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Mechanical on-chip microwave circulator
S. Barzanjeh1, M. Wulf1, M. Peruzzo1, M. Kalaee2,3, P.B. Dieterle2,3, O. Painter2,3 & J.M. Fink 1

Nonreciprocal circuit elements form an integral part of modern measurement and commu-

nication systems. Mathematically they require breaking of time-reversal symmetry, typically

achieved using magnetic materials and more recently using the quantum Hall effect, para-

metric permittivity modulation or Josephson nonlinearities. Here we demonstrate an on-chip

magnetic-free circulator based on reservoir-engineered electromechanic interactions.

Directional circulation is achieved with controlled phase-sensitive interference of six distinct

electro-mechanical signal conversion paths. The presented circulator is compact, its silicon-

on-insulator platform is compatible with both superconducting qubits and silicon photonics,

and its noise performance is close to the quantum limit. With a high dynamic range, a tunable

bandwidth of up to 30MHz and an in situ reconfigurability as beam splitter or wavelength

converter, it could pave the way for superconducting qubit processors with multiplexed on-

chip signal processing and readout.
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Nonreciprocal devices are quintessential tools to suppress
spurious modes, interferences and unwanted signal
paths1. More generally, circulators can be used to realize

chiral networks2 in systems where directional matter-light
coupling is not easily accessible. In circuit quantum electro-
dynamics3 circulators are used for single-port coupling or as
isolators to protect the vulnerable cavity and qubit states from
electromagnetic noise and strong parametric amplifier drive
tones. State-of-the-art passive microwave circulators are based on
magneto-optic effects that require sizable magnetic fields4,5,
incompatible with ultra-low loss superconducting circuits. Due to
the design principle their size is at least on the order of the
wavelength and during manufacturing they need to be tuned and
optimized one by one. Commercial circulators can therefore not
be integrated on-chip causing additional losses and forming a
major roadblock towards a fully integrated quantum processor
based on superconducting qubits.

Many recent theoretical and experimental efforts have been
devoted to overcome these limitations both in the optical6–8 and
microwave regimes9–18. In parallel, the rapidly growing field
of optomechanical and electromechanical systems has shown
promising potential for applications in quantum information

processing and communication, in particular for microwave
to optical conversion19,20 and amplification21. Very recently,
several theoretical proposals22–24 have pointed out that reservoir-
engineered optomechanical systems25 can lead to nonreciprocity
and first isolators have just been demonstrated in the optical
domain26–28.

Here we present an on-chip microwave circulator using a
frequency tuneable silicon-on-insulator electromechanical sys-
tem29 that is compatible with superconducting qubits30. The
device can be reconfigured in situ as a filter, splitter, mixer, iso-
lator or circulator. For the first mechanically mediated microwave
circulator, we achieve an isolation of up to 24–38 dB, compared to
total losses of 4.7–8.5 dB and at most 4–7 added noise quanta
over an instantaneous bandwidth of 630 Hz.

