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Abstract

A crucial and limiting factor in data reuse is the lack of accurate, structured, and complete 

descriptions of data, known as metadata. Towards improving the quantity and quality of metadata, 

we propose a novel metadata prediction framework to learn associations from existing metadata 

that can be used to predict metadata values. We evaluate our framework in the context of 

experimental metadata from the Gene Expression Omnibus (GEO). We applied four rule mining 

algorithms to the most common structured metadata elements (sample type, molecular type, 

platform, label type and organism) from over 1,3 million GEO records. We examined the quality 

of well supported rules from each algorithm and visualized the dependencies among metadata 

elements. Finally, we evaluated the performance of the algorithms in terms of accuracy, precision, 

recall, and F-measure. We found that PART is the best algorithm outperforming Apriori, Predictive 

Apriori, and Decision Table. All algorithms perform significantly better in predicting class values 

than the majority vote classifier. We found that the performance of the algorithms is related to the 

dimensionality of the GEO elements. The average performance of all algorithm increases due of 

the decreasing of dimensionality of the unique values of these elements (2697 platforms, 537 

organisms, 454 labels, 9 molecules, and 5 types). Our work suggests that experimental metadata 

such as present in GEO can be accurately predicted using rule mining algorithms. Our work has 

implications for both prospective and retrospective augmentation of metadata quality, which are 

geared towards making data easier to find and reuse.
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1. INTRODUCTION

Biomedical data is increasingly being viewed as a valuable commodity that can be mined for 

new insights beyond that for which it was created. Large community-focused databases such 

as the Gene Expression Omnibus (GEO) [1] or the database of Genotypes and Phenotypes 

(dbGAP) [2] offer a wealth of omics' data that have been used in developing diagnostic, 

prognostic, and therapeutic models [3, 4]. One crucial and limiting factor in the reuse of data 

lies in having access to accurate descriptions about the data - known as metadata. 

Community standards to describe an experiment (e.g. Minimum Information About a 

Microarray Experiment; MIAME [5]) are being widely promoted to highlight essential 

metadata, but creating good metadata can be challenging [6, 7].

Indeed, metadata is often of low quality, and many entries are absent, erroneous or 

inconsistent. The largest database of gene expression studies, the GEO microarray database, 

contains 50,000 studies, over 1.3 million samples, and is still growing [1]. Yet the 

description of these samples suffers from a lack of consistency and completeness. For 

example, a preliminary analysis revealed that are 32 different ways to specify the age in 

GEO (e.g. age, Age, Age years, age year). Yet, these metadata are essential for researchers 

to find and reuse datasets of interest. When metadata are incomplete or inaccurate, 

researchers will miss relevant hits while being forced to sift through irrelevant results - 

resulting in lower productivity and potentially weaker scientific analyses. These issues are 

often attributed to lack of appropriate supporting infrastructure [8].

Metadata authoring applications such as ISA-Tools [9] or RightField [10] can be used to 

codify guidelines that specify multiple metadata elements and require users to use a set of 

controlled terms, such as terms from specified ontologies contained in the NCBO BioPortal 

[11]. Yet even with such tools, authoring good metadata is tedious and error-prone, and 

could benefit from more automation. The development of more effective platforms for 

metadata authoring and discovery is one of the goals of the Center for Expanded Data 

Annotation and Retrieval (CEDAR) [7, 8].

In this study, we examine the utility of supervised machine learning to predict metadata from 

existing metadata. This will help metadata submitter during the submission process. 

Predicting metadata could be a guideline for template authors during the process of metadata 

definition. This facility will not only significantly facilitate the template definition task but 

also will make the resulting templates more comprehensive and reflective of the actual data. 

In CEDAR we also take advantage of emerging community-based standard templates for 

describing different kinds of biomedical datasets, and we investigate the use of 

computational techniques to help investigators to assemble templates and to fill in their 

values [7].
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Learning value sets from data will help ensure that template authors do not miss important 

value sets that appear frequently in the data. Thus, data submitters will be able to find the 

terms they need, hence improving the quality of the metadata.

