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Hybrid Printing Metal-mesh 
Transparent Conductive Films 
with Lower Energy Photonically 
Sintered Copper/tin Ink
Xiaolian Chen1,2, Xinzhou Wu2, Shuangshuang Shao2, Jinyong Zhuang2, Liming Xie2,  
Shuhong Nie2, Wenming Su2, Zheng Chen2 & Zheng Cui2

With the help of photonic sintering using intensive pulse light (IPL), copper has started to replace 
silver as a printable conductive material for printing electrodes in electronic circuits. However, to sinter 
copper ink, high energy IPL has to be used, which often causes electrode destruction, due to unreleased 
stress concentration and massive heat generated. In this study, a Cu/Sn hybrid ink has been developed 
by mixing Cu and Sn particles. The hybrid ink requires lower sintering energy than normal copper ink 
and has been successfully employed in a hybrid printing process to make metal-mesh transparent 
conductive films (TCFs). The sintering energy of Cu/Sn hybrid films with the mass ratio of 2:1 and 1:1 
(Cu:Sn) were decreased by 21% compared to sintering pure Cu film, which is attributed to the lower 
melting point of Sn for hybrid ink. Detailed study showed that the Sn particles were effectively fused 
among Cu particles and formed conducting path between them. The hybrid printed Cu/Sn metal-mesh 
TCF with line width of 3.5 μm, high transmittance of 84% and low sheet resistance of 14 Ω/□ have been 
achieved with less defects and better quality than printed pure copper metal-mesh TCFs.

Printed electronics is a new emerging filed in recent years1,2. Compared with conventional vacuum deposition 
and photolithographic techniques, printing is low-cost, efficient for material usage3,4, has been applied to fabri-
cated flexible displays, radio frequency identification tags (RFID)5,6, and wearable electronics7,8.

Conductive ink based on silver nanoparticle is widely used in printed electronics9,10, albeit at high cost11. There 
have been continuous efforts in developing copper ink, either based on copper or copper oxide nanoparticles, 
because of the low price of copper. However, copper nanoparticles are too easily to oxidize and cannot be sintered 
by traditional sintering methods under ambient condition12,13. The photonic sintering using intensive pulse light 
(IPL) has proved to be effective for copper nanoparticle ink14,15. However, the high photonic sintering energy, 
which is needed to make copper nanoparticle films conductive, leads to the destruction of samples16.

One of the important applications of conductive inks is to print conductive electrodes. There has been a 
considerable surge of activity in the development of printing metal grids as an alternative to ITO for transparent 
conductive films (TCFs)17–20. Among the many reported techniques, the authors’ group developed a hybrid print-
ing process which prints conductive ink into a narrow trench instead of conventionally on surface (The hybrid 
printing process is shown in Supplementary Fig. S1). In this innovative process, less than 3 μm grid width can 
be achieved and the embedded Ag metal-mesh TCF has extremely low sheet resistance (<0.5 Ω/□) while still 
maintains high transparency (>85%)21. The hybrid printed TCFs have been successfully used in touch-screen 
panels and solar cells21–23. The authors’ group also conducted research on copper ink and used an IPL for photonic 
sintering24. Unlike Ag ink, Cu ink usually needs very high energy photonic sintering to convert copper oxide into 
copper. Though high energy photonic sintering poses no problem for copper ink printed on a flat surface, it is 
problematic if the copper ink is embedded into a trench. Defects in the forms of broken mesh lines and missing 
copper materials in the trenches happened in the process.
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In this study, a Cu/Sn hybrid ink has been developed by mixing Cu and Sn particles. The sintered energy of 
Cu/Sn film with mass ratio of 2:1 (Cu:Sn) was found 21% less than that for Cu film, which is attributed to the 
lower melting point of Sn for hybrid ink. The SEM inspection revealed that the molten Sn particles were fused 
among Cu particles and formed conducting paths on Cu/Sn hybrid film. Using the Cu/Sn ink and previously 
developed Cu ink at the authors’ group for comparison, metal-mesh TCFs were fabricated by the hybrid printing 
process and sintered with an IPL. The Cu/Sn metal-mesh TCF achieved the transmittance of 84% and low sheet 
resistance of 14 Ω/□ with less defects and better quality than printed pure copper metal-mesh TCFs.