Results
Device characterization and tunability. The main elements of
the microchip circulator device are shown in Fig. 1a, b. The
circuit comprises three high-impedance spiral inductors (Li)
capacitively coupled to the in-plane vibrational modes of a
dielectric nanostring mechanical resonator. The nanostring
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Fig. 1 Microchip circulator and tunability. a Scanning electron micrograph of the electromechanical device including three microwave resonators, two
physical ports labelled 1 and 2, one voltage bias input (Vdc) on the top left. The inset shows the spiral inductor cross-overs in the green dashed boxed area.
The total device area is 0.3 mm by 0.45mm. Scale bar (yellow) corresponds to 100 μm. b Enlarged view of the silicon nanostring mechanical oscillator with
four vacuum-gap capacitors coupled to the three coil inductors and one voltage bias input. Insets show details of the nanobeam as indicated by the dashed
and dotted rectangles. Scale bar (yellow) corresponds to 10 μm. c Electrode design and electrical circuit diagram of the device. The input modes ai,in couple
inductively to the microwave resonators with inductances Li, coil capacitances Ci, additional stray capacitances Cs,i and the motional capacitances Cm,i. The
reflected tones ai,out pass through a separate chain of amplifiers each, and are measured at room temperature using a phase-locked spectrum analyzer (not
shown). The simulated displacement of the lowest frequency in-plane flexural modes of the nanostring are shown in the two insets. Colour indicates
relative displacement. d Resonator reflection measurement of the three microwave resonators of an identical device, as a function of the applied bias
voltage and a fit (dashed lines) to Δω= α1V2 + α2V4 with the tunabilties α1/2π= 0.53MHz/V2 and α2/2π= 0.05MHz/V4 with a total tunable bandwidth
of 30MHz for resonator 2 at 9.8 GHz
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oscillator consists of two thin silicon beams that are connected by
two symmetric tethers and fabricated from a high resistivity
silicon-on-insulator device layer29. Four aluminium electrodes are
aligned and evaporated on top of the two nanostrings, forming
one half of the vacuum gap capacitors that are coupled to three
microwave resonators and one DC voltage bias line as shown
schematically in Fig. 1c (see Supplementary Tables 1 and 2 for
details). The device is mounted on the mixing chamber plate of a
cryogen-free dilution refrigerator at a temperature of Tf= 10 mK
and all incoming lines are strongly filtered and attenuated to
suppress Johnson and phase noises.

The voltage bias line can be used to generate an attractive force
that pulls the nanobeam and tunes the operating point
frequencies of the device31. Figure 1d shows the measured
resonance frequency change as a function of the applied bias
voltage Vdc. As expected, resonators 1 and 3 are tuned to higher
frequency due to an increased vacuum gap, whereas resonator 2 is
tuned to lower frequency. At a large tunable bandwidth of up to
30MHz, as obtained for resonator 2, the ability to excite the
motion directly and to modulate the electromechanical coupling
in situ represents an important step towards new optomechanical
experiments and more practicable on-chip reciprocal and
nonreciprocal devices.

As a first step, we carefully calibrate and characterize the
individual electromechanical couplings and noise properties,
similar to ref. 32. The measured thermalization temperature of
the two mechanical modes are 18 and 25mK and the final
occupancy for the reported device reached as low as 0.6 and 2
quanta for standard motional sideband cooling. We then measure
the bidirectional frequency conversion between two microwave
resonator modes as mediated by one mechanical mode33. The
incoming signal photons can also be distributed to two ports with
varying probability as a function of the parametric drive strength
and in direct analogy to a tunable beam splitter. We present the
relevant sample parameters in Supplementary Tables 1 and 2, the
theoretical analysis in Supplementary Note 2 and experimental
results of this bidirectional frequency conversion process in
Supplementary Fig. 1.

Theoretical model. Directionality is achieved by engaging the
second mechanical mode, a method that was developed in parallel
to this work34,35 for demonstrating nonreciprocity in single-port
electromechanical systems. In fact, creating a parametric coupling
between the two electromagnetic and the two mechanical modes
by four microwave pumps with frequencies slightly detuned from
the lower motional sidebands of the resonances, creates two paths
for exchanging photons, as shown in Fig. 2a. Nonreciprocity
appears when these paths interfere destructively, leading to
breaking the symmetry between the two directions. For a detailed
description, we begin with the theoretical model describing two
microwave cavities with resonance frequencies ωi and total line-
widths κi with i= 1, 2 parametrically coupled to two distinct
modes of a mechanical resonator with resonance frequencies ωm,j

and damping rates γm,j with j= 1, 2. To establish the parametric
coupling, we apply four microwave tones, with frequencies
detuned by δj from the lower motional sidebands of the reso-
nances, as shown in Fig. 2a. In a reference frame rotating at the
frequencies ωi and ωm,j + δj, the linearized Hamiltonian in the
resolved sideband regime (ωm,j� κ1, κ2) is given by (ħ= 1)

