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Interacting Learning Processes 
during Skill Acquisition: Learning 
to control with gradually changing 
system dynamics
Nicolas Ludolph   1,2, Martin A. Giese1 & Winfried Ilg1

There is increasing evidence that sensorimotor learning under real-life conditions relies on a 
composition of several learning processes. Nevertheless, most studies examine learning behaviour 
in relation to one specific learning mechanism. In this study, we examined the interaction between 
reward-based skill acquisition and motor adaptation to changes of object dynamics. Thirty healthy 
subjects, split into two groups, acquired the skill of balancing a pole on a cart in virtual reality. In one 
group, we gradually increased the gravity, making the task easier in the beginning and more difficult 
towards the end. In the second group, subjects had to acquire the skill on the maximum, most difficult 
gravity level. We hypothesized that the gradual increase in gravity during skill acquisition supports 
learning despite the necessary adjustments to changes in cart-pole dynamics. We found that the 
gradual group benefits from the slow increment, although overall improvement was interrupted 
by the changes in gravity and resulting system dynamics, which caused short-term degradations in 
performance and timing of actions. In conclusion, our results deliver evidence for an interaction of 
reward-based skill acquisition and motor adaptation processes, which indicates the importance of both 
processes for the development of optimized skill acquisition schedules.

Sensorimotor learning is a term commonly used to capture the variety of neural changes taking place (i) during 
the acquisition of a new motor skill or (ii) during the adaptation of movements to changed circumstances such as 
changes of the environment. Most extensively, motor adaptation to external perturbations has been studied over 
the last decades in experimental paradigms like visuomotor rotation1,2 and velocity-dependent force-fields3,4. 
The underlying mechanism is considered to be a re-calibration of internal forward models, which predict the 
sensory consequences of the motor action5,6. During the adaptation process, these internal forward models are 
re-calibrated based on a sensory prediction error7 which is the difference between the internal forward model 
prediction and the actual sensory outcome.

In recent years, a particular interest has emerged in studies which compare the sudden application of pertur-
bations to gradually induced perturbations8,9, as well as the influence of reward-based feedback on the adapta-
tion process10–12. In contrast to the described motor adaptation paradigms, motor skill acquisition describes the 
expansion of the motor repertoire when faced with completely new demands, such as learning for the first time 
how to ride a bicycle, monocycle or acquiring a new sports skill13–15.

Although studies in sports science have been examining skill acquisition for many years on a descriptive 
level14,16,17, computational studies investigating the underlying control mechanisms have mainly been restricted to 
simplified experimental paradigms. Examples for such paradigms are the learning of finger-tapping sequences18, 
visually-guided hand movement trajectories15, simplified virtual-reality versions of moving a cup19, bouncing a 
ball20,21 or playing skittles22. The focus of these studies is mainly the quantitative analysis of the execution per-
formance and performance variability within the skill acquisition process13. However, processes of acquiring or 
adjusting internal models and specific control mechanisms like predictive control have not been the addressed 
in this context.
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Predictive control based on forward models is suggested to play an important role in many dynamic skills like 
bouncing or catching a ball17 and performing fast goal directed movements23–25. More generally speaking, skilled 
motor behaviour is suggested to rely on accurate predictive models of both our own body and tools we interact 
with26. Indeed, studies have collected increasing evidence that the brain acquires and uses an internal model that 
encodes the physical properties of our limbs27, environment and manipulated objects28–31. Thus, internal forward 
models of new tools or objects have to be acquired during skill acquisition and have to be adjusted to changes of 
body dynamics during development or to external changes when the dynamics of the object change32.

The dynamics of external objects change for instance frequently during skill acquisition when different objects 
or sport devices are used as part of the training, such as different tennis rackets33–35. In the beginning of the 
learning process devices are used which are easier to handle and thus lead earlier to successful behaviour. These 
moments of success and resultant motivation are known to be important factors in motor learning and have been 
reported in several studies on motor adaptation or learning in sports36–38. On the other hand, at the transition 
to another device, the subject has to adapt the control behaviour to the dynamics of the new device within the 
process of skill acquisition. Thus, two learning processes, one driven by reward (skill acquisition) and the other by 
sensory prediction error (motor adaptation), shape the behaviour concurrently.

In this study, we want to investigate the influence of interleaved adaptation phases during skill acquisition by 
examining subjects’ behaviour in the virtual cart-pole balancing task while manipulating the gravity. Increments 
in gravity do not only change the dynamic behaviour of the system but also the difficulty to control it, allowing 
us to study the interaction of reward-based and error-based learning. Cart-pole balancing has been studied in 
the context of reinforcement learning as a benchmark for computational algorithms39, as model for human bal-
ance control40–44 and in the context of internal forward models31,44. We investigate the implications of gradually 
increasing the task complexity (i) on the skill acquisition and (ii) in terms of the need to adapt to repetitively 
changed cart-pole dynamics. The hypothesis under investigation is that a gradual increase in task complexity 
leads to improved learning due to earlier and more frequent positive reward, which is however disturbed by short 
interleaved adaptation phases caused by the gradually changing cart-pole dynamics.

