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Analysis of blood-based gene expression in
idiopathic Parkinson disease

ABSTRACT

Objective: To examine whether gene expression analysis of a large-scale Parkinson disease (PD)
patient cohort produces a robust blood-based PD gene signature compared to previous studies
that have used relatively small cohorts (#220 samples).

Methods: Whole-blood gene expression profiles were collected from a total of 523 individuals.
After preprocessing, the data contained 486 gene profiles (n 5 205 PD, n 5 233 controls,
n 5 48 other neurodegenerative diseases) that were partitioned into training, validation, and
independent test cohorts to identify and validate a gene signature. Batch-effect reduction and
cross-validation were performed to ensure signature reliability. Finally, functional and pathway
enrichment analyses were applied to the signature to identify PD-associated gene networks.

Results: A gene signature of 100 probes that mapped to 87 genes, corresponding to 64 upregu-
lated and 23 downregulated genes differentiating between patients with idiopathic PD and con-
trols, was identified with the training cohort and successfully replicated in both an independent
validation cohort (area under the curve [AUC] 5 0.79, p 5 7.13E–6) and a subsequent indepen-
dent test cohort (AUC 5 0.74, p 5 4.2E–4). Network analysis of the signature revealed gene
enrichment in pathways, including metabolism, oxidation, and ubiquitination/proteasomal activity,
and misregulation of mitochondria-localized genes, including downregulation of COX4I1,
ATP5A1, and VDAC3.

Conclusions: We present a large-scale study of PD gene expression profiling. This work identifies
a reliable blood-based PD signature and highlights the importance of large-scale patient cohorts
in developing potential PD biomarkers. Neurology® 2017;89:1676–1683

GLOSSARY
CBD 5 corticobasal degeneration; fSVA 5 frozen Surrogate Variable Analysis; GO 5 Gene Ontology; IPD 5 idiopathic
Parkinson disease; MSA 5 multiple system atrophy; NDD 5 neurodegenerative disease; PD 5 Parkinson disease; PDD 5
Parkinson disease dementia; PSMA7 5 proteasome subunit alpha 7; PSP 5 progressive supranuclear palsy.

Parkinson disease (PD) is the second most common neurodegenerative disorder, characterized
by dopaminergic neuron loss in the substantia nigra pars compacta leading to the onset of clin-
ical parkinsonian symptoms.1 Identifying biomarkers for PD such as blood-based biomarkers
that can easily be obtained for analysis is thus highly attractive.2 a-Synuclein, DJ-1, and uric acid
have previously been studied as potential candidate blood-based biomarkers,3 as well as epider-
mal growth factor and apolipoprotein A1 protein levels as respective biomarkers for PD cogni-
tive performance4 and age at onset.5

Studying blood-based changes in mRNA gene expression presents an additional biomarker
strategy for differentiating patients with IPD from healthy controls.6 However, despite
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substantial work in this field, identifying a reli-
able and reproducible gene classification for
PD has proved difficult. Of note, previous
studies used relatively small cohorts, with the
largest study previously undertaken using only
220 total samples,7 which may have lacked
sufficient power to identify a reliable PD gene
signature. Here, we present whole-blood gene
expression profiling of a large-scale cohort that
generated a robust blood-based signature of
100 probes that mapped to 87 genes, which
successfully classified samples as either IPD or
healthy control. The genes within our IPD
blood-based signature are functionally en-
riched for pathways, including mitochondrial
metabolism and ubiquitination/proteasomal
activity, 2 cellular processes previously impli-
cated in PD. Our results demonstrate that
a large dataset may be required to identify
a blood-based IPD signature and to provide
insight into PD pathophysiology.

METHODS Patient recruitment and clinical assessment.
We recruited 205 patients with IPD and 48 patients with other

neurodegenerative diseases (NDDs; 27 patients with Huntington

disease, and 21 with multiple system atrophy [MSA], corticobasal

degeneration [CBD], progressive supranuclear palsy [PSP], or PD

dementia [PDD]) to 2 tertiary referral centers in Europe

(Luebeck, Germany, and Paris, France). In addition, 233 healthy

controls were recruited, including nonconsanguineous controls

from families of patients. All patients and controls from the

German referral center were ethnically matched (German/white).

All patients and controls from the French referral center were

white except the following: 2 Africans, 2 Asians, and 1 English

West Indies. Patients underwent rigorous clinical characterization,8,9

which included age at disease onset, Unified Parkinson’s Disease

Rating Scale score, Hoehn & Yahr score, and Montreal Cognitive

Assessment (table e-1 at Neurology.org). Patients who had

SPECT data available that showed scans without evidence of

dopaminergic deficits were not included in the analysis. All pa-

tients in the IPD cohort were treated with dopaminergic medi-

cation and met United Kingdom Parkinson’s Disease Society

Brain Bank Criteria10 except that positive family history was not

regarded as an exclusion criterion. Patients who were suspected of

having possible secondary causes for parkinsonism such as use

of neuroleptic agents were excluded from the study. Patients

with IPD were additionally evaluated for atypical signs, and

patients meeting criteria for atypical PD syndromes (MSA,

CBD, PSP, or PDD) were not included in the IPD cohort, were

classified as atypical PD, and were included in the NDD cohort

(e-Methods).

Standard protocol approvals, registrations, and patient
consents. We obtained ethics approval at all participating sites,

and all patients provided written informed consent.

RESULTS Identifying a blood-based signature for IPD.

To construct a robust blood-based classifier and gene
signature to differentiate between patients with IPD

and controls, we collected whole-blood gene expres-
sion profiles from 523 individuals. After quality
control by preprocessing (figure e-1), the data con-
tained profiles of 486 individuals: 205 patients with
IPD, 233 healthy controls, and