H ¼ � P
j¼1;2

δjb
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Fig. 2 Electromechanical isolator. a Mode coupling diagram for
electromechanically induced nonreciprocity. Two microwave cavities (C1 and
C2) are coupled to two mechanical modes (M1 and M2) with the
electromechanical coupling rates Gij (where i, j= 1, 2), inducing two distinct
signal conversion paths. Power spectral density (PSD) of the two microwave
cavities and arrows indicating the frequency of the four microwave pump
tones slightly detuned by δi from the lower motional sidebands of the
resonances. All four pumps are phase-locked while the signal tone is applied.
Only one of the microwave source phases is varied to find the optimal
interference condition for directional transmission between ports 1 and 2.
b Measured power transmission (dots) in forward |S21|2 (cavity 1 → cavity 2)
and backward directions |S12|2 (cavity 2 → cavity 1) as a function of probe
detuning for two different phases ϕ=±102.6º. The solid lines show the
results of the coupled-mode theory model discussed in the text. Grey shaded
areas denote cavity loss and green shaded areas insertion loss. c Experimental
data and theoretical model of measured transmission coefficients |S12|2 and |
S21|2 as a function of signal detuning and pump phase ϕ. Dashed lines indicate
the line plots for the two phases ϕ=±102.6º as shown in b
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where ai(bj) is the annihilation operator for the cavity i
(mechanics j), Gij ¼ g0;ij

ffiffiffiffiffi
nij

p
and g0ij are the effective and vacuum

electromechanical coupling rates between the mechanical mode j
and cavity i, respectively, while nij is the total number of photons
inside the cavity i due to the drive with detuning Δij, and ϕij is
the relative phase set by drives. Here, Δ11=Δ21=ωm,1 + δ1 and
Δ22=Δ12=ωm,2 + δ2 are the detunings of the drive tones with
respect to the cavities and Hoff describes the time-dependent
coupling of the mechanical modes to the cavity fields due to the
off-resonant drive tones. These additional coupling terms create
cross-damping36 and renormalize the mechanical modes, and can
only be neglected in the weak coupling regime for
Gij; κj � ωm;j; ωm;2 � ωm;1

�� ��.
To see how the nonreciprocity arises, we use the quantum

Langevin equations of motion along with the input–output
theorem to express the scattering matrix Sij of the system
described by the Hamiltonian (1), and relating the input photons
ain,i(ωi) at port i to the output photons aout,j(ωj) at port j via
aout;i ¼

P
j¼1;2 Sijain;i with i= 1, 2. The dynamics of the four-

mode system described by Hamiltonian (1) is fully captured by a
set of linear equations of motion as verified in Supplementary
Notes 3–6. Solving these equations in the frequency domain,
using the input–output relations, and setting ϕ22= ϕ, ϕ11= ϕ21

= ϕ12= 0, the ratio of backward to forward transmission reads

λ :¼ S12ðωÞ
S21ðωÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C21

p
Σm;2ðωÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C12C22

p
Σm;1ðωÞeiϕffiffiffiffiffiffiffiffiffiffiffiffiffi

C11C21
p

Σm;2ðωÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C12C22

p
Σm;1ðωÞe�iϕ

: ð2Þ

Here, Σm,j= 1 + 2i[(−1)jδ −ω]/γm,j is the inverse of the mechan-
ical susceptibility divided by the mechanical linewidth γm,j and
Cij ¼ 4G2

ij=ðκiγm;jÞ is the electromechanical cooperativity. Note
that, in Eq. (2) we assume the device satisfies the impedance-
matching condition on resonance, i.e., Sii(ω= 0)= 0, which can
be achieved in the high-cooperativity limit (Cij � 1).