Results
Photonic sintering of screen-printed Cu and Cu/Sn films.  In order to study the sintering character-
istics of Cu/Sn hybrid film and to compare with the sintering of pure Cu film, the Cu and Cu/Sn films with the 
size of 2 cm * 2 cm (as shown in the inset of Fig. 1) were fabricated by screen-printing and the IPL energy density 
ranging from 2.64 to 5.02 J/cm2 was applied. Figure 1 presented the sheet resistance of sintered Cu and Cu/Sn 
hybrid film with respect to irradiation energy. Cu/Sn films of mass ratio 2:1 and 1:1 (Cu:Sn) sintered by 2.68 J/cm2 
exhibited weak conductivity. And sheet resistance was rapidly down with the increase of sintered energy density. 
However, the Cu film was non-conductive until sintered by 3.25 J/cm2. It implied that the sintering energy density 
of Cu/Sn hybrid films at the mass ratio of 2:1 and 1:1 was about 21% lower than that of Cu film in order to achieve 
conductivity. It was also observed that the Cu/Sn films reached to the lowest and stable sheet resistance (2:1: 0.379 
Ω/□, 1:1: 0.808 Ω/□) when energy was higher than 3.25 J/cm2; but Cu film only moved towards flatness after 
3.65 J/cm2 and had the lowest sheet resistance of 0.158 Ω/□. The thickness of Cu and Cu/Sn films was analyzed by 
step profiler (Supplementary Fig. S6). The data presented that Cu and Cu/Sn films before sintering had the similar 
average thickness, about 6 μm. Meanwhile, the thickness of the Cu and Cu/Sn films decreased to ∼5 μm after the 
4.69 J/cm2 flash light-sintering process.

Generally, electrical resistance of films made by particle ink is dependent on the intrinsic resistance of metal 
and contact resistance between metal particles25,26. Before sintered by IPL, the surface of spherical Cu and Sn 
particles were covered by insulating PVP layer and electric charge could not hop into adjacent particles, resulting 
in non-conductivity in Cu and Cu/Sn films. Figure 2 are the SEM images of Cu and mixed Cu/Sn films before and 
after sintering by IPL. The top row images (a, b, c) are pure Cu ink, the central row (d, e, f) a 2:1 mixture and the 
bottom row (g, h, i) a 1:1 mixture. The left column (a, d, g) correspond to samples before sintering, those in the 
central column (b, e, h) to 3.25 J/cm2 and those in the right column (c, f, i) to 4.69 J/cm2. At low photonic energy, 
Sn particles started to melt because of its low melting point (the bulk Sn is 231.89 °C)27 and to connect with 
Cu particles (Fig. 2e,h). Simultaneously, PVP at the surface of particles was decomposed partially and became 
thinner28, as described in schematic diagram of Fig. 3. The charges were able to transport more easily through 
the interface between Cu particles than that for Cu film, so was the better conductivity of Cu/Sn films than Cu 
films under the low energy. As the sintering energy density increased, Sn particles were melt completely and 
Cu particles covered by PVP were also gradually reduced to pure Cu (Fig. 2f,i). The barrier of charge transport 
between particles for Cu/Sn films was further reduced. Meanwhile, sintered Cu particles on pure Cu film were 
also connected with each other14, so that the charge of Cu film could transport between the melt Cu particles just 
like the bulk Cu. Owing to the greater conductivity of bulk Cu (1.68 μΩ·cm) than bulk Sn (10.1 μΩ·cm)27,29, the 
conductivity of Cu film sintered by higher energy density were better than Cu/Sn particle ink films, as shown in 
Fig. 1. Figure S7 in Supplementary Information showed the EDS mapping images of Cu/Sn film (1:1) before and 
after sintering, which are provided in the Cu (green) and Sn (red) distribution. These images confirmed that the 
Cu/Sn ink was well-distributed.

In order to verify that oxidized Cu particles were reduced to pure Cu particles at the high energy density of 
4.69 J/cm2, XPS analysis before and after sintering were conducted. As showed in Fig. 4a,b, curve fitting with 
Gaussian function divided Cu 2p3/2 region with two peaks around 932.6 eV and 934.6 eV, which resulted from Cu 
and CuO, respectively30. Before sintering, there was a small Cu 2p3/2 peak around 934.6 eV (Fig. 4a). But Cu 2p3/2 
peak around 934.6 eV nearly disappeared after sintering of 4.69 J/cm2 (Fig. 4b), manifesting CuO did not exist on 