We use the increasing amounts of structured metadata to learn from as the project progresses 

and learn value sets conditional on the experimental level metadata. This incorporation of 

structural knowledge into the learning technology will allow us to infer common metadata 

patterns and their value sets in the context of technology platform, organism, molecule, label 

or sample type. Our key goal is to facilitate as much of the metadata collection process as 

possible, by suggesting possible value sets for the fields based on available data. This 

process will limit the value options, will reduce the burden of entering metadata terms and 

will significantly shorten the time that is needed for investigators to enter metadata.

We found that experimental metadata such as present in GEO can be accurately predicted 

using rule mining algorithms. Our work has implications for both prospective and 

retrospective augmentation of metadata quality, which are geared towards making data easier 

to find and reuse.

2. BACKGROUND

Supervised learning uses classification algorithms to learn from data and make predictions. 

The goal of supervised learning is to build a model of the distribution of class labels from 

instances [12]. The classifier can then assign class labels to instances in which the values of 

the predictor features are known, but the value of the class label is unknown. Numerous 

supervised classification techniques have been developed including decision trees, artificial 

neural networks, and statistical techniques such as bayesian networks [12]. Machine learning 

has been widely applied across domains including the biomedical domain [13], such as 

protein function prediction [14], clinical outcome prediction [15] and survival analysis [16].

As we mentioned earlier, this study specifically is about metadata and association between 

them. Therefore, using machine learning will be helpful to mine the data, learn from the 

data, and find this association. In our study, we wanted to find the correlation between 

metadata elements and their values. Association rules are the main technique for data mining 

to find these correlations. Sharma et al., compared association rule mining algorithms (e.g. 

AIS and FP-Growth, and Apriori) [17]. Each algorithm has advantages and disadvantages 

according to their comparison. For example, AIS requires multiple scanning of the database, 

only rules that have one item in right side can be generated, and too many candidate itemsets 

are generated. FP-Growth also has some disadvantages such as the resulting FP-Tree is not 

unique for the same logical database and it cannot be used in interactive mining system. 

Apriori is scanning the complete database multiple times but still, it is easy to implement. 

Predictive Apriori algorithm overcomes this disadvantage of the Apriori algorithm with 

scanning the beast n rules instead of scanning all rules. PART algorithm uses partial decision 

trees to generate the decision list that is shown in the output, but only this final list is what is 

used to make classifications and with that, we have better performance.
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In previously published manuscript [18], we proposed a framework to predict structured 

metadata terms from unstructured metadata for improving quality and quantity of metadata, 

using the Gene Expression Omnibus (GEO) microarray database. Our framework consists of 

classifiers trained using term frequency-inverse document frequency (TF-IDF) features and a 

second approach based on topics modeled using a Latent Dirichlet Allocation model (LDA) 

to reduce the dimensionality of the unstructured data. Our results based on GEO database 

showed that structured metadata can be predicted with TF-IDF more accurate than LDA. 

And both TF-IDF and LDA are outperforming the majority vote baseline as well. Overall 

this is a promising approach for metadata prediction that is likely to be applicable to other 

datasets and has implications for researchers interested in biomedical metadata curation and 

metadata prediction. Considering that metadata is structured and unstructured in GEO and 

other resources, we decided to find the correlation between structured metadata. In this 

study, we found the correlation between selected structured metadata elements versus in 

previous work we predicted structure metadata from the free text. Structure metadata has a 

potential to be predicted and suggested to metadata template author or metadata submitter 

during the submission process based on each other.