Results
Experimental Design.  Participants had to learn the control of a physically simulated cart-pole system 
(Fig. 1a, see Methods for details). Gravity forces the pole to rotate downwards when not being perfectly upright. 
Thus, in the simulation, the complexity of the control task can gradually be manipulated by adjusting the sim-
ulated gravity. Higher gravity leads to a faster falling pole and to a more complex control problem. Participants 

Figure 1.  Illustrations of the cart-pole system, the used input device and experimental conditions. (a) Cart-
pole system. (b) Input device. The knob of the input device can be shifted and rotated into all directions. The 
left-right translation was used to control the virtual force, which is applied to the cart from either side. (c) 
Experimental conditions: gradual gravity (GG) and constant gravity (CG). For the condition GG, the course 
of the gravity is shown for two representative subjects to illustrate the individual, performance-dependent 
increase. Gravity was increased after every successful balancing attempt.
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controlled the car by applying virtual forces using a haptic input device (Fig. 1b). The goal was to keep the pole 
upright. Specifically, the pole has to remain within the green circular segment (±60 degree, Fig. 1a) while the cart 
must not leave the track (±5 m). A trial is considered a successful trial if balance was maintained for 30 seconds 
without violating the two given constrains.

We examined two groups of subjects corresponding to different experimental conditions (Fig. 1c): (i) gradual 
gravity (GG), starting with a low gravitational constant of g0 = 1.0 m/s2, the virtual gravity has been increased in 
relation to the current performance up to the maximum of gmax = 3.5 m/s2. Specifically, the gravitational constant 
was increased by 0.1 m/s2 after every successful trial (performance-dependent increase in gravity). (ii) Constant 
gravity (CG), in this group the gravity has been kept constant on the maximum of gmax = 3.5 m/s2 from the begin-
ning. Notice, that the gravitational constant was never decreased and that every subject was exposed to an indi-
vidual gravity profile over the course of the experiment, due to the performance-dependent increase. Subjects in 
both groups interacted for 90 minutes with the cart-pole environment, while the number of trials during this time 
was not limited.

Skill acquisition is facilitated in the gradual gravity condition.  Task performance, measured by the 
trial length, is shown in Fig. 2 as running average over the course of the experiment for both groups. Although the 
performance looks almost constant for the gradual group (Fig. 2a), keep in mind that the gravitational constant 
was increased after every successful trial making the task more difficult over time. In order to account for this 
influence, we also examined the improvement based on the normalized trial length T/T0 (Fig. 2b), which weights 
the measured trial length T using the theoretical trial length T0 that would be measured if no force were applied 
(see Methods). Thus, the normalized trial length expresses the task performance in comparison to doing nothing. 
Figure 2b shows that both groups improve monotonically according to this measure.

Comparing the average task performance within the first 5 minutes of the experiment reveals significantly 
higher performance for subjects in condition GG (trial length, Wilcoxon rank sum, p < 0.001). As the only dif-
ference between the groups is the difference in gravity during this phase, this result confirms the expectation that 
the gravity strongly influences the task difficulty. The difference in task performance between the groups persists 
however throughout the experiment. Finally, subjects in the gradual group are also significantly better at the end 
(last 5 minutes) of the experiment (trial length, Wilcoxon rank sum, p < 0.05), despite the fact that the gravity is 
identical for both groups at this point. The average course of the gravitational constant is shown in Fig. 2d.

We found no significant difference between the groups in T/T0 over the first 5 minutes (Wilcoxon rank sum, 
p = 0.15), which suggests that the difference found for the trial length is mostly because of the difference in gravity 
(difficulty) and is successfully cancelled out by the normalization. The normalization had no effect on the group 
difference at the end of the experiment, meaning that subjects in the gradual group are, also according to this 

Figure 2.  Learning curves. (a) Trial length, (b) normalized trial length (T/T0), (c) cumulated reward per trial 
across the experimental duration in the conditions GG (blue) and CG (red). The normalized trial length (b) 
reveals a monotonic improvement for both groups whereas the other measures (trial length and reward) are 
non-monotonic. (d) The average increase of the gravity of subject in condition GG. The shaded areas indicate 
the inter-subject-variability (±1SEM). The black dashed lines indicate the time at which all subjects in condition 
GG have reached maximum gravity (gmax = 3.5 m/s2) latest. For the purpose of illustration, the curves were 
smoothed over time using the weighted running average method.
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measure, significantly better (Wilcoxon rank sum, p < 0.05). In summary, the gradual gravity condition facilitates 
the acquisition of the cart-pole balancing skill.

Time of first success and frequency of early successes are related to end performance.  An 
important incentive for improvement in acquiring a new skill is reward. The cumulative numeric reward at the 
end of the trial is shown in Fig. 2c. We found that this measure is mainly determined by the trial length, and does 
therefore not provide further insight.

Another form of reward is the balancing success (and failure). This is potentially an even stronger reward 
signal than the cumulative numeric reward because it represents the primary goal of the task.Subjects who man-
age to balance the system early during the experiment have more time to practice and reinforce this successful 
behaviour. We found that subjects in condition GG were significantly earlier able to balance the system for the 
first time (time of first successful trial, Wilcoxon rank sum, p < 0.001, median: GG = 2.8 min, CG = 24.2 min) and 
were thereby able to practice and explore the successful behaviour more deliberately in comparison to subjects 
in condition CG.