Figure 1.  Sheet resistance of Cu and Cu/Sn film (2:1 and 1:1) with respect to different sintered energy density of 
2.64 to 5.02 J/cm2, (inset) the sintered screen-printed metal films.
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the surface of Cu particles and was totally reduced to Cu by the decomposition of PVP28. So the Cu particles on 
Cu and Cu/Sn films were sintered completely by 4.69 J/cm2. At the same time, the XPS analysis of Sn particles was 
carried out to measure the surface composition (Fig. 4c,d). The Sn spectrum showed two peaks due to spin-orbital 
coupling of the 3d state: Sn 3d5/2 at 485 eV and Sn 3d3/2 at 493.4 eV11. As shown in Fig. 4c,d, regardless of the flash 
light-sintering process, the Sn 3d5/2 region was divided into two peaks: one strong peak has a binding energy of 
485 eV (Sn), another extremely weak peak was around 487 eV, indicating SnOx

11,31. This data indicated that Sn 
particles was barely oxidized during the IPL process.

Figure 2.  SEM images of Cu and mixed Cu/Sn films before and after sintering by IPL. The top row images (a, 
b, c) are pure Cu ink, the central row (d, e, f) a 2:1 mixture and the bottom row (g, h, i) a 1:1 mixture. The left 
column (a, d, g) correspond to samples before sintering, those in the central column (b, e, h) to 3.25 J/cm2 and 
those in the right column (c, f, i) to 4.69 J/cm2.

Figure 3.  Sintered schematic diagram of Cu and mixed Cu/Sn films under low energy and high energy: (a) Cu 
ink film; (b) Mixed Cu/Sn ink film.
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To compare the mechanical flexibility of sintered Cu and Cu/Sn films, rolling tests were conducted. Figure 5 
presented the sheet resistance change about sintered Cu/Sn hybrid films after rolling (ΔR/R0). All the films in the 
rolling test were sintered at 4.69 J/cm2. After 500 cycles, ΔR/R0 for Cu film was 0.65 while the values for Cu/Sn 
hybrid films of 2:1 and 1:1 were 0.76 and 1.25, respectively, implying that the sheet resistance just changed a little 
and exhibited good property of mechanical stability. It was noteworthy that ΔR/R0 went up when the mass ratio 
of Sn in Cu ink was increased. This phenomenon was attributed to that fully melt Sn particles under high energy 
were fused with Cu particles together (as presented in Fig. 2i) while Cu particles for Cu film could not be fused 
completely (Fig. 2c). But ΔR/R0 for both films retained constant after 2000 cycles and just kept below 1.5, showing 
good mechanical stability.

Photonic sintering of hybrid printed Cu and Cu/Sn metal-mesh TCFs.  Both the Cu and Cu/
Sn ink were applied to hybrid printing of metal-mesh TCFs. Due to faster heat dissipation compared with the 

Figure 4.  XPS spectra of Cu and Sn particles before and after sintering: (a) Cu and (c) Sn particles before 
sintering; (b) Cu and (d) Sn particles after sintered by 4.69 J/cm2.

Figure 5.  Rolling fatigue test results of Cu and mixed Cu/Sn films.
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scree-printing continuous films, it was found that the higher sintering energy was needed for the narrower Cu 
grids (3.5 μm) of metal-mesh TCF to achieve the melting temperature of Cu particles32. As a result, the energy 
density of 4.66–10 J/cm2 was applied by experimental optimization, using one pulse with fixed 2.6 kV. But many 
defects and fractured Cu grids were observed on Cu metal-mesh TCF (as showed in Supplementary Fig. S10) 
because of massive heat and stress concentration.

In contrast to the hybrid printed Cu metal-mesh, the Cu/Sn particle ink needs lower sintering energy as dis-
cussed above. Figure 6a showed the sheet resistance values plotted across the energy density of between 4.66 J/
cm2 and 10 J/cm2. We found that the sheet resistance was lying on the decreasing curve before 8.66 J/cm2. And Cu 
metal-mesh TCF, which had the transmittance of about 84% at 550 nm (Supplementary Fig. S3), had the lowest 
sheet resistance of 3.8 Ω/□. However, the conductivity would fall off while sintered energy was higher than 8.66 J/
cm2. For Cu/Sn metal-mesh TCF, it reached the lowest sheet resistance of 14.5 Ω/□ when sintered by 7.33 J/cm2 
and kept almost invariable after 7.33 J/cm2.

Though the conductivity of hybrid printed Cu/Sn metal-mesh TCF was not as advantageous as the Cu 
metal-mesh TCF, the great benefit of lowering photonic sintering energy is the reduced defect level in the TCFs. 
To quantify the defect level of TCF, the quality of film was evaluated using a grade scheme33. Grade 1 indicates 
perfectly intact structures in all parts of the test pattern. Grade 2 indicates minor fractured lines. Grade 3 indicates 
destructive lines and structures below 5% of the whole area. Grade 4 indicates destructive lines and structures at 
5% to 20% of the whole area. Grade 5 indicates major damage that make it difficult to measure the sheet resist-
ance. The optical microscope images for different grades were exhibited in Supplementary Fig. S11.

