relationship
between hip moment and pressure (p. 132). A node for
L5/S1 disc angle was included, as were three nodes (β, T,
and K) to implement a regression model for predicting devi-
ation of disc angle from 40 degrees [32], which is how Chaffin
et al. compute disc angle (p. 132). Two output nodes were
defined: (1) L5/S1 compression force and (2) L5/S1 shear force.
Edges were introduced to link the nodes in a way that repre-
sented mechanics. In AgenaRisk, each arc was given the
deterministic relationships linking nodes. This defined the
deterministic version of the lifting model.

The model was extended to a stochastic model by modi-
fying the input nodes to be normally distributed random var-
iables rather than deterministic values. Liu et al. [33] showed
that assessment of body segment angles for a lifting model
using common ergonomics tools has measurement error
and these error estimates were used to define the standard
deviation for each joint angle. Since Liu et al. [33] reported
mean absolute errors, normality was assumed and the result
of Geary [34] was used to compute standard deviation for
the elbow, shoulder, and torso angles. The standard deviation
for the error across all joints was also computed, and this was
used for the knee and ankle.

The method was evaluated on a lifting task obtained from
a study of heavy work that has been previously reported [35].
The task involved lifting chunks of carbon that had broken
off large anodes in an aluminum smelter. Posture was col-
lected from video of the job taken from a single viewpoint.
The postural measurements were subject to error as shown
by Liu et al. [33], and hand load was random because
the carbon pieces broke off from anodes by a process that
created a wide distribution of masses. Therefore, both pos-
ture and hand load were modeled as normally distributed
random variables. Table 1 provides the mean (and stan-
dard deviation) joint angles. The mass of the object in
the hands was modeled as a normally distributed random
variable having mean and standard deviation of 53.1 kg
and 12.8 kg, respectively.

A modified model was developed that incorporates
intervertebral disc prolapse status (a so-called “injury-
augmented” model). It is the full DAG shown in Figure 1.
It was developed by adding a probabilistic inference model
of structural failure in which failure occurs when the applied
load exceeds the compressive strength. Both applied load
and strength were modeled as random variables [36].
Therefore, a node for intervertebral disc compressive
strength was added. The distribution of compressive strength
was assumed to be normally distributed. The mean (5448N)
and standard deviation (2366N) values were taken from
reports of cadaver testing [37]. A disc prolapse Boolean
variable node was added that took on a true value if and only
if the compression force exceeded the disc compressive
strength. For the numerical example analyzed to illustrate
the method, separate simulations were performed for three
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Figure 1: Bayesian network implementation of a two-dimensional top-down lifting model described by Chaffin et al. [29] (pp. 130–134). The
“basic model” is the DAG outside the dashed rectangle at the bottom; the “injury-augmented model” is the entire DAG including the two
nodes and edges inside the dashed rectangle at the bottom. Input variables are represented as gray nodes (mass in hands, elbow angle,
shoulder angle, torso angle, knee angle, and ankle angle). The angles are defined relative to the horizontal. Intermediate angles T (torso
angle from vertical) and K (included knee angle) are computed from input angles to reduce the complexity of the expression in β, which
was the deviation of the disc angle from 40°. This was done to facilitate computation. Joint reaction forces and moments are calculated for
the elbow, shoulder, and L5/S1 levels because it is a top-down modeling approach. The line of action of the erector spinae muscle is
assumed to be perpendicular to the L5/S1 disc, so there is no directed edge from erector spinae force to L5/S1 shear force. The erector
spinae moment arm is treated as a constant (5.3 cm) and has its own node. The variables to be predicted in this model are the L5/S1
compression force and L5/S1 shear force, and they are denoted as blue nodes. The injury-augmented model was created by adding the
nodes contained in the dashed rectangle (disc injury and disc compression strength); these implement the inference model of disc
failure based on structural reliability modeling. Because the disc injury node was an input in the injury-augmented model, its node
is shaded gray.
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injury conditions: (1) no disc injury evidence entered, (2)
disc injury Boolean variable set to false, and (3) disc injury
Boolean variable set to true. The model also included
modeling postures and hand loads as random variables
as described above.

