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Spatial distribution of citizen 
science casuistic observations for 
different taxonomic groups
Patrícia Tiago1,2, Ana Ceia-Hasse2,3, Tiago A. Marques   4,5, César Capinha6 & Henrique M. 
Pereira   2,3,7

Opportunistic citizen science databases are becoming an important way of gathering information on 
species distributions. These data are temporally and spatially dispersed and could have limitations 
regarding biases in the distribution of the observations in space and/or time. In this work, we test the 
influence of landscape variables in the distribution of citizen science observations for eight taxonomic 
groups. We use data collected through a Portuguese citizen science database (biodiversity4all.org). 
We use a zero-inflated negative binomial regression to model the distribution of observations as a 
function of a set of variables representing the landscape features plausibly influencing the spatial 
distribution of the records. Results suggest that the density of paths is the most important variable, 
having a statistically significant positive relationship with number of observations for seven of the eight 
taxa considered. Wetland coverage was also identified as having a significant, positive relationship, 
for birds, amphibians and reptiles, and mammals. Our results highlight that the distribution of species 
observations, in citizen science projects, is spatially biased. Higher frequency of observations is driven 
largely by accessibility and by the presence of water bodies. We conclude that efforts are required to 
increase the spatial evenness of sampling effort from volunteers.

Citizen science has become a relevant tool for collecting species data1. Observations gathered by a large number 
of volunteers, over broad spatial extents and temporal periods often provide a large number of records2, allowing 
studies that would otherwise be unfeasible. The increment of species data from citizen science initiatives in recent 
years, seems to be particularly important for taxonomic groups that were less usually targeted in traditional citi-
zen science projects, which were directed to species groups more conspicuous and easier to identify. Groups such 
as invertebrates or aquatic organisms were traditionally less targeted, and have benefitted in recent years.

Emerging technologies are also changing the type of volunteers that get involved with scientific projects3. 
Web 2.0, characterized by greater user interactivity and collaboration, more pervasive network connectivity and 
enhanced communication channels, permits easy overcrossing of social, cultural, economic, and political bound-
aries, and, also the integration of local/traditional knowledge in these projects4. The possibility of collecting, 
through mobile applications with internet connections, georeferenced observations of the natural world (e.g., 
wildlife sightings) via interactive geovisualization interfaces (e.g., Google Maps, Google Earth, and Microsoft 
Virtual Earth) or the use of sensors in the mobile devices allowing to collect data from the environment like air 
quality or noise.

The data collected can have different applications, such as creating species distribution maps (e.g.5) or identi-
fying a biological invasion (e.g.6,7). The identification of spatial biases in the sampling provided by citizen science 
projects is fundamental to interpret the outcomes obtained. Only taking these biases into consideration, such as 
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the existence of under-sampled regions, we can turn the results found useful for supporting the adoption of con-
servation measures by decision makers8,9.

Understanding where volunteers of biodiversity recording are collecting their observations is fundamental for 
a sensible use of the data collected. These volunteers do not select their survey locations randomly, but most likely 
as a combined influence of a number of factors10 such as accessibility11, proximity to urban centres, topographic 
variation, time of the year, species richness8,12 or other geographical or physical characteristic. Therefore, these 
databases may incorporate an important spatial bias, with some areas almost not being surveyed, while others 
corresponding to “hotspots” of observations13,14.

Another potential source of bias is the taxonomic group being recorded. Observations tend to focus on certain 
groups, generally those that are more easily detected and identified, such as birds or butterflies, or even certain 
species within a group. Moreover, volunteers may not record all the species they observe either because they are 
not able to identify them, due to lack of taxonomic expertise15, or because they aim to register only those that are 
rare, without an interest in recording species that are common16,17.

These data also have the limitation of being presence-only. In such cases, the non-recording of a species in a 
certain location by volunteers may correspond to the true absence of the species, to the inability of the volunteer 
to observe it or, to the overall absence of recording efforts10.

In this work, we explore the relationship between physical and geographical variables such as land cover, 
road or path density, human population and altitude, and the distribution of species observations of different 
taxonomic groups, as recorded by volunteers. We use records from the BioDiversity4All database (www.biodi-
versity4all.org), a country-wide citizen science project in Portugal. We aim to understand how observations are 
distributed across the country, which factors drive their distribution, and what type of relationship (e.g. negative 
or positive) the different variables form with the distribution of observations for the different taxonomic groups.