The time between two successful trials (inter-success intervals) is yet another important factor for the rein-
forcement of behaviour because it expresses the frequency of success and thereby the frequency of reinforcement. 
Regression analysis using a linear mixed-effects model was conducted to examine the effect of group and index 
of success on the (log) inter-success interval (Fig. 3). Both factors as well as their interaction were significant (all 
p < 0.001). Post-hoc comparison of the groups however did not reveal any significant difference (p = 0.16), when 
the model was fitted over the first 35 success. To examine the very initial phase, we constrained the model to the 
first 20 successes. In addition to the significance of the factors and their interaction (all p < 0.001), the post-hoc 
comparison of the groups revealed now a significant difference (p < 0.01). Thus, in the beginning of the exper-
iment, subjects in condition GG received more frequently positive reward (in form of success) than subjects in 
condition CG.

Correlation analysis within the groups revealed a significant relation (Spearman’s correlation coefficient, 
GG: rho = −0.57, p < 0.05; CG: rho = −0.59, p < 0.01) between the average inter-success internal over the first 
ten intervals and the task performance at the end of the experiment (average trial length over last 5 minutes). 
Performing the correlation analysis across both groups revealed the same relation (Spearman’s correlation coef-
ficient, rho = −0.71, p < 0.001). Thus, subjects who are frequently successful at the beginning of the experiment 
show a high performance at the end, while subjects who are less frequently successful at the beginning show a 
low performance at the end. Overall, these results emphasize the importance of early and frequent success for 
achieving high performance towards the end.

Subjects learn to perform actions more predictively and with less variability.  We recorded the 
force, which the subjects applied to the cart as well as the state of the system for every frame. In order to analyse 
and quantify how subjects’ actions change over time, we defined two measures: the action timing and action vari-
ability. While the action timing describes the time when the force is changed relative to the occurrence of a certain 
pole angle (here, averaged over all pole angles), the action variability quantifies how consistently these actions are 
performed (see Methods for details). Analysis of the action timing over the course of the experiment (see Fig. 4a) 
revealed a monotonic change to earlier (more predictive) execution of actions (Spearman’s correlation coeffi-
cient, GG: rho = −0.55, p < 0.001; CG: rho = −0.15, p < 0.05). Similarly, correlation analysis revealed a significant 
decrease in action variability (Fig. 4b) over the course of the experiment in both conditions (Spearman’s correla-
tion coefficient, GG: rho = −0.19, p < 0.002; CG: rho = −0.19, p < 0.002). Subjects learned to execute the actions 
earlier and thus more predictively with respect to the pole movement. Moreover, the performed actions are more 
consistent at the end of the experiment, which reflects subjects’ increased confidence about the high value of the 

Figure 3.  The average inter-success intervals for the first 35 successes. The inter-success intervals (ISI) in 
condition CG decrease monotonically whereas in condition GG an intermediate increase is observable just 
before subjects reached the maximum gravity after 25 successes. The shaded areas indicate the inter-subject-
variability (±1 SEM). The black dashed line indicates the time at which all subjects in condition GG have 
reached maximum gravity (gmax = 3.5 m/s2) latest. For the purpose of illustration, the curves were smoothed 
over time using the weighted running average method.
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specific action. These results strongly suggest that learning to perform actions predictively as well as decreasing 
the action variability are crucial components of acquiring the cart-pole balancing skill.

Coherent modulation of the action timing, variability and task performance due to increments in 
gravity.  For subjects in condition GG, we analysed in detail how changes of the system dynamics influence the task 
performance, action timing and variability and as well as whether these are coherently modulated. Moreover, changes 
in the action timing would strongly indicate that subjects form a predictive model of the cart-pole system during the 
skill acquisition, which is adapted when the system dynamics change. Analysis of the average trial length (Fig. 5a) 
across and within gravity steps revealed significant improvement during phases of constant gravity (〈 − 〉P Pg g g2, 1, , 
t-test, p < 0.001) and significant deterioration after an increment in gravity within the gravity steps (〈 − 〉+P Pg g g1, 1 2, , 
t-test, p < 0.001). Furthermore, we found that the action timing changes (Fig. 5b) towards an earlier (more predictive) 
execution of counteractive actions during phases of constant gravity (〈 − 〉AT ATg g g2, 1, , t-test, p < 0.001). Coherently 
with the changes in performance, the action timing is deteriorated after a change in gravity, i.e. actions are timed later, 
meaning rather in reaction to the events than predictive (〈 − 〉+AT ATg g g1, 1 2, , t-test, p < 0.001). In alignment with 
these results, the action variability (Fig. 5c) decreases significantly during phases of constant gravity (t-test, p < 0.05) 
and increases after an increment in the gravity (for g > 1.3, t-test, p < 0.05). In summary, the task performance, action 
timing and variability are coherently modulated by the increments in gravity. This result strongly indicates that an 
internal model of the cart-pole dynamics is continuously re-calibrated and used for predictively controlling the 
system.

