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Autosomal recessive congenital ichthyosis: CERS3
mutations identified by a next generation sequencing
panel targeting ichthyosis genes

Leila Youssefian1,2,12, Hassan Vahidnezhad1,3,12, Amir Hossein Saeidian1, Soheila Sotoudeh4,
Hamidreza Mahmoudi5, Maryam Daneshpazhooh5, Nessa Aghazadeh5, Rebecca Adams6, Alireza Ghanadan5,7,8,
Sirous Zeinali3,9, Paolo Fortina6,10 and Jouni Uitto*,1,11

There are at least 38 mutant genes known to be associated with the ichthyosis phenotypes, and autosomal recessive congenital

ichthyosis (ARCI) is a specific subgroup caused by mutations in 13 different genes. Mutations in some of these genes, such as

CERS3 with only two previous reports, are rare. In this study, we identified mutations in candidate genes in consanguineous

families with ARCI with a next generation sequencing (NGS) array that incorporates 38 ichthyosis associated genes. We applied

this sequencing array to DNA from 140 ichthyosis families with high prevalence of consanguinity. Among these patients we

identified six distinct, previously unreported mutations in CERS3 in six Iranian families. These mutations in each family

co-segregated with the ichthyosis phenotype. The patients demonstrated collodion membrane at birth, acrogeria, generalized

scaling, and hyperlinearity of the palms and soles. The presence of a significant percentage of CERS3 mutations in our cohort

depicts a marked difference between the etiology of ichthyoses in genetically poorly characterized regions and well-characterized

western populations. Also, it shows that rare alleles are more prevalent in the gene pool of consanguineous populations and

emphasizes the importance of these population studies for better understanding of ichthyosis pathogenesis.
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INTRODUCTION

Generalized Mendelian disorders of cornification are caused by
mutations in genes that play a role in epidermal differentiation and
barrier function, and there are as many as 38 distinct genes known to
be associated with the ichthyosis phenotypes.1 This group of disorders
is highly heterogeneous both in phenotypic presentation, characterized
by scaling and hyperkeratosis, as well as in genetics, manifesting with
autosomal dominant, autosomal recessive or X-linked recessive
inheritance. Autosomal recessive congenital ichthyosis (ARCI) is a
specific subgroup of inherited ichthyoses, and mutations in as many as
13 distinct genes important for keratinization and lipid metabolism
have been described in ARCI; these genes include ABCA12, ALOXE3,
ALOX12B, CASP14, CERS3, CYP4F22, LIPN, NIPAL4, PNPLA1,
SDR9C7, ST14, SULT2B1, and TGM1.2 Mutations in some of these
genes, for example TGM1, are relatively common while mutations in
other genes, including PNPLA1, LIPN, and CERS3, have been reported
only in a limited number of families. For example, only two reports on
mutations in CERS3 have been published on consanguineous Turkish
and Tunisian families.3,4 Here we ascertained a large cohort of 140
distinct Iranian families affected by non-syndromic and syndromic
forms of ichthyosis. To disclose the molecular pathology of ichthyoses

in Iran, a country of ~ 80 million inhabitants with high prevalence of
customary consanguineous marriages, we designed a disease-targeted
next generation sequencing (NGS) panel covering 38 genes associated
with different forms of ichthyoses. In this study, we found six
different, previously unreported, homozygous mutations in CERS3
in six consanguineous Iranian families.

MATERIALS AND METHODS

Patients and clinical phenotyping
This study was approved by the Institutional Review Board of the Pasteur
Institute of Iran, and all subjects and parents or guardians of under-aged
patients gave written informed consent to participate in this research. In this
study, 140 extended families affected by non-syndromic and syndromic forms
of ichthyosis, diagnosed in various medical centers in Iran were subjected to
genetic analysis. In 112 of these families, specific mutations were disclosed in 16
distinct genes. In this report, we focus on clinical and genetic characteristics of
patients representing six families with mutations in CERS3.