Materials and Methods
Species and volunteer data.  We used opportunistic species observations data retrieved from the 
BioDiversity4All web portal (http://www.biodiversity4all.org/), a Portuguese citizen science project connected to 
an international project based in the Netherlands, Waarneming international (http://www.observado.org/), and 
which is similar to citizen science biodiversity databases elsewhere such as iNaturalist (http://www.inaturalist.
org/) or iSpot (http://www.ispot.org/). BioDiversity4All started in 2010 but volunteers could add historical data 
so there is information referring to previous years. We only used species occurrences that provided GPS derived 
geographical coordinates, - ranging from 1982 until August 2016. We gathered the species observation records 
by their taxonomic group. In total, we considered data for 8 taxonomic groups: (1) plants, (2) mushrooms, (3) 
birds, (4) amphibians and reptiles, (5) mammals, (6) butterflies, (7) moths, and (8) other insects. For each of these 
groups we summed the number of species observations made in each 5 × 5 km grid cell. We only considered 
records for mainland Portugal, due to the inability of obtaining data for some of the predictive variables (below) 
for insular regions. We also collected the number of volunteers and the number of observations that each regis-
tered in the website.

Geographic data.  We identified a total of eight spatially explicit variables that had a potential to explain 
variation in the distribution of species observations: percentage of cover by artificial areas, percentage of cover by 
agriculture and agro-foresty areas, percentage of cover by forest and natural and semi-natural areas, percentage of 
cover by wetland areas (all sourced by18), road density (paved roads; km/km2), paths and footpaths density (i.e., 
paths open to non -motorized vehicles, and paths used mainly or exclusively by pedestrians; km/km2) (sourced 
by19), human population density (individuals/km2; log-transformed)20, and altitude (m)21. We selected these geo-
graphical variables because they are presumably relevant in driving the spatial behavior of species observers13–17. 
All variables covered the extent of mainland Portugal, at a 5 km resolution and were processed in QGis22. We 
tested for redundancy among data in the variables by calculating pairwise Pearson correlation.

Figure 1.  Number of citizen science observations registered in BioDiversity4All from May 1982 until August 
2016 (y-axis) for each of the eight taxonomic groups analyzed (x-axis).

http://www.biodiversity4all.org
http://www.biodiversity4all.org
http://www.biodiversity4all.org/
http://www.observado.org/
http://www.inaturalist.org/
http://www.inaturalist.org/
http://www.ispot.org/
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Statistical analyses.  Given the large number of grid cells without species observations, we used a 
zero-inflated negative binomial regression (ZINB) to identify the variables that were related to the spatial distri-
bution of the observations. ZINB are a default choice to deal with overdispersed counts, and in particular under 
situations where there are more zeros than the ‘simple’ negative binomial model might reasonably cope with 
(e.g.23). The ZINB models were implemented in R24 using the package pscl25,26. We tested for the significance and 
type of relationship of the explanatory factors and the counts of species observations in each grid cell for each 
taxonomic group, and also for all groups combined. We have not accounted explicitly for spatial autocorrelation 
in our models27.

Figure 2.  Explanatory variables tested for spatial association with the distribution of citizen science 
observations in mainland Portugal (FOR – percentage of cover of forest and natural and semi-natural 
territories, WET – percentage of cover of wetland territories, ROADS – density of roads, PATH – density of 
paths and footpaths, POP_LOG – logarithm of human population density, ALT – altitude). Figure created 
with QGis. 2014. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. 
http://www.qgis.org/en/site/.

http://www.qgis.org/en/site/
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Results
We adopted a spatial grid system where mainland Portugal comprises a total of 3 816 grid cells. The data compiled 
from Biodiversity4All included a total of 368 030 species observation records, from 1982 to 2016. Birds were the 
taxonomic group having the highest number of records, with a total of 180 911 records, followed by plants with 
159 128 records. Mushrooms were the least recorded group having only 1 175 records (Fig. 1). The classes of 
explanatory variables for Portugal used in the analysis after being tested for redundancy are presented in Fig. 2. 
The mean number of records per grid cell is 88, and 1 030 cells have no observations (about 28% of the total area 
of mainland Portugal). The distribution of the number of records per grid cell for the different taxonomic groups, 
and for all groups combined, is shown in Figs. 3 and 4.