Predictive action timing and low variability yield high task performance.  The coherent modula-
tion of the task performance, action timing and variability by changing the gravity indicates that predictive action 
timing is necessary for successfully balancing the pole. In order to investigate this aspect further and because all 
measures improve due to learning, we first subtracted the coherent influence of learning, yielding the normalized 
action timing and variability as function of the task performance (Fig. 6, see Methods for details). Correlation 
analysis revealed a significant relation between the trial length and normalized action timing (Fig. 6a) for both 
groups (Spearman’s correlation coefficient, GG: rho = −0.69, p < 0.001; CG: rho = −0.50, p < 0.001). Thus, the 
normalized action timing decreases significantly with increasing trial length, suggesting that actions need to be 
timed more predictively for high task performances than for low task performances. We found a similar corre-
lation between the trial length and normalized action variability (Fig. 6b) in the condition CG. However, the 
relation seems to be much weaker and not present in the condition GG (Spearman’s correlation coefficient, GG: 
rho = 0.07, p = 0.50; CG: rho = −0.22, p < 0.05). Thus, in the group CG the task performance increases signifi-
cantly with decreasing action variability, suggesting that the action variability needs to be low for high task per-
formances. In summary, these results suggest that predictive timing of the actions and low variability is crucial for 
achieving high task performance.

Discussion
The aim of this study was to elucidate how reward-based and error-based learning interact in one single task. We 
therefore investigated subjects’ learning behaviour in the cart-pole balancing task, which combines skill acquisi-
tion and internal model adaptation due to gradually changing dynamics of the cart-pole system. As hypothesized, 
we have found three main effects: (1) gradually increasing the difficulty of a task increases the amount and fre-
quency of reward (success) early in the experiment, reinforcing the successful behaviour longer and benefiting 
skill acquisition. (2) When these changes influence the controlled system dynamics, there is not only a temporary 

Figure 4.  Action timing and variability over the course of learning. Average (a) action timing and (b) action 
variability over the course of the experiment for the conditions GG (blue) and CG (red). In both conditions 
the action timing as well as the action variability decline (actions are timed earlier, variability decreases) over 
time. Both measures were calculated in bins of 5 minutes length. The shaded areas indicate the inter-subject-
variability (±1 SEM). The shaded areas indicate the inter-subject-variability (±1 SEM). The black dashed 
lines indicate the time at which all subjects in condition GG have reached maximum gravity (gmax = 3.5 m/s2) 
latest. For the purpose of illustration, the curves were smoothed over time using the weighted running average 
method.
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decrease in general performance but also a specific degradation in the timing and variability of actions. Finally (3),  
performing actions predictively is crucial for successful cart-pole balancing.

Gradual task-difficulty facilitates skill acquisition by means of success.  Consistent with many 
studies on skill acquisition from a wide range of disciplines, we found that gradually increasing the difficulty of 
a task is beneficial for acquiring a motor skill. Choosing an adequate initial task complexity and increasing the 
complexity in relation to the improvement during learning is seen as important prerequisite for efficient motor 
learning and is, thus, commonly used as training principle in sports as well as in rehabilitation16,45.

The theoretical relationship between task difficulty, skill level and learning was systematically described in the 
“challenge point” framework46. The optimal challenge point characterizes the optimal task difficulty for learning 
at a certain skill level. Guadagnoli and Lee46 distinguished between the (a) nominal and (b) functional task diffi-
culty. While the nominal task difficulty is a feature of the task, the functional task difficulty depends in addition to 
the task also on the skill level of the learner. As part of their framework, they relate the task difficulty and skill to 
the amount and ability to process information. They elaborate that learning is inefficient if the amount of informa-
tion is too high (i.e. functional task difficulty is too high), or the capability to process the available information is 
too low (i.e. skill level is too low). Thus, regarding the efficiency of learning, there is an optimal rate of increasing 
the task difficulty, which depends on the learner’s skill level.

Consistent with this framework, novices in our experiment benefited from an initially low gravity level, yield-
ing low time-constraints for the control of the pole (see Figure S2). By increasing the gravity after every success, 
we increased the task difficulty in relation to the skill level and maintained the challenge of the task. In particular, 
by tightening the time-constraints we gradually encouraged the use of predictive control, which was also identi-
fied as crucial mechanism for successfully controlling the cart-pole system.

Despite these more theoretical frameworks and observational studies, mainly in sport science, there is a lim-
ited number of studies investigating the effects of adaptively increasing the task complexity on motor learning 

Figure 5.  Change of trial length, action timing and variability as function of gravity changes (group GG). 
Change in (a) trial length, (b) action timing and (c) action variability for the subjects in the group GG. On 
the left, the measures are shown for each gravity step, and on the right, the average over all steps is shown for 
each measure with error bars (±1 SEM). Subjects improve (increase in trial length, more predictive actions, 
less variable actions) within and get worse (decrease in trial length, less predictive actions) across the gravity 
steps (see Methods and Fig. 7d). Excluding the first three gravity steps reveals also for the action variability a 
significant negative influence of the increments in the gravity. Significance codes: ***p < 0.001, *p < 0.05.

http://S2


www.nature.com/scientificreports/

7SCIeNTIfIC REPOrTS | 7: 13191  | DOI:10.1038/s41598-017-13510-0

processes. Most related is a study by Choi et al.38 in which the authors examined retention of different visuomotor 
transformations over 4 days. They found that the retention is largely improved by adapting the number of trials 
as a function of performance in comparison to maintaining fixed random scheduling. Varying the difficulty, in 
terms of limiting the maximum movement time, as a function of performance also improved learning, although 
to a lesser extent. Since further studies on this topic are lacking, an interesting and still open research question is 
how the task difficulty has to be increased in order to maintain continuous optimal challenge. Especially for tasks 
like ours, in which the increase of task difficulty also results in a change of object dynamics, this is an intriguing 
question. In this case, optimal training schedules have also to take into account that adaptation to changes in 
object dynamics are necessary. Fewer increments in gravity imply fewer adaptations but at the cost of large incre-
ments in task complexity, which might influence reward and motivation negatively.