Figure 6b exhibited the relationship between the film grade and sintering energy. Cu metal-mesh TCF do 
not show any damage before sintering energy density of 6.66 J/cm2. After 7.33 J/cm2, the structure showed some 
damages, and the higher energy density was, the more significant the destruction was. For Cu/Sn metal-mesh 
TCF (1:1), it displayed excellent film quality before 7.99 J/cm2 and just a slight damage after 8.66 J/cm2. Figure 7 
also presented the optical microscopic images of Cu and Cu/Sn metal-mesh TCF sintered by 7.99 J/cm2. The 
plastic substrate for Cu metal-mesh TCF was deformed and Cu lines in the trenches were broken while Cu/Sn 
metal-mesh TCF exhibited perfectly intact structure. The much reduced damage was probably the result that the 
melting of Sn particles consumed additional heat, limiting the maximum temperature. The DSC was analyzed for 
particles to support the speculation. As shown in Supplementary Fig. S9, the DSC curves of Sn and mixed Cu/Sn 
ink presented the endothermic peak around 230 °C while it did not exist in the Cu ink, which means that the Cu 
metal-mesh TCF has higher instantaneous temperature than Cu/Sn metal-mesh TCF under the same condition, 
causing unreleased massive stress32,34–37. On the other hand, the melting of Sn particles around Cu particles played 
the role of releasing part of stress caused by momentary temperature. Consequently, Cu metal-mesh TCF was 
damaged more easily while Cu/Sn metal-mesh TCF was not.

Figure 8 showed the result of adhesion test on metal-mesh TCFs according to ASTM D3359 standard. 
Figure 8a,b presented the images of Cu metal-mesh TCF sintered by 7.99 J/cm2 before adhesion test. After the 
adhesion test, most of the Cu fell off the trenches, and only 10% of Cu particles left (Fig. 8c,d), resulting in no 
conductivity. Figure 8e,f are the images of Cu/Sn metal-mesh TCF before adhesion test. After adhesion test, more 
than 90% of Cu/Sn were still in the trenches (Fig. 8g,h), resulting in the TCF still conductive at the sheet resist-
ance of 28 Ω/□. The Cu grids actually protruded out of the surface due to heat induced stress while there was no 
noticeable protruding for Cu/Sn metal-mesh TCF (Supplementary Fig. S2). As a result, stronger adhesion of Cu/
Sn than Cu only metal-mesh TCF was achieved.

Discussion
A Cu/Sn hybrid ink has been developed by mixing Cu and Sn particles. The hybrid ink requires lower sinter-
ing energy than normal copper ink and has been successfully employed in a hybrid printing process to make 
metal-mesh transparent conductive films (TCFs). The sintering energy of Cu/Sn hybrid films with the mass ratio 
of 2:1 and 1:1 (Cu:Sn) were decreased by 21% compared to sintering pure Cu film, which is attributed to the lower 
melting point of Sn for hybrid ink. Detailed study showed that the Sn particles were effectively fused among Cu 

Figure 6.  (a) The sheet resistance and (b) Destruction grade of Cu and Cu/Sn hybrid metal-mesh TCFs 
sintered by different energy intensity.

http://S10
http://S3
http://S11
http://S9
http://S2


www.nature.com/scientificreports/

6Scientific Reports | 7: 13239  | DOI:10.1038/s41598-017-13617-4

particles and formed conducting path between them. The hybrid printed Cu/Sn metal-mesh TCF with line width 
of 3.5 μm, high transmittance of 84% and low sheet resistance of 14 Ω/□ have been achieved with less defects and 
better quality than printed pure copper metal-mesh TCFs.

Methods
Preparation of Cu/Sn hybrid inks.  To fabricate Cu/Sn hybrid inks, commercially available Cu particles 
with oxide shells (150 nm ± 30 nm in diameter, oxide thickness <3 nm; Suzhou NanoGrid Technology Co. Ltd) 
and Sn particles (100–300 nm in diameter; Sigma-Aldrich) were used in this study, as shown in Supplementary 
Fig. S4. Polyvinyl pyrrolidone (PVP, Mw 44000–54000) as the capping agent and ethyl cellulose used as adhesion 
agent were purchased from Sinopharm chemical reagent Co. Ltd. And Cu and Sn particles were dispersed in a 
mixed solvent containing 10 g of terpilenol, 1 g of PVP and 0.6 g of ethyl cellulose to fabricate Cu ink and Sn ink, 
respectively. Then Cu ink was mixed with different mass of Sn ink by stirring for 30 min, followed by ball milling 
for 8 h. Cu/Sn hybrid inks have different mass ratios of Cu to Sn, about 1:0, 2:1 and 1:1, respectively, as showed 
in Table 1.