A temporal analysis of the data, for complete years (from 2010 to 2015), shows that April has the highest num-
ber of observations (34 497), followed by May (30 981) and by March (23 001) (Fig. 5).

The total number of volunteers in BioDiversity4All, for the period considered, is 1 398. The number of volun-
teers with highest and lowest number of observations registered is shown in Fig. 6. The group of volunteers with 1 
to 10 observations is the largest one with 639 people and only five volunteers recorded >10 000 observations. The 
number of volunteers responsible for 50% of the observations is 4 while 175 volunteers are responsible for 90% of 
the total amount of observations (Fig. 7).

We tested the correlation between the selected explanatory variables and excluded those that were highly 
correlated. In all cases, we kept the variables that we considered to provide a clearer link with causal mechanisms 
driving the behavior of observers. Hence, we excluded the percentage of cover by artificial areas, which was highly 
correlated with road density (Pearson correlation coefficient = 0.80, P < 0.05) and with logarithm of human pop-
ulation density (Pearson correlation coefficient = 0.71, P < 0.05). We also excluded the percentage of cover by 
agriculture or agro-foresty territories, which was highly negatively correlated with percentage of cover of forest 
and natural and semi-natural territories (Pearson correlation coefficient = −0.89, P < 0.05) (Table 1).

Based on ZINB models we found that different explanatory variables relate to the distribution patterns of the 
observations for the different taxonomic groups (Table 2). Path density was the variable that most consistently 
explained the variation in the distribution of observations, being deemed as having a significant positive association 
in the models of 7 out of the 8 taxonomic groups considered (plants, birds, amphibians and reptiles, mammals, 
butterflies, moths, and other insects), as well as in the model for all the observations combined. The percentage 
of cover by forest and natural and semi-natural areas had a statistically significant positive relationship for plants, 
mushrooms, amphibians and reptiles, butterflies and other insects, as well as for the total number of observations. 
This was the second most important variable in the analysis. The logarithm of population density also showed a pos-
itive, statistically significant, relationship for plants, mushrooms, birds, other insects and the total observations. The 

Figure 3.  Location of the study area within Europe and total number of observations in mainland Portugal 
per grid cell. Figure created with QGis. 2014. Quantum GIS Geographic Information System. Open Source 
Geospatial Foundation Project. http://www.qgis.org/en/site/.

http://www.qgis.org/en/site/
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percentage cover of wetland territories had a significant, positive relationship, for birds, and reptiles and amphibians. 
Finally, altitude had a statistically significant, negative relationship, with number of bird observations.

Discussion
We quantified spatial recording of species observations, for 8 individual taxonomic groups and pooled across these, 
across mainland Portugal, and related these quantities to eight geographic variables likely to explain spatial variation 
in the number of observations. The interpretation of the results assumes that patterns found are mostly driven by 

Figure 4.  Number of citizen science species observations in mainland Portugal per grid cell, for each of the 
eight taxonomic groups analyzed. Figure created with QGis. 2014. Quantum GIS Geographic Information 
System. Open Source Geospatial Foundation Project. http://www.qgis.org/en/site/.

Figure 5.  Total number of citizen science species observations (y-axis) made in each month from 2010 to 2015 
(x-axis).

http://www.qgis.org/en/site/
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changes in observer effort, either in space or across taxa, not by real differences in abundance/occurrence patterns 
for the taxa considered. This is a reasonable assumption provided the probability of detecting a given taxa in a given 
sampling unit is independent of the taxa abundance on that sampling unit. In other words, that all taxa considered 
and present in any given place would be detected by an observer. This seems reasonable at the coarse taxonomic level 
that the observations are made, which means that patterns found are either due to taxonomic differences (e.g. some 
observers prefer some taxa) or sampling differences (some areas are preferred by observers).

Figure 6.  Number of volunteers (y-axis) grouped by level of species observations provided (x-axis).