3. Results

The deterministic model implemented as a Bayesian network
produced L5/S1 compression force estimates that were
within 1.4N (0.04%) of the MATLAB implementation
predictions (Table 2). Similarly, both deterministic model
versions produced the same L5/S1 shear force estimate. This
demonstrates verification of the deterministic implementa-
tion. The Bayesian network basic model in which the joint
angles were modeled as random variables produced greater
average L5/S1 compression force than the MATLAB imple-
mentation. However, the difference in means was only
28.5N (0.8%). When hand load was simulated as a random
variable, the difference in means was only 3.8N (0.1%). For
the random posture case, the 25th percentile, median, and
75th percentile of the compression force distribution were
within 290.2N (4.5%), 1.6N (0.05%), and 261.9N (7.0%) of
the MATLAB code Monte Carlo implementation results.

The injury-augmented model’s predicted L5/S1 compres-
sion force changed as evidence was entered at the injury node.
When evidence of no injury (disc injury= false) was entered
at the injury node, the mean compression force was
3190.2N (SD 789.3). However, when evidence of injury (disc
injury= true) was entered, the predicted mean compression
force increased to 3660.9N (SD 820.0). This was an increase
of 470.7N (14.7%). Moreover, the injury evidence shifted the
entire distribution. The 25th percentile value went from
2664.1N to 3095.9N when disc injury was changed from
false to true; the 75th percentile similarly increased from
3690.1N to 4180.1N going from false to true. Predicted
mean L5/S1 shear force also changed from 673.1N (SD
108.9) to 715.7N (SD 111.0) when disc injury was changed
from false to true.

4. Discussion

This project demonstrated the ability of implementing a bio-
mechanical force prediction as a Bayesian network. The error
between mean L5/S1 compression force estimates was small
(<1%), and it was lower when modeling hand load as a ran-
dom variable than when modeling joint angles as random
variables. While Bayesian networks have had limited use in

biomechanical data analysis, they have not been used to
implement whole-body biomechanical models.

A Bayesian network is a directed acyclic graph (DAG)
whose nodes encode conditional probability statements
and edges reflect conditional independence assumptions.
Directed edges can be thought of as indicating causal rela-
tionships [38]. Directed paths in the DAG can also represent
causal structures. In the first model developed (Figure 1), a
DAG is constructed so that directed paths go from input var-
iables (mass in hands, elbow angle, etc.) and internal struc-
tural variables (erector spinae moment arm, L5/S1 disc
angle, etc.) to low back kinetic variables (L5/S1 shear force
and L5/S1 compression force). This “basic model,” which
merely implements the standard model of Chaffin, is the
DAG shown outside of the dashed rectangle in Figure 1. Cal-
culations on this network are straightforward and do not
require Bayes’ theorem. However, the full power of a Bayes-
ian network is apparent when Bayes’ theorem is used to cal-
culate probabilities backwards along directed paths. The
injury-augmented model (entire network in Figure 1) does
this. Moreover, the injury-augmented model uses both the
input data required for the basic model (Figure 1) and disc
prolapse status (disc injury node in Figure 1 denoting the
Boolean variable describing whether the person being ana-
lyzed has a prolapsed disc or not). The difference was
14.7%, which demonstrates the impact incorporating disc
injury status can have on spinal compression force estimates.

Another interesting feature of calculations performed on
a Bayesian network is how the disc injury variable affects L5/
S1 shear force. Note that the disc injury node is a descendant
of the L5/S1 shear force node, yet changing disc injury from
false to true increases the mean L5/S1 shear force from
673.1N to 715.7N. If it is a descendant, how can it affect
L5/S1 shear force? It is because there is—in terminology from
graphical causal modeling—a “trek” from disc injury to
L5/S1 shear force that does not contain a collider node
[39]. Changing the value of disc injury from false to true
affects L5/S1 reaction force through L5/S1 compression force
because of Bayes’ theorem. In turn, L5/S1 reaction force
affects L5/S1 shear force. A similar effect could occur via the
L5/S1 disc angle node.