Several studies have been done regarding GEO metadata prediction. For instance Buckberry 

et al., [19] presented a method for predicting the sex of samples in gene expression 

microarray datasets. They believe that the metadata associated with many publicly available 

expression microarray datasets often lacks sample sex information, therefore limiting the 

reuse of these data in new analyses or larger meta-analyses where the effect of sex is to be 

considered. The package called massiR provides a method for researchers to predict the sex 

of samples in microarray datasets. ”This package implements unsupervised clustering 

methods to classify samples into male and female groups, providing an efficient way to 

identify or confirm the sex of samples in mammalian microarray datasets" [19]. As it is clear 

this study is just about particular field in GEO data and it is specialized to predict the sex of 

the samples.

In this study, we propose methods to predict structured metadata. This method is applicable 

to any structured metadata in biomedical field. We use association rule mining (ARM) 

algorithms due to their interpretability and good performance [20]. ARM is a method for 

discovering relations between variables in large databases. [21]. ARM was defined by 

Agrawal in the early 90s in relation to a so called market basket analysis using APRIORI 

[20]. Since then, multiple studies have used this technique successfully to model data [22]. 

For example, ARM has been used to predict infection detection [23], to detect common risk 

factors in pediatric diseases [24], to understand the interaction between proteins [25], to 

discover frequent patterns in gene data [22], and to understand what drugs are co-prescribed 

with antacids [26]. To the best of our knowledge, ARM has not yet been applied for 

predicting experimental metadata.

3. OBJECTIVE

We hypothesized that there are strong correlations between metadata elements and their 

values that can be used to predict metadata. The goal of this study is to predict the metadata 

based on the correlation between them. For example, there is a correlation between 
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platforms, organism, and type. For GPL570 as a platform and Homo Sapiens as an organism 

a possible type of the study is RNA. We used four algorithms: Apriori, Predictive Apriori, 

Decision Table and PART (see below). We used these algorithms to find the association 

between metadata elements and to predict the value of each element of interest. We then 

evaluated our approach using a standard cross-validation of experimental metadata from 

GEO, a primary repository of gene expression data.

4. MATERIALS AND METHODS

4.1. Metadata

Our work focused on GEO [1], a large and well known database of gene expression data 

which contains experimental metadata authored by the original data submitters. We used 

the ”GEOmetadb” package [27] in R [28] to query and obtain the metadata for microarray 

experiments. GEOmetadb implements an SQLite database that stores all the metadata 

associated with all GEO data types including GEO samples (GSM), GEO platforms (GPL), 

GEO data series (GSE). GEO itself stores curated gene expression DataSets (GDS) that 

allows non-technical users to identify and visualize differentially expressed genes in a given 

study. However, GEO DataSet curation is not standardized across studies which preclude 

more powerful methods such as integrated meta-analysis across multiple experiments to find 

robust gene signatures. GDS have not been considered in this study.

The GEO database as of October 2015 contains 1,368,682 individual sample records in 

50,000 studies or series. It includes 1.4 million samples now (June 2016), which is decreased 

to 1.2 million samples after removing elements that occur less than 250 times. A series is 

identified with a series id (i.e. GSExxxxx) and each series consist of one or more samples. A 

sample (identified with GSMxxxxx) describes the set of molecules that are being probed and 

references a platform (i.e. GPLxxxxx) used to representing the molecular data [1]. Each 

study is annotated with up to 32 metadata fields representing the conditions under which the 

sample was handled. There are 32 fields (16 for each channel of study including ch1 and 

ch2).

After discussion with the researchers in the field we considered five common structured 

elements for this study including (sample type, molecular type, platform, label type and 

organism (Table 1)) from 16 elements (title, gsm, series-id, gpl, status, submission data, last-

update-date, type, sources name, organism, characteristics, molecule, label, treatment 

protocols, extract-protocol, label -protocol). Other elements are date related (e.g. last-

update-date) or they are considered as unstructured (e.g. title) metadata. Therefore, we 

removed free text and date related information. We also removed the studies with more than 

half missing value. We explained the prediction for unstructured metadata such as title of the 

study in our previous work. We define a structured element as a metadata element which 

contains a single concept, such as the organism from which the material was derived. More 

specifically, GEO metadata includes 5 sample types (e.g. RNA, genomic), 9 types of 

molecules that were extracted from the biological material (e.g., total RNA, cytoplasmic 