Figure 7.  Cumulative number of species observations (y-axis) and the number of volunteers providing these 
observations (x-axis).

Explanatory 
variables ART FOR AGR WET ROADS PATH POP_LOG ALT

ART 1.00

FOR −0.20 1.00

AGR −0.15 −0.89 1.00

WET 0.07 −0.13 −0.07 1.00

ROADS 0.80 −0.10 −0.15 −0.00 1.00

PATH 0.46 0.02 −0.20 0.03 0.40 1.00

POP_LOG 0.71 −0.09 −0.17 0.14 0.68 0.27 1.00

ALT −0.26 0.37 −0.23 −0.14 −0.13 −0.11 −0.16 1.00

Table 1.  Pearson correlation coefficients between the different explanatory variables: ART - percentage of 
cover of artificial areas, FOR – percentage of cover of forest and natural and semi-natural territories, AGR - 
percentage of cover of agriculture and agro-foresty areas, WET – percentage of cover of wetland territories, 
ROADS – density of roads, PATH – density of paths and footpaths, POP_LOG – logarithm of human 
population density, ALT – altitude.
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While we have not modelled explicitly spatial auto-correlation, we do not expect results presented to be sen-
sitive to that choice. We therefore decided for this simple approach for the sake of pragmatism, avoiding the 
perhaps more elegant but necessarily more complex modelling approach, running the risk of obscuring the paper 
main messages.

A general characterization of our data shows that the distribution of records has a strong spatial bias, with 
areas of the country being highly covered while others having no observations, and that a limited number of 
volunteers are responsible for the majority of observations. The results also show strong seasonal patterns. This is 
not unexpected, since opportunistic citizen science databases are described as spatially and temporally biased13,14. 
The scarce number of volunteers responsible for a large proportion of the observations may be the main reason 
for this. In the case of this study, the reduced number of volunteers is also due to the lack of citizen science tradi-
tion in Portugal, leading to greater spatial data bias. It is also important to note that, for some specific taxonomic 
groups with different life histories, there are periods of the year when the groups/species can be observed and 
others when they cannot, or are more difficult to, such as hibernating reptiles, migratory species, and plants with 
different flowering periods.

Considering the variables that were identified to better explain the number of observations made, most of 
them indicate a positive effect of the accessibility of the survey area, such as altitude, density of roads (accessibility 
to a site - only found to be important for butterflies), or density of paths (accessibility within a site). Accessibility 
was already found to be important in determining where volunteers record observations28,29. Previous stud-
ies examining the spatial patterns of observations found strong roadside biases within woody plant records30, 
and have also showed that patterns differ between different taxonomic groups, such as between butterflies and 
mammals29.

Despite the variation between groups identified in the literature, we could identify some patterns across taxa. 
Path density showed a significant association with seven out of the eight taxonomic groups considered. In con-
trast with other studies10, density of paths explained more variation than the density of roads in taxa distribution 

Taxonomic 
Group Model Summary

Variables

FOR WET ROADS PATH POP_LOG ALT Intercept

Total (all 
groups)

Model Coeficient 0.01 0.13 0.07 0.86 0.51 −4.05e-4 2.99

Std Error 1.41e-3 0.02 0.08 0.12 0.08 1.80e-4 0.12

Pr (>|z|) 2.62e-05*** 1.71e-10*** 0.41 4.70e-12*** 3.42e-10*** 0.02*  < 2e-16***

Plants

Model Coeficient 1.16e-2 4.50e-02 1.07e-01 5.49e-01 4.84e-01 −5.87e-05 2.00e + 00