Existing stochastic simulation methods are forward
methods that propagate probability from distributions of
input parameters to distributions of outputs. Previously,
Monte Carlo simulation has been the most common tool
for introducing probabilistic elements into deterministic bio-
mechanical models [1–4, 7, 8, 13, 14, 40]. While intuitively
easy to implement, Monte Carlo techniques are computa-
tionally intensive. Laz et al. [14] introduced the use of the
advanced mean value theorem approach to probabilistic sim-
ulation in biomechanics. Markov chain models have also
been used for stochastic modeling of soft-tissue failure [12].
In Bayesian network parlance, all of these methods place
the input variables on nodes that are ancestors of the variable
to be predicted. Variables that are graph-theoretic descen-
dants of the predicted variable cannot influence the predic-
tions. This makes it impossible to include injury status into
the calculation of spinal compression and shear forces using
existing probabilistic methods.

Table 1: Model input posture parameters.

Joint
Angle from horizontal

(degrees)
Standard deviation

(degrees)

Ankle 82 9.4

Knee 114 9.4

Torso 40 6.3

Shoulder 192 7.9

Elbow −56 11.8
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The most significant limitation of the Bayesian net-
work implementation of the model was the difficulty in
predicting the tails of the spinal compression force distri-
bution. Specifically, there was a difference of 7% for the
75th percentile. An additional limitation was that the
Bayesian network produced a better estimate of the mean
compression force when the hand load was modeled as a
random variable than when the joint angles were random.
This is because the effect of joint angles on spinal com-
pression force is nonlinear.

Comparisons of these results to other Bayesian network
models in biomechanics are difficult because so few applica-
tions of Bayesian networks exist in biomechanics. Van Gestel
et al. [41] and Lo et al. [42] used a Bayesian network for gait
classification, but neither used the Bayesian network to
implement a biomechanical model. Ma et al. [43] used a
Bayesian network to analyze spinal kinematics in patients
having low bone mineral density. Again, no biomechanical
model was used. Bayesian networks have also been used in
the analysis of clinical data related to degenerative disease
of the lumbar spine. Takenaka and Aono [44] used a Bayes-
ian network to develop a classifier for lower extremity muscle
strength for patients presenting with drop foot following
lumbar spinal decompression surgery.

A different comparison to existing literature can be
made by noting the similarity to work done in the struc-
tural reliability area. The model developed here considers
disc prolapse to occur when the applied load exceeds the
compressive strength of the intervertebral disc to withstand
load [36]. In this context, the current model can be viewed
as using a stochastic biomechanical model to predict the load
and cadaver testing to provide strength data. Thus, there is a
conceptual connection to work implementing interference
models in structural reliability models using Bayesian net-
works [45]. Donnell et al. [12] have also used the interference
model of structural failure in biomechanics, although not
implemented as a Bayesian network.

This model takes a simplistic view of spinal injury
mechanics to highlight the Bayesian network modeling tech-
nique; future work should include subtle factors. The disc
compression limit came from a study [37] that tested spinal
motion segments in mild flexion, matching the lifting posture
simulated. However, it used a single load to failure test para-
digm, where other authors argue that cyclic loading is a very
important factor in intervertebral disc failure [46, 47]. The
current model also only considered compression in disc
injury; the effects of shear should also be investigated [48].

In conclusion, this is a novel contribution to low back
modeling because heretofore, biomechanical models pre-
dicted spinal compression force from posture and hand load
without consideration of disc injury status. It is Bayes’ theo-
rem that allows for disc injury, which is a graph-theoretic
descendant of L5/S1 compression force on the causal directed
path, to influence the estimate of L5/S1 compression force.
This innovation may be useful in areas such as litigation,
for example, where the analysis is being done to estimate
whether compression force exceeds a recommended thresh-
old for a specific person who has experienced a prolapsed
intervertebral disc.
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