Inspection of Eq. (2) reveals the crucial role of the relative
phase between the drive tones ϕ and the detuning δ to obtain
nonreciprocal transmission. When the cooperativities for all four
electromechanical couplings are equal (Cij ¼ C) then perfect
isolation, i.e. λ= 0, occurs for

tan½ϕðωÞ� ¼ δ γm;1 þ γm;2

� �þ ω γm;2 � γm;1

� �

γm;1γm;2=2� 2 δ2 � ω2ð Þ : ð3Þ

Equation (3) shows that on resonance (ω= 0) tan[ϕ]/ δ,
highlighting the importance of the detuning δ to obtain
nonreciprocity. Tuning all four drives to the exact red sideband
frequencies (δ= 0) results in bidirectional behaviour (λ= 1). At
the optimum phase ϕ given by Eq. (3), ω= 0, and for two
mechanical modes with identical decay rates (γm,1= γm,2= γ) the
transmission in forward direction is given by

S21 ¼ � ffiffiffiffiffiffiffiffiffi
η1η2

p 4iδ 1� 2iδ=γð Þ
Cγ 1þ 1þ4δ2=γ2

2C
� �2

2
64

3
75 ð4Þ

where η1(2)= κext,1(2)/κ1(2) is the resonator coupling ratio and κi=
κint,i + κext,i is the total damping rate. Here κint,i denotes the
internal loss rate and κext,i the loss rate due to the cavity to
waveguide coupling. Equation (4) shows that the maximum of the
transmission in forward direction, S21j j2 ¼ η1η2 1� ð2CÞ�1� 	

,
occurs when 2C ¼ 1þ 4δ2=γ2 and for large cooperativities
C � 1. These conditions, as implemented in our experiment,
enable the observation of asymmetric frequency conversion with
strong isolation in the backward direction and small insertion loss
in forward direction.

Bidirectional wavelength conversion. For bidirectional
wavelength conversion, higher cooperativity enhances the band-
width, as shown in Supplementary Note 2. In contrast, the-
bandwidth of the nonreciprocal conversion is independent of
cooperativity and set only by the intrinsic mechanical linewidths
γm,i, which can be seen in Eq. (2). This highlights the fact that
the isolation appears when the entire signal energy is dissipated
in the mechanical environment, a lossy bath that can be
engineered effectively25. In the present case it is the off-resonant
coupling between the resonators and the mechanical oscillator
that modifies this bath. The applied drives create an
effective interaction between the mechanical modes, where one
mode acts as a reservoir for the other and vice versa. This changes
both the damping rates and the eigenfrequencies of the
mechanical modes.

It, therefore, increases the instantaneous bandwidth of the
conversion and automatically introduces the needed detuning,
which is fully taken into account in the theory.

Two-port microwave isolator. Using the on-chip electro-
mechanical microwave circuit shown in Fig. 1a, we experimen-
tally realize directional wavelength conversion between two
superconducting coil resonators at (ω1,ω2)/2π= (9.55, 9.82) GHz
coupled to two different physical waveguide ports and measure-
ment lines with (η1, η2)= (0.74, 0.86). Here we use the two
lowest-frequency vibrational in-plane modes of the mechanical
resonator at (ωm,1, ωm,2)/2π= (4.34, 5.64) MHz with intrinsic
damping rates (γm,1, γm,2)/2π= (4, 8) Hz. The vacuum electro-
mechanical coupling strengths for these mode combinations are
(g0,11, g0,12, g0,21, g0,22)/2π= (33, 34, 13, 31) Hz. The microwave
resonators are driven with four coherent microwave sources with
powers (P11, P12, P21, P22)= (−73.3, −68.7, −66.9, −67.4) dBm at
the device inputs that correspond to the single cavity–single
mechanical cooperativities (C11, C12, C21, C22)= (47, 43.8, 41.9,
56.9). Transmission parameters are measured by using a weak
probe signal with a signal power of only −117 dBm at the device
inputs.