Internal forward models support the predictive control of object dynamics.  In addition to the 
substantial number of studies examining internal model adaptation in classical visuomotor adaptation para-
digms, several studies have also shown that humans learn and maintain internal models of object dynamics 
for optimizing their actions and the corresponding sensory consequences3,29,31,47–50. For balancing an inverted 
pendulum, for example, Mehta and Schaal31 have demonstrated that actions of trained subjects performed dur-
ing short absence of visual feedback (450–550 ms) do not significantly differ from actions with visual feedback. 
They suggested that predictions formed by an internal forward model of the cart-pole system replace the visual 
feedback during these phases. Our results are in line with this hypothesis and imply predictive control as a critical 
mechanism for successfully mastering the cart pole task. In our experiment, subjects performed the actions pro-
gressively in advance in relation to the state of the system (Fig. 4a), which indicates gradually improved predictive 
behaviour. Emphasizing the importance of action timing even further, we demonstrated a crucial relationship 
between the measured action timing and cart-pole balancing performance (Fig. 6a).

The adaptation of forward models during the gradual increase of gravity.  In order to profit most 
from internal forward models of object dynamics, they have to be acquired in the beginning of the learning 
process and need to be adapted when the behaviour of the modelled object changes32. Intriguingly, when inter-
acting with novel objects, people seem to learn to predict the behaviour of the objects before they can master its 
control47. For real balancing of a pole on the fingertip, Lee and colleagues44 suggested that subjects acquire an 
accurate pendulum model, which accounts for the gravitational dynamics and mass distribution along the pole, 
already within the first moments of wielding the pole through “dynamic touch”51.

On the other hand, changes to the object dynamics, such as increments in gravity in our experiment, result 
in inaccurate extrapolations of the system’s state, which primarily leads to deteriorated performance (Fig. 5a). A 
more specific prediction is that the acceleration of the pole is underestimated after an increase of the gravity. 
Thus, with respect to a certain pole angle, responses would be delayed. Our analysis of the change in action 
timing across the gravity steps (〈 − 〉+AT ATg g g1, 1 2, ) supports this hypothesis (Fig. 5b). Consequently, the altered 
system dynamics and the now imprecise predictions of the forward model lead to increased spatio-temporal 
variability (Fig. 5c). These observations are consistent with previous studies showing temporarily increased 
spatio-temporal variability in virtual bouncing game after changing gravity52. As soon as the internal model is 
adapted to the new dynamics of the object, state estimates are again accurate, leading to normal motor variabil-
ity and performance.

Figure 6.  Relationship between task performance, normalized action timing and variability. Action timing and 
variability were normalized to remove the coherent influence of learning (see Methods: Relationship between 
action timing and task performance) and can therefore take negative values. (a) In both groups, there is a strong 
relationship between the normalized action timing and trial length (task performance). Generally, the more 
predictive actions are performed (negative action timing) the better the task performance. (b) Subjects in the 
group CG show a higher action variability for low task performances (trial length shorter than 5 seconds). The 
action variability is not significantly related to the task performance for subjects in the group GG. The shaded 
areas indicate the inter-subject variability (±1 SEM). For the purpose of illustration, the curves were smoothed 
over time using the weighted running average method.
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Gradual increase of difficulty in skill acquisition tasks and sensory-motor adaptation paradigms.  
In recent years, increasing attention has been gained by sensorimotor adaptation studies which exam-
ine the effects of perturbing the sensorimotor mapping of reaching gradually instead of suddenly8,9,53,54. The 
(performance-independent) gradual perturbation schedule does not predominantly facilitate learning, but leads 
to an increased and prolonged after-effect after removing the perturbation8. It has been suggested that gradual 
perturbation schedules favour implicit learning mechanisms (involving internal forward models) in contrast to 
explicit rule-based learning53.

Even more influential are gradual perturbation paradigms for sensorimotor adaptation when binary 
reward-based feedback is provided instead of end-point errors in reaching. In such paradigms only hitting the 
target is positively rewarded, which is difficult if perturbations are large and sudden10–12. Thus, finding the right 
correction for the perturbation and receiving positive reward is difficult, which makes reward-based learning 
tough. In contrast, if perturbations are gradual, the necessary adaptation between subsequent perturbation steps 
requires less exploration and may even be in the order of magnitude as subjects’ motor variability55,56, leading 
to implicit learning and fast adaptation of the underlying internal forward models. From a computational point 
of view, instead of searching for an adequate solution, which is in the sensory-action space faraway, the gradual 
perturbation paradigm allows for guided exploration in small steps with intermittent reward.