Next generation sequencing and data analysis
DNA was extracted from peripheral blood samples by a kit (QIAamp Blood
Maxi Kit; Qiagen, Valencia, CA, USA) or by salting out method.5 DNA
concentration was measured using a Qubit 2.0 fluorometer (Life Technologies,
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Carlsbad, CA, USA). Target enrichment was performed using the TruSeq
Custom Amplicon kit (Illumina Inc., San Diego, CA, USA). DesignStudio
(Illumina Inc.) was used for library design. All coding exons, at least 20 bp of
the intron at each intron–exon boundary, and up to 50 bp of 3′-UTRs were
targeted. The targeted NGS sequencing panel contained 38 genes (ABCA12,
ABHD5, AGPS, ALDH3A2, ALOX12B, ALOXE3, AP1S1, ARSE, CERS3,
CLDN1, CYP4F22, EBP, ELOVL4, GJB2, GJB3, GJB4, GJB6, KRT1, KRT10,
KRT2, KRT9, LIPN, LOR, NIPAL4, PEX7, PHYH, PNPLA1, PNPLA2, POMP,
SLC27A4, SNAP29, SPINK5, ST14, STS, TGM1, TGM5, VPS33B, and
ZMPSTE24) divided into 351 targets covered by 558 amplicon probes which
were designed to cover 99% of targeted bases. A total of 93.2% of the reads
were aligned to the human genome, with the mean coverage of the target region
being 493X. In addition, only 0.4% of bases of the target region were not
covered by any sequence read, indicating that 99.6% of all target region bases
were sequenced at least once. Genomic DNA from 140 probands each
representative of a distinct extended family and 2 Illumina controls were
multiplexed using dual indexing with 12 primary indexes and eight secondary
indexes. Dual indexed samples were normalized to be equimolar and pooled
together following manufacturer’s recommendations. The pool was sequenced
on a single MiSeq flow-cell (Illumina Inc.). Reads were paired-end at 2× 225 nt
with dual indexes, and a total of 8.49 Gbp were generated. Variants were called
with GATK HaplotypeCaller.

Sanger sequencing
PCR was performed using Taq polymerase (Qiagen) according to the
manufacturerʼs instructions. Amplification of the CERS3 gene was performed
with four pairs of newly designed primers (sequences available upon request),
spanning all four exons harboring mutations found by NGS and their flanking
intronic sequences. The PCR products were bidirectionally sequenced using
3730 DNA Analyzer (Applied Biosystems, Foster City, CA, USA). The mutation
positions are reported in reference to NG_042826.1 (genomic), NM_178842.3
(cDNA) and NP_849164.2 (protein).

RESULTS

In this study, we identified six previously unreported mutations in the
CERS3 in six families with ARCI. The affected family members
demonstrated collodion membrane at birth, generalized scaling
consisting of fine or large scales, acrogeria, hyperlinearity of the palms
and soles, and ectropion later in life (Figure 1). Histopathology was
consistent with ichthyosis demonstrating compact hyperkeratosis,
focal hypergranulosis, and regularly acanthotic epidermis
(Figure 1k). For detailed clinical description of the phenotype in
these families, see Supplementary Material online. Three families,
nos. 2, 5, and 6, harbored homozygous missense variants, c.685C4T,

Figure 1 Clinical features and histopathology of patients with CERS3 mutations. Note generalized fine scaling and hyperlinearity of the palms and soles. The
patients also showed acrogeria-like features on the backs of the hands (a–j). Characteristic histopathology findings of skin biopsy demonstrated compact
hyperkeratosis, focal hypergranulosis, and regularly acanthotic epidermis, with normal dermis without inflammatory cell infiltrate (k). (H&E stain, original
magnification ×20).
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(p.(Arg229Cys)); c.915C4A, (p.(Asp305Lys)), and c.686C4T,
(p.(Arg229His)), respectively (Figures 2b, e, and f). (For sequence
variants and the corresponding wild-type sequences, see Case Reports
in Supplementary Material online). Bioinformatics predictions of these
variants with mutation taster, PolyPhen2, FIS, GVGD, PROVEAN,
and SIFT programs, predicted them to be pathogenic (Supplementary
Table S1 online). In two independent families (nos. 3 and 4) of
different ethnicities and from different regions of Iran, a homozygous
nonsense variant, c.30G4A, (p.(Trp10Ter)), was identified. One of
the families (no. 1) harbored two different homozygous sequence
variants in CERS3. One variant consisted of substitution of three
nucleotides, AAA, encoding Lys131 in the control population, by GCC
leading to p.Lys131Ala substitution which was suggested to be
pathogenic by prediction programs. In addition, these patients
harbored a homozygous in-frame c.401_403del, p.(Glu134del) dele-
tion mutation (Figure 2a). These mutations in each family co-
segregated with the ichthyosis phenotype, the parents being hetero-
zygous carriers. In silico analysis of the missense variant p.(Lys131Ala)
predicted it as damaging, but with limited existing data about this
family with two variants, we were not able to determine whether the
phenotype resulted from either one of these mutations alone or from a
combination of both of them. All variants were confirmed by
bidirectional Sanger sequencing and submitted to LOVD: www.lovd.
nl/cers3 (patient IDs: 104974-978 and 105000-01; variant IDs: 170861-
64 and 170891-2). None of these genomic variants have been reported

previously, and they were absent in 119,654 alleles in control
population (ExAC.broadinstitute.org) and in the Greater Middle East
(GME) Variome Project (igm.ucsd.edu/gme).