Figure 2b shows the measured transmission of the wavelength
conversion in the forward |S21|2 and backward directions |S12|2 as
a function of probe detuning for two different phases as set by
one out of the four phase-locked microwave drives. At ϕ=
−102.6º and over a bandwidth of 518 Hz, we measure high
transmission from cavity 1 to 2 with an insertion loss of 2.4 dB
due to finite input matching and a resonator loss of 1.9 dB due to
finite intrinsic resonator linewidths. In the backward direction,
the transmission is suppressed by up to 40.4 dB. Likewise, at the
positive phase of ϕ= 102.6º the transmission from cavity 1 to 2 is
suppressed while the transmission from cavity 2 to 1 is high. In
both cases, we observe excellent agreement with theory (solid
lines). Figure 2c shows the S parameters for the whole range of
phases ϕ, which are symmetric and bidirectional around ϕ= 0.
We find excellent agreement with theory over the full range of
measured phases with <10% deviation to independently cali-
brated drive photon numbers and without any other free
parameters.

Extension to a microwave circulator. The described two-port
isolator can be extended to an effective three-port device by
parametrically coupling the third microwave resonator capaci-
tively to the dielectric nanostring, as shown in Fig. 1a. The third
resonator at a resonance frequency of ω3/2π= 11.30 GHz is
coupled to the waveguide with η3= 0.52 and to the two in-plane
mechanical modes with (g0,31, g0,32)/2π= (22, 45) Hz. Similar to
the isolator, we establish a parametric coupling between cavity
and mechanical modes using six microwave pumps with
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frequencies slightly detuned from the lower motional sidebands
of the resonances, which for certain pump phase combinations
can operate as a three-port circulator for microwave photons, see
Fig. 3a. The pump powers at the device inputs are (P11, P12, P21,
P22, P31, P32)= (−72.5, −69, −67.5, −68, −69, −70) corresponding

to the single resonator cooperativities (C11, C12, C21, C22, C31,
C32)= (56.5, 40.9, 35, 49.6, 99.2, 49, 6). Using an additional
microwave source as a weak probe signal with a signal power of
only −117 dBm at the device inputs, we measure the power
transmission between all ports and directions as shown in Fig. 3b
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for a single fixed phase of ϕ= −54º, optimized experimentally for
forward circulation.

At this phase, we see high transmission in the forward
direction S21,32,13 with an insertion loss of (3.8, 3.8, 4.4) dB, due to
imperfect input matching, and an isolation in the backward
direction S12,23,31 of up to (18.5, 23, 23) dB over a bandwidth of
628.5 Hz. The full dependence of the circulator scattering
parameters on the drive phase is shown in Fig. 3c, where we
see excellent agreement with theory. The added noise photon
number of the device is found to be (nadd,21, nadd,32, nadd,13)
= (4, 6.5, 3.6) in the forward direction and (nadd,12, nadd,23,
nadd,31)= (4, 4, 5.5) in the backward direction, limited by the
thermal occupation of the mechanical modes and discussed in
more detail in Supplementary Fig. 3.

Discussion
In conclusion, we demonstrated a frequency tunable and in situ
reconfigurable signal processing device that can act as a filter,
wavelength converter, beam splitter, isolator or circulator for
microwave photons. The circulator is highly directional and
operates with relatively low loss and added noise. Improvements
of the circuit design and fabrication will help to increase the
instantaneous bandwidth and decrease the insertion losses.
Compared to the so far significantly higher bandwidth Josephson
devices, a mechanical approach is insensitive to magnetic field
noise and offsets, mechanical devices have higher dynamical
range due to the smaller nonlinearity, and well-confined
mechanical modes are typically less prone to parasitic coupling
when integrated in larger systems. In addition, mechanical sys-
tems have the potential for hybrid microwave and optical signal
processing, in particular for non-reciprocity between microwave
and optical propagating fields. The presented external voltage bias
offers new ways to achieve directional amplification and
squeezing of microwave fields in the near future.

Data availability. The data that support the findings of this study
are available from the corresponding author upon reasonable
request.
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