Figure 7.  Schematic of the action timing and the change of measures as function of the gravity. (a) All pole 
angles investigated as events (integer valued pole angles from −25 to 25°). The arrows indicate the direction 
of the pole movement. (b) Pole angle (blue) and input force (orange) trajectories in a representative trial 
illustrating two event occurrences (black crosses) and corresponding two force segments (thick lines). Negative 
force values correspond to a leftwards force. Aligning all segments that correspond to one event and averaging 
the segments over different trials in a window of 2 minutes yields similar curves to those shown in panel c. (c) 
Average force segments of a representative subject for two periods during learning (first 15 minutes: purple, last 
15 minutes: dark green) for illustrating the action timing and variability measures. The circles indicate the time 
(action timing) when the subjects changed the direction of the force relative to the occurrence of the event (zero 
time lag). Negative and positive time lags represent the time before and after the event. As expected, early (first 
15 minutes, purple) during learning actions are performed rather in reaction to event occurrences (towards 
positive time lags) whereas learning leads to the ability to make actions predictively (more negative time lag, 
dark green). Coloured areas illustrates the variability in force segments. The dark coloured areas indicate the 
action variability. It is the average standard deviation of the force segments ± 60ms around the zero crossing 
(action timing). The variance in input force round the zero crossing (action variability) is lower for actions late 
during learning (last 15 minutes), suggesting more consistency. (d) Illustration of the procedure to examine 
changes in different measures relative to an increase in gravity. We here show exemplarily the trial length (red 
curve) in relation to the gravity (dashed line). The light grey areas illustrate the periods under investigation. 
Subtracting the average trial length in the highlighted periods yields the change within (P2,g − P1,g) and across 
(P1,g+1 − P2,g) the gravity step(s).
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This view is transferable to our task when task complexity is gradually increased. Based on simple heuristic 
control rules (explicit knowledge), which are sufficient to solve the problem (balance the pole) under the easy 
initial task condition of low gravity (g0 = 1.0 m/s2), the exploration during learning is guided stepwise through 
the sensory-action space to a solution for the complex task condition (gmax = 3.5 m/s2). The potential benefits of 
this approach are supported from previous results from machine learning, showing that the use of a fuzzy con-
troller to implement heuristic knowledge and reward-based learning mechanisms for the refinement of control 
strategies can facilitate the learning processes substantially57. By initializing and guiding the exploration of the 
sensory-action space, subjects receive primarily more frequently positive reward, especially early in the learning 
process.

Success and reward have shown to be strong reinforcement signals, which can not only accelerate learning12,58  
but also have a motivational influence on the subject59,60. Moreover, it has been shown that offline gains and 
long-term retention of newly formed motor memories benefit from training under rewarding conditions36, 
demonstrating the power of reward. Recently, it was shown by Therrien et al.11, that adaptation to sudden sen-
sorimotor perturbations is possible with binary reward, if the reward is provided relative to the current mean 
performance (closed loop reinforcement). Hence, instead of providing positive reward only if the target was hit, 
reward is used to guide the exploration towards the target, by providing positive reward if the action was better 
than the previous ones. Thus, instead of changing the task demands like in our approach, the reward landscape is 
shaped by the current performance. Both approaches demonstrate the benefit of incorporating the functional task 
difficulty46, which is set by the current skill level of the learner, into the design of training schedules.

Motor skill acquisition as an interaction of multiple learning mechanisms.  In this study, we 
focused our analysis on the interaction of reward- and error-based learning mechanisms when the gravity is 
changed during the acquisition of the cart-pole balancing skill. In addition to this specific interaction of these 
two learning mechanisms, there may exist several further interactions involving other learning mechanisms and 
different kinds (e.g. implicit or explicit) of knowledge representations.

For example, based on other tasks or by exploiting the basic understanding of physics, explicit control knowl-
edge could be formed. By exploiting this knowledge for the initialization of actions, the exploration and thereby 
reward-based learning can be biased considerably. Depending on the validity of the derived control knowledge, 
learning can be facilitated or slowed down.

Furthermore, use-dependent learning may contribute in addition to reward- and error-based learning and 
may interact with these two learning mechanisms61,62, especially by biasing the choice of explored actions63. 
However, a reliable distinction between use-dependent and reward-based learning is hard to find in the balancing 
task because of the permanent presence of the reward signals.

Conclusions and Outlook
In this study, we have presented an experimental setup to investigate reward-based motor skill acquisition to 
control an external object with changing dynamics.

We conclude that gradual increase in task difficulty accompanied with changes in object dynamics facilitates, 
despite interleaved brief degradations in performance, the skill acquisition by means of success-mediated learn-
ing. Interleaved degradation in performances due to changes in object dynamics is associated with less predictive 
timing and increased variability of actions. The presented results motivate several further studies, in order to 
examine the interplay between reward-based skill acquisition and adaptation of the internal model to changes of 
the object dynamics in more detail. As interesting open questions remain for instance (i) potential after-effects 
in timing after the gravity is changed back to a lower value, (ii) differences in retention between gradual and 
sudden increase of gravity as well as (iii) finding an optimal schedule to increase the gravity, in order to minimize 
the number of changes while preserving the advantage of slowly increasing the complexity. Future studies will 
have to examine the neural mechanisms of skill acquisition when task difficulty and object dynamics are gradu-
ally changed. In particular, the cerebellum, with its role in reward-based learning64 and maintenance of internal 
models of object dynamics, might be an interesting target of further investigation. In conclusion, these studies 
will advance our knowledge in skill acquisition for complex movements, applicable in several disciplines, such as 
sports, professional skill development, and neuro rehabilitation.

Methods
Subjects.  We analysed thirty right-handed subjects (age range 18–30 years, mean age 23.4; 15 females, 15 
males).