Std Error 2.22e-03 2.76e-02 1.23e-01 1.72e-01 1.25e-01 2.76e-04 1.85e-01

Pr (>|z|) 1.76e-07*** 0.10 0.38 1.41e-03** 1.11e-04*** 0.83  < 2e-16***

Mushrooms

Model Coeficient 0.03 −0.12 −0.17 0.17 1.73 8.53e-04 −5.94

Std Error 0.01 0.07 0.24 0.42 0.26 5.64e-04 0.40

Pr (>|z|) 8.55e-09*** 0.12 0.47 0.69 5.30e-11*** 0.13  < 2e-16***

Birds

Model Coeficient 6.9e-04 0.17 0.13 1.30 0.34 −1.76e-03 2.69

Std Error 1.61e-03 0.02 0.10 0.17 0.09 2.05e-04 0.14

Pr (>|z|) 0.67 1.84e-11*** 0.16 3.49e-15*** 2.56e-04***  < 2e-16***  < 2e-16***

Amphibians 
and Reptiles

Model Coeficient 0.02 0.13 0.25 0.79 0.22 5.08e-04 −2.21

Std Error 2.66e-03 0.03 0.14 0.21 0.14 3.46e-04 0.23

Pr (>|z|) 5.00e-14*** 1.14e-4*** 0.06 0.40e-4*** 0.11 0.14  < 2e-16***

Mammals

Model Coeficient −2.12e-03 0.03 0.09 1.04 −0.13 9.86e-04 −0.40

Std Error 2.23e-03 0.02 0.13 0.22 0.14 3.40e-04 0.12

Pr (>|z|) 0.34 0.20 0.50 2.64e-06*** 0.37 3.77e-03** 0.05*

Butterflies

Model Coeficient 0.01 0.08 0.43 1.31 0.06 1.71e-3 1.30

Std Error 2.99e-03 0.03 0.17 0.29 0.16 3.77e-4 0.26

Pr (>|z|) 6.02e-04*** 0.02* 0.01** 4.97e-06*** 0.70 3.77e-04 4.80e-07***

Moths

Model Coeficient 0.01 0.06 −0.20 2.84 0.02 1.50e-03 −1.97

Std Error 0.01 0.06 0.32 0.66 0.32 6.79 0.40

Pr (>|z|) 0.16 0.33 0.53 1.75e-05*** 0.95 0.02* 6.61e-07***

Other Insects

Model Coeficient 0.02 0.01 −0.06 1.44 0.75 1.53e-04 1.40

Std Error 2.81e-03 0.02 0.16 0.29 0.15 3.39e-04 0.20

Pr (>|z|) 1.99e-08*** 0.55 0.69 9.15e-07*** 4.63e-07*** 0.65 8.18e-13***

Table 2.  Zero Inflated Negative Binomial Model (ZINB) relating the number of observations in each 5 × 5 km 
grid cells of Portugal (for total amount of observations and for each of the different taxonomic groups: plants, 
mushrooms, birds, amphibians and reptiles, mammals, butterflies, moths and other insects) and a set of 
variables (FOR – percentage of cover of forest and natural and semi-natural territories, WET – percentage of 
cover of wetland territories, ROADS – density of roads, PATH – density of paths and footpaths, POP_LOG 
– logarithm of human population density, ALT – altitude) (Level of significance *P < 0.05, **P < 0.01, 
***P < 0.001).
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records. Possibly these places also represent locations that people know will provide good outdoor walks and 
where it is easier to observe and identify species. While walking, volunteers have a higher availability to identify 
species and that is particularly important, for instance, for insects or plants that require a more detailed level of 
observation.

When considering the total number of observations, the group of birds and the group of amphibians and 
reptiles, the percentage of wetland areas also drives the frequency of observations. This can be explained by one 
or several different factors such as a higher attractiveness of these areas for the observers of a specific group (e.g., 
several birdwatchers go to wetland areas to observe birds, as these are ornithological-rich areas31), or by physio-
logical characteristics of these groups, highly dependent of this type of habitat32.

It seems clear that analyzing patterns in volunteers’ distribution of observations is fundamental for planning 
different surveys that could help increase the data quality of these databases, and a better scientific use of the 
available information. Developing methods that evaluate and account for bias derived from different observation 
efforts (e.g.12) is a promising research topic and a good opportunity for collaboration between statisticians and 
conservation scientists, promoting the development of novel statistical approaches and survey designs33. In the 
absence of such approaches, at the very least the interpretation of such data must be made while considering the 
influence of the potential sources of bias. We note that the potential bias may be taxa specific, and its influence 
might change depending on the specific inferences being derived from the data. To conclude, with this work, we 
show that efforts are required to increase the spatial evenness of sampling effort in citizen science projects. That 
could be addressed with the use of additional incentive mechanisms or gamification baselines in order to increase 
sampling effort in some regions or for some taxonomic groups34.
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