Sintering of Cu and Cu/Sn hybrid ink by intensive pulse light (IPL).  Cu and Cu/Sn hybrid inks 
were screen-printed on a polyethylene terephthalate (PET) substrate with a thickness of 188 μm to fabricate Cu 
and Cu/Sn hybrid films, followed by drying on a hot box at 80 °C for 2 min. IPL from a xenon flash lamp system 
(Sinteron 2010, Xenon Corp.) was applied with A type lamp, of which wavelengths ranged from 370–800 nm. The 

Figure 7.  The optical microscope images of metal-mesh TCF sintered by 7.99 J/cm2: (a), (b) and (c) Cu metal-
mesh TCF; (d), (e) and (f) Cu/Sn metal-mesh TCF; (a) and (d) In laser and color modes; (b) and (e) In 3D 
mode; (c) and (f) In laser mode.

Figure 8.  The optical microscope images of metal-mesh TCFs before and after adhesion test: the top row of 
images showed Cu metal-mesh TCF sintered by 7.99 J/cm2; the bottom row showed Cu/Sn metal-mesh TCF; 
(a), (b), (e) and (f) before adhesion test; (c), (d), (g) and (h) after adhesion test.
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distance from the lamp to substrate stage was 3.5 cm. The sintered energy density of Cu and Cu/Sn hybrid films 
from 2.68 J/cm2 to 5.02 J/cm2 was used with the single pulse. It was adjusted by increasing the single pulse time 
with constant voltage of 2.3 kV.

After sintering, the sheet resistance of Cu or Cu/Sn hybrid films was measured by four-point probe station 
(Suzhou Jingge Electronic Co., Ltd). The microstructure, surface and elemental mapping of films were tested by 
scanning electron microscopy (SEM, Quanta 400 FEG). The absorption spectra of Cu and Sn NPs were analyzed 
with a UV-visible spectrometer (Lambda 750, PerkinElmer).The surface profiles were analyzed by using step pro-
filer (Dektak XT, Bruker Corporation). Differential scanning calorimetry (DSC) was performed Netzsch DSC F3 
Maia (Germany) at a heating rate of 10 °C min−1 from room temperature to 270 °C under a nitrogen atmosphere.

The mechanical property of sintered Cu/Sn ink films was measured by rolling radius of 10 mm; all kinds 
of conducting films in rolling test were sintered by 4.69 J/cm2 and the sheet resistance change after rolling was 
determined by:

R/R (R R )/R , (1)0 0 0∆ = −

R0 was the initial sheet resistance, and R was the sheet resistance measured after rolling.

Fabrication and sintering of Cu and Cu/Sn metal-mesh TCFs.  The Cu and Cu/Sn metal-mesh TCFs 
were prepared by our proprietary work21, and the fabrication process was presented in Supplementary Fig. S1. 
Firstly, the imprinting technology was used with the imprinting Ni master plate to form the mesh pattern on 
PET. Then Cu and Cu/Sn hybrid inks were filled into the trenches by blading. Finally, metal-mesh TCF was 
dried on a hot box at 80 °C for 2 min. The mesh pattern had a transmittance of 91% at 550 nm (as showed in 
Supplementary Fig. S3). Hexagonal trench structures were 3.5 μm in line width, 3 μm in depth and 74 μm in 
side length (Supplementary Fig. S5). By blading particle ink, the height of the metal grid was about 2.5–2.7 μm. 
The sintered energy density of Cu and Cu/Sn metal-mesh TCF from 4.66 J/cm2 to 10 J/cm2 was used, which was 
adjusted by changing the single pulse time with constant voltage of 2.6 kV. The sheet resistance of sintered Cu and 
Cu/Sn hybrid metal-mesh TCFs was measured by four-point probe station. Metal-mesh TCFs were characterized 
by the optical microscope (color 3D laser scanning microscope VK-9710, KEYENCE). The adhesion of Cu or 
Cu/Sn metal-mesh TCFs after sintering was tested according to the ASTM D3359 standard (An international 
standard)24.
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