All subjects gave informed written consent prior to participation. The study was carried out according to 
standard guidelines and regulations and had been approved by the ethical review board of the medical faculty of 
the Eberhard-Karls-University and university clinics in Tübingen, Germany (AZ 409/2014BO2). Subjects were 
randomly assigned to one of two groups corresponding to the two examined experimental conditions (gradual 
gravity, GG; constant gravity, CG; see Learning Paradigm). Both groups consisted of 15 subjects with similar 
average age (GG: 24.1 years, CG: 22.6 years). Gender was balanced between groups (GG: 9 males, 6 females, CG: 7 
males, 8 females). All subjects were right-handed and used their right hand throughout the experiment. Subjects 
were reimbursed independent of performance.

Details of Experimental Setup.  The virtual cart-pole system consists of a cart to which a one-meter long 
pole is attached. Due to the assigned masses (pole: 0.08 kg, cart: 0.4 kg) gravity forces the pole to rotate downwards 
when not being perfectly upright. We did not simulate friction. Forces from the left or right are applied by the 
subjects to the cart in order to control the system. Participants controlled the virtual force using a SpaceMouse® 
Pro (3Dconnexion, Fig. 1b). This input device is similar to a joystick but it can measure six degrees of freedom 
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(DOF) including the left-right translation. The device’s knob can be displaced ±1.5mm in this direction and 
exerts a force of 7.4 N at full lateral displacement back to the rest position in the centre. We used this DOF to 
control the virtual force. To this end, the lateral displacement of the device’s knob relative to the rest position in 
the centre of the device was translated into a virtual force into the same direction with proportional magnitude 
(see below) that pushes against the cart. Hence, a rightward knob movement causes a virtual force, which pushes 
the cart to the right. The simulation of the cart-pole dynamics was implemented in MATLAB (The MathWorks, 
Inc.) using the 4th-order Runge-Kutta method. Visual feedback was provided on a 15 inch monitor using the 
Psychtoolbox65–67 at a refresh rate of 60 Hz. Correspondingly, the time-discretization constant Δt of the simula-
tion was set to 1/60 s. Subjects were not constrained in posture but were asked to sit comfortable about 60 cm away 
from the monitor. The input-device was aligned with the monitor such that the left-right knob movement was in 
correspondence with the virtual force and cart movement on the monitor.

Learning Paradigm and Experimental Conditions.  At the beginning of every trial the cart-pole system 
is initialized with a random pole angle drawn uniformly from [−7.5, 7.5] degrees, positioned at the centre of the 
track with both velocities (cart and angular pole velocity) set to zero.

The pole has to remain within the green circular segment (±60 degree, Fig. 1a) while the cart must not leave 
the track (±5 m). This has to be achieved by applying forces of up to 4 N from either side to the cart using the 
input device. The forces accelerate the cart, depending on the direction, to the left or right by which the pole can 
be balanced. A trial was considered successful, if balance was maintained for 30 seconds without violating any 
constraint. Hence, trials were at maximum 30 seconds long. Violation of one of the constraints (cart position, 
pole angle) also terminates the trial. The number of trials was not limited, instead we limited the duration of the 
experiment (see below). Before the next trial begins, feedback about the violated constraint and the duration of 
the trial is provided.

In addition to the terminal feedback at the end of every trial, subjects also receive cumulative reward during 
the trial, which is displayed as number in the cart and updated in every frame (Fig. 1a). The theoretically maxi-
mum reward per second is 10 points, which can be achieved by holding the pole perfectly vertical, keeping the 
cart exactly in the centre of the track while not applying any force to the cart (for details, see S1 Appendix). Thus, 
in theory, a maximum reward of 300 points per trial is achievable. This ultimately means that subject has to keep 
the system within the constraints for 30 seconds, i.e. balance the pole on the cart for 30 seconds without leaving 
the track. Subjects were instructed about these factors and were asked to maximize the reward in every single 
trial.

Data Processing and Analysis.  We analysed the trial length, reward per second and cumulative reward 
of every trial (including the unsuccessful balancing attempts) in order to quantify improvement. The trial length 
T can be characterized by two factors: (i) T0, which is the time it takes for the pole to violate the pole angle 
constraint when no controlling input would be present (Figure S1) and, (ii) the time by which the trial is pro-
longed due to subject’s actions. The time T0 is completely described by the initial pole angle and the gravity. In 
a low-gravity environment (e.g. at the beginning of condition GG) the time T0 is much longer than for higher 
gravity values (e.g. throughout condition CG or at the end in condition GG). Hence, in condition GG T0 decreases 
as function of the increasing gravity during the experiment and progressively limits the time in which subjects 
have to counteract (tightening of time-constraint). We simulated the system with different initial pole angles and 
thereby revealed a nonlinear relation between T0 and the gravity (Figure S1). In order to account for this factor, 
we determined T0 for every recorded trial and calculated the ratio T/T0, which is a measure of how much better 
(>1) or worse (<1) the subject was controlling the system compared to doing nothing.

Other important factors, especially in the context of reward-based learning, are reward, success and the time 
passed between subsequent successes. In the following, we call the latter inter-success intervals (ISI).