RNA), 12,431 different platforms (e.g., GPL13653 for Affymetrix GeneChip Rat Genome 

U34A Array), 1,641 compounds used to label the samples (e.g., biotin, Cy3) and 2,434 

organisms (e.g. mus musculus). We removed elements that occur less than 250 times to 
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avoid the long tail, resulting in modeling 2,697 platforms, 5 types, 537 organisms, 9 

molecule, and 454 labels (Table 2). We also made sure we did not reduce the number of type 

and molecule with this set up threshold, which they were not that many to begin with.

4.2. Association Rule Mining Algorithms

In this section, we describe the four different Association Rule Mining Algorithms (ARM) 

algorithms including Apriori, Predictive Apriori, Decision Table and PART. These 

algorithms have been used to learn the rules and find the possible associations between five 

structural GEO elements and their values. We compared all four algorithms with the 

majority vote classifier representing the baseline model.

An association rule is an implication expression of the form X to Y, where X and Y are 

disjoint itemsets. The strength of an association rule can be measured in terms of its support 

and confidence. Support determines how often a rule is applicable to a given data set, while 

confidence determines how frequently items in Y appear in transactions that contain X [17].

The Apriori algorithm identifies association rules by identifying frequently occurring item 

sets [20]. An item set is called frequent when its support is above a defined minimum 

support. An item set X of length L is frequent if and only if all subsets of X with length L 
− 1 are frequent. For every frequent tem set T and every non-empty subset S of T, Apriori 

outputs a rule of the form S ⇒ (T − S) if and only if the confidence of that rule is above the 

user specified threshold. To run the algorithm some parameters had to be defined (e.g. T=0: 

The metric type which has been used to rank the rules. (default = confidence); C=0.9: The 

minimum confidence of a rule; D= 0.05: The delta by which the minimum support is 

decreased in each iteration; U =1.0: Upper bound for minimum support; M = 0.1: The lower 

bound for the minimum support). Apriori is easy to implement, but it is computationally and 

memory intensive.

Predictive Apriori [29] is a variant of Apriori that searches for the best ’n’ rules using a 

support-based corrected confidence value. Since we just look at the best n rules is this 

algorithm, to run the algorithm we need to set the particular class attribute to predict as well 

(C= the class index for the chosen element to predict from 1 to 5) in each run. Predictive 

Apriori maximizes the accuracy and minimizes the number of searches as compared to 

Apriori. A rule is added if the expected predictive accuracy of the rule is among the ’n’ best 

and it is not subsued by a rule with at least the same expected predictive accuracy [30].

A Decision Table [31] is a compact and easy to understand method to show the relationship 

between a series of conditions and resultant actions. It is based on a decision tree, where 

each node represents a feature and each branch represents a value that the node can assume. 

To run the algorithm some other parameters had to be defined (e.g. D=1 to set the forward 

search and N=5 which is the number of non-improving nodes to consider before terminating 

search). A Decision Table can be translated into a set of rules by creating a separate rule for 

each path from the root to a leaf in the tree constructing an optimal binary.

Finally, PART [32] is an algorithm that uses partial trees to generate near-optimal decision 

list. This list is what is used to make classifications. Once a partial tree has been build, a 
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single rule is extracted from it. To run the PART algorithm considering previous parameters 

we also set minimum number of instances per leaf equal to M=2. The difference between 

heuristics for PART and heuristics for Decision Table is that the latter evaluate the average 

quality of a number of disjointed sets (one for each value of the feature that is tested), while 

PART only evaluate the quality of the set of instances that is covered by the candidate rule.