DISCUSSION

In this study, we report six previously unreported variants in CERS3 in
six extended families among the 140 families tested (4.3%) affected by
non-syndromic, autosomal recessive congenital ichthyosis
(OMIM#615023). Combining a large cohort of patients with ichthyo-
sis, born to consanguineous parents, with the utilization of NGS panel
targeting 38 ichthyosis associated genes allowed us to expand
genotypic spectrum of CERS3.3,4,6 Our study now increases the total
number of reported CERS3 mutations in ARCI from 2 to 8, scattered
along the entire gene (Figures 2g and h). Our study also reports a stop
codon mutation which resided in exon 4, just 10 amino acids
upstream from the Met1. Interestingly, examination of the clinical
phenotype in patients with CERS3 mutations did not reveal notable
differences in the severity between the patients with this variant,
p.(Trp10Ter), and those with missense substitutions along the
polypeptide. Overall, the clinical phenotype in the nine Iranian
patients examined in this study was relatively mild (Figure 1),
however, in three of the families there was a history of miscarriages,
and in two families (nos. 2 and 5), two children died at an early age
due to complications of ichthyosis.

Figure 2 Pedigrees and mutations in CERS3 in six families with ARCI. The probands are identified by arrowheads; the mutations are identified by red arrows.
For the corresponding wild-type sequences, see Supplementary Material online. Note the consanguinity in each family (a–f). The positions of the mutations
identified in CERS3 at protein level (g) and within the gene (h). CERS has six transmembrane α-helical domains (yellow) traversing the nuclear membrane
with the start and end amino acid positions indicated. The gene consists of 13 exons, the translation initiation codon ATG being in exon 4. The sizes of the
exons are shown in parentheses; the introns are not drawn into scale. The sequences corresponding to Homeobox Domain (DNA binding) and thin-layer
chromatography (TLC) domain are indicated.
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Consanguineous marriage is customary in different geographic
regions, specifically in the Middle Eastern and North and Sub-
Saharan African countries.7 It is estimated that at least 8.5% of
children have consanguineous parents.8 So far, all disclosed CERS3
mutations were homozygous and belong to the families from countries
with high rate of customary consanguineous marriages, including Iran,
Turkey, and Tunisia with consanguinity rates of 38.5, 21.0, and 21.5%,
respectively.9–11 In addition to the degree of relationship between the
parents, the increase in risk of having an affected child with autosomal
recessive disease born to consanguineous parents depends on popula-
tion frequency of the disease allele in inversely proportional order. The
less common the disease allele causing the disorder is in the gene pool,
the greater the probability that the parents of an affected individual are
consanguineous.
CERS3 mutations are examples of extremely rare autosomal

recessive human `knockout' alleles with predicted loss-of-function
(pLoF).12 So far, all reported patients including our cases in this study
had autosomal recessive genotypes and consanguineous parents. We
previously reported similar results in the same Iranian population for
PNPLA1, FERMT1, CMG2, and KRT14 as causal genes for ARCI type
10 (OMIM # 615024), Kindler syndrome (OMIM # 173650), hyaline
fibromatosis syndrome (OMIM # 228600), and autosomal recessive
epidermolysis bullosa simplex (OMIM # 601001), respectively. In
these extremely rare Mendelian disorders, all reported variants were
homozygous, and all subjects had consanguineous parents.13–16

In contrast to very rare Mendelian disorders as mentioned above,
the rate of parental consanguinity is lower in more prevalent
autosomal recessive single gene diseases. For instance, 92% of the
patients with recessive dystrophic epidermolysis bullosa (RDEB)
(OMIM # 226600) had consanguineous parents.17 Similarly, in an
Iranian cohort of 515 patients affected by a heterogeneous group of
primary immunodeficiency disorders, the average consanguineous
marriage rate among parents of ataxia-telangiectasia patients was
81%.18 Also, the consanguinity rate among the parents of autosomal
recessive non-syndromic deafness patients from Iran and Turkey was
73 and 70%, respectively.19 Therefore, the rarer a particular disease is
in a population, the more likely the parents are to be consanguineous
as initially was surmised by Archibald Garrod in the case
of alkaptonuria more than one century ago and corroborated by
recent studies.
In summary, application of a NGS array targeting 38 ichthyosis

associated genes in a large cohort of ichthyosis patients from a
consanguineous population allowed us to identify previously unre-
ported mutations in CERS3 which brings the total number of
mutations reported in this gene to eight.
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