Determining the action timing and variability.  In order to infer more about the underlying mech-
anisms of improvement, we quantified the changes in subjects’ control policies. We therefore examined the 
applied forces as function of the system state, specifically as function of the pole angle (Fig. 7a). The ration-
ale of our approach is to define events in the state space and analyse the applied forces relative to those events 
(event-triggered averaging, Fig. 7b,c). We focus our analysis on the situations when the pole is tilted by a certain 
angle and is rotating downwards. In these situations, which we describe as events, a counter-action is necessary. 
Using our method we determined when and how variable these counter-actions were performed. The following 
four steps describe the procedure in more detail.

	 i.	 We defined the integer valued pole angles in the range from −25 to 25 degrees as events (Fig. 7a). For each 
of these 51 events we determined the occurrences in every trial. Event occurrences between two time-dis-
cretization steps (frames) were estimated using linear interpolation.

	 ii.	 We then excluded all event occurrences in which the pole is actually rotating upwards and therefore no 
counter-action is required. We further excluded extreme pole angle velocities. To this end, we excluded all 
event occurrences in a running window of two minutes across trials, for which the pole angle velocity did 
not lay between the 20%- and 80%-quantiles of all observed pole angle velocities.

	 iii.	 Next, we extracted segments of one-second length from the force input trajectory, which are centred on the 
previously determined event occurrences, meaning that half of the segment happed before (negative time-
lag) and the other half happened after (positive time-lag) the event occurred (Fig. 7b). These segments look 
roughly like sigmoidal functions going from negative to positive force values or vice versa, corresponding 
to a left-right or right-left movement of the device knob by the subject.

http://S1
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	 iv.	 In the last step, we averaged all segments corresponding to one event (pole angle) in a running window of 
2 minutes length across trials and determined the zero crossing of the average segment (Fig. 7c). Thereby 
we find the time of change from a negative (leftwards) to a positive (rightwards) force (or vice versa) rela-
tive to the event occurrence (zero time lag).

We refer to this time (when the actions change relative to the state of the system) as action timing. Notice, that 
we do not interpret this measure as the reaction time, even though it might be related. Furthermore, we estimated 
the variability of the actions by calculating the mean standard deviation of the applied forces in a centred window 
of 120ms length around the zero crossing (Fig. 7c).

Relationship between action timing and task performance.  During the analysis of the influence of 
the action timing and variability on the task performance, we faced the problem that all three measures change 
over time due to learning. Correlation analysis between these measures therefore trivially revealed high corre-
lation. We were however interested in verifying the action timing and variability as crucial measures for achiev-
ing high balancing performance. Hence, we were looking for a normalization, which eliminates the concurrent 
influence of learning on all measures but preserves potentially existing correlations between the measures. Since 
we did not measure learning per se, we had to use time as representative. In order to express the action timing 
and action variability as functions of task performance (trial length) and time, we discretized trial length and 
time (Figure S2a). Trial length was split into bins of 5 seconds, while time was split into bins of 5 minutes. Within 
each of the two-dimensional bins, the action timing and action variability have been determined. We eliminated 
the influence of learning by subtracting the average action timing (action variability respectively) across all trial 
length bins within each time bin (Figure S2a and b). The action timing and variability are thereby expressed as 
function of the discretized trial length, independent of the influence of learning. We call the resulting measures 
normalized action timing and normalized action variability. Due to the subtraction of the average, the normalized 
action variability can take negative values.

Quantification of changes induced by gradual increments in gravity.  We next analysed the influ-
ence of changing the gravitational constant on the performance, action timing and motor variability in the grad-
ual group. The gravitational constant is described by a monotonically increasing stairs function over time 
(Fig. 1c). Consequently, there are phases of constant value and sudden but small changes from one trial to the next 
(Fig. 7d). Let P1,g denote the average trial length during the first third of the gravity step with value g and let P2,g 
denote the average trial length during the last third of this step. We estimated the improvement within gravity 
steps by taking the difference P2,g − P1,g. Averaging these across all steps yields a single value 〈 − 〉P Pg g g2, 1,  for each 
subject, representing the average improvement during periods in which the system does not change. Similarly, we 
estimated the influence of an increment in gravity by calculating the average trial length over the last third (P2,g) 
and the first third of the next step (P1,g+1). The average difference over all gravity steps 〈 − 〉+P Pg g g1, 1 2,  measures 
the average change in performance caused by the changes of the system dynamics. Notice, that we denote the 
average of a measure across all gravity steps g by 〈⋅〉g .

For the action timing and variability, we proceeded similarly but calculated the differences for each event (pole 
angle) separately and then averaged over all events and gravity steps. Thereby we can analyse changes in the action 
timing (AT) and variability (AV) during periods of constant system dynamics (〈 − 〉AT ATg g g2, 1,  and 
〈 − 〉AV AVg g g2, 1, ) and the influence of sudden changes (〈 − 〉+AT Pg g g1, 1 2,  and 〈 − 〉+AV AVg g g1, 1 2, ).

Statistics.  All statistical analyses were performed in R (v3.3.2) using the package lme4 (v1.1), lmerTest (v2.0), 
phia (v0.2). Significance tests for differences between populations were performed using the two-sided t-test if 
measures were normally distributed according to the Shapiro-Wilk-Test. Otherwise Wilcoxon’s rank-sum test for 
equal medians has been used. Relationship between measures was evaluated using Pearson’s linear correlation 
coefficient if measures were normally distributed according to the Shapiro-Wilk-Test. Otherwise Spearman’s cor-
relation coefficient was used. For the analysis of the measures over time, correlation coefficients were computed or 
linear mixed-effects models were used, which included a random effect for the intercept of each subject.

Data Availability.  All data generated or analysed during this study are included in this published article (and 
its Supplementary Information files).
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