4.3. Experimental Setup and Evaluation Framework

We used the four ARM algorithms to discover rules from our GEO dataset (Figure 1). We 

predicted each feature based on the other features (e.g. ’type’ was predicted using molecule, 

label, platform, and organism). An example of a rule is: if organism=Homo Sapiens, 

molecule=total RNA then type=RNA. We performed 90:10 cross-validation in which we 

used 90% of the sample data for training and 10% for testing. Since the same sample can be 

used in another series, we partitioned the dataset by superseries such that samples that 

belong to the same study are either all in the training set or all in the test set. We assessed 

classifier performance based on the standard metrics for accuracy, precision, recall and F-

measure [33]. The summary of the process of metadata prediction is shown in Figure 1.a. 

We then identified predictive features by counting the number of times a feature was 

selected as a feature in the model. We visualized the dependencies between all features as a 

network.

Results

In this section, we discuss rules discovered with each of the four ARM algorithms over the 

experimental metadata from the GEO database. We report on the performance of each 

algorithm, and discuss associations within the rulesets.

Over five thousand rules were generated from the analysis of the GEO database. We divided 

the rules into two kinds of rules: 1) complex rules having at least two elements in the 

antecedent, and 2) simple rules having only one element in the antecedent and one in the 

consequent. Figure 1.b. highlights rules to predict four metadata elements: RNA, Genomic, 

SAGE, and SRA. For example rule 1.1 is a complex rule to predict sample type using values 

from the other 4 features. This rule predicts RNA as type when the platform is GPL570 (i.e. 

the Affymetrix Human Genome U133 Plus 2.0 platform), the label is Biotin, the type of 

molecule that was extracted from the biological material is total RNA, and the sample was 

obtained from humans (Homo sapiens). In contrast, rule 3.4 is a simple rule that predicts the 

sample type as SAGE, when the platform used is GPL4. For the most common sample type, 

RNA, the generated rules have more variety with varying rule complexity (e.g. rule 1.1 with 

length 5 compared to rule 1.4, a simple rule). For the metadata element type, the value SRA 

is only predicted with the length of up to 3 (e.g. rules 4.1,4.2). Next, Figure 1.c. provides 

insight into reoccurring values in rules generated by the PART algorithm. For instance, the 

label Cy3 is most frequently used.

Next, we sought to understand how each of the four rule mining algorithms performed for 

each of the five selected features drawn from the GEO dataset. Figure 2 shows the 

performance using F-measure, precision, recall and accuracy for each of the four algorithms 

and the majority vote baseline. Our results indicate that PART is the best classifier. Also, 
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only PART and Decision Table consistently outperformed the majority vote classifier for 

predicting all features that we examined. PART and Decision Table outperformed Apriori 

and Predictive Apriori for Label, Organism, and Type. As shown in Figure 2 for each 

performance measurement we considered the confidence interval. We calculated the 

confidence interval for 10 iterations for each algorithm. As an example, Table S2 in 

supplementary materials shows the details regarding the calculation of traditional confidence 

interval for all algorithms.

Next, Figure 3 shows the F-measure to predict the metadata element type using all four 

algorithms. Our results suggest that the accuracy of predicting specific metadata values can 

vary significantly for each algorithm. For instance, ’RNA’, ’SRA’, and ’GENOMIC’ is near 

perfectly predicted by PART, while lower performance is seen for predicting the ’PROTEIN’ 

and ’SAGE’ types. The Decision Table follows the same trend as PART, but is less 

successful for each metadata value for this metadata element. Apriori and Predictive Apriori 

predict ’RNA’, but largely fail for the other values. Apriori generates too many unnecessary 

candidates. A candidate itemset is unnecessary if at least one of its subsets is infrequent. 

This is the major reason that we have low performance in Apriori in general [34]. We report 

the F-measure for all values for all metadata elements in the supplementary materials (Table 

S1).

Next, we analyzed the rules to assess whether performance was influenced by length of rule. 

Figure 4 shows the rule length for all algorithms. We find that the median length of rules is 

lowest for PART and Predictive Apriori (length 2), while nearly all of the Decision Table 

rules have a length of 3. Apriori appears to have the greatest variety in length of rules.

Finally, we investigated the associations that exist between GEO metadata, at least as 

uncovered by each classifier.

Figure 5 shows the association network for rules generated by all algorithms. The 

association network shows the dependency between elements in each algorithm. On the 

other hand which elements can predict other elements. This association between elements 

also shows which element is more predictable based on other elements and reveals the power 

of each element to predict other elements. For example, in PART algorithm the platform 

(GPL) has a power to predict all other elements. It means we can predict the possible 

organism, molecule, type and label which are associated with the particular platform. As it 

shown in Figure 5, there are tick arrows from platform to other elements, which shows the 

strong power of prediction of other elements based on the platform. The same description 

assigned to other algorithm based on the arrows in the network in Figure 5.

5. DISCUSSION

In this work, we explored the use of ARM algorithms to predict structured metadata. Our 

results, based on the analysis of a subset of GEO's metadata elements, support the 

hypothesis that associations between certain metadata elements exist and can be used by 

ARM algorithms in a predictive manner. Our goal is to simplify the authoring of metadata as 

much as possible for metadata submitter with predicting the metadata value and recommend 
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that to the metadata submitter during the submission process. We show that algorithms, 

which have been used in this study, particularly PART and Decision Tables, perform better 

than using the most frequently occurring metadata value for a particular metadata element 

(i.e. majority vote classifier). We found differences in the length of rules generated by 

different algorithms and the quality of their predictions. While our work focused on the 

metadata in the GEO database, we anticipate that our approach can be applied to other 

databases of experimental metadata with similar levels of success.

Our research has important implications for initiatives aimed at improving the quantity and 

quality of metadata in a prospective and retrospective manner. Several efforts are devoted to 

prospective metadata authoring - they specify metadata that can, should, and minimally must 

be provided. BioSharing.org [6] catalogs guidelines, standards, and the policies for 

databases, journals, and funders. Metadata authoring applications such as ISA-Tools [9] or 

RightField [10] can be used to codify guidelines and enable users to author metadata using 

ontologies from the NCBO BioPortal [11]. Authoring good metadata is tedious and error-

prone, and could benefit from more automation. Our work shows that a subset of metadata 

elements can be predicted with sufficiently high accuracy. Thus, our predictive approach 

could be useful for metadata authoring. It could vastly reduce the amount of metadata 

authoring a submitter must do, but also potentially improve the quantity and quality of 

metadata. Generating higher quality metadata with less effort is a key part of our NIH BD2K 

Center for Data Annotation and Retrieval (CEDAR) [7], which is developing intelligent 

tools for metadata authoring and discovery [8]. We believe that the application of ARM and 

other machine learning algorithms will greatly accelerate metadata authoring, and improve 

the quality of research data submissions; failure to do so will likely continue the present 

situation wherein guidelines are variably applied [35]. Additionally, metadata prediction can 

be useful retrospectively. Our predictive framework can be used to highlight metadata values 

that differ from our predictions and may need to be more closely examined. We also 

anticipate that we could use the approach to predict missing metadata, subject again to 

further validation by professional users in the field or possibly through crowd-sourcing, 

which has been applied to find and categorize errors in Linked Data [36]. Our work is not 

without limitations. First, a key limitation in ARM algorithms lies in the vast number of 

discovered rules and the arbitrary thresholds applied to limit these rules. The main drawback 

is that the arbitrary thresholds may reduce the amount of information and affect the 

performance of the classifier specifically when we have the high variety of the values (e.g. 

values for the platform). Existing approaches employ different parameters to search for 

interesting rules [37, 38, 22]. This fact and a large number of rules make it difficult to 

compare the output of ARM algorithms. Several methods for solving this problem such as 

rule reduction methods, association rule refinement and association rules for supervised 

classification have been proposed [38]. Most studies suggest the latest one is the more 

effective one [38, 30, 22]. Second, our method is currently focused on learning rules from 

structured metadata. However, databases of experimental metadata often contain textual 

descriptions which could not be used directly in our approach. In previous work, we showed 

that experimental metadata could be predicted using classifiers trained with term frequency-

inverse document frequency (TF-IDF) based models [18].

Panahiazar et al. Page 9

J Biomed Inform. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://BioSharing.org


Finally, while our work showed promise in predicting some of the metadata values in GEO, 

it remains to be seen how well the approach will be with other experimental databases. We 

expect that our approach will work well with well structured data sets such as the Sequence 

Read Archive (SRA), but perhaps do less well on data sets with less metadata. Further study 

on data sets comprised of different sizes, different varieties of the values for each element, 

and different combination of structured and unstructured elements is needed. It is also 

unclear whether data from one database can be usefully combined with data from other 

databases to improve prediction.

6. CONCLUSION

We have shown that predicting metadata using ARM algorithms is possible using an existing 

large biomedical database such as GEO. Future work will focus on expanding this 

application to other databases such as Biosample datasets (e.g. SRA), more comprehensive 

metadata as well as aggregation with other models from our previous works on both 

structured and unstructured metadata [18]. GEO database includes both structured and 

unstructured metadata as well as other resources. We will extend our methods from previous 

work such as LDA and TF-IDF to other unstructured data (e.g. abstract of the related 

manuscript associated with the studies) to improve additional information to improve 

classification. However, an ensemble classifier could be considered to combine predictions 

given by different methods, i.e. from rule-based algorithms trained on structured metadata 

and from other machine learning methods trained on textual features. Predictive metadata 

can be used both prospectively to facilitate metadata authoring, and retrospectively to 

improve, correct and augment existing metadata in biomedical databases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Associations between certain metadata elements exist and can be used by 

ARM algorithms in a predictive manner.

• Particularly PART and Decision Tables, perform better than using the most 

frequently occurring metadata value for a metadata element.

• Our predictive approach could be useful for metadata authoring. It could 

vastly reduce the amount of metadata authoring a submitter must do, but also 

potentially improve the quantity and quality of metadata.
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Figure 1. 
a. Overview of experimental design. b. Examples of rules generated by rule mining 

algorithms grouped by type and ordered by decreasing complexity. c. A word cloud 

containing high frequency values in rules from the PART algorithm.
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Figure 2. 
Evaluation Results: Performance measurements for weighted class averages for each 

element for all algorithms.
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Figure 3. 
F-measure for predicting different values for the “type” element for each algorithm.
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Figure 4. 
Box plot for the distribution of the rule length for all algorithms.
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Figure 5. 
A network diagram illustrating associations between all elements (GPL for platform, Type, 

Organism, and Molecule) in rules generated by all algorithms. This association shows which 

element is more predictable based on other elements. It also reveals the power of each 

element to predict other elements. Thick lines indicate associations of bigger than 0.5 

(strong association), medium lines indicate associations between 0.05 and 0.5. Associations 

of strength less than 0.05 are thin lines (weak association).
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Table 1

Structured metadata elements in GEO. This table lists the structured metadata elements along with a 

description of each element [1].

Element Description

Platform A platform is a list of probes that define what set of molecules may be detected (GPLxxxxx).

Type Type of sample.

Organism The organism(s) from which the biological material was derived for experiment.

Molecule Type of molecule that was extracted from the biological material.

Label The compound used to label the extract.
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Table 2

Number of classes in our experimental setup. This table shows the number of classes which constitute as well 

as example values, for each structured element.

Element Name classes selected classes Example Values

Platform 12431 2697 gpl570, gpl1261

Type 5 5 rna, genomic, sra

Organism 2434 537 homo sapiens, zea mays

Molecule 9 9 total rna, polya rna

Label 1641 454 biotin, cy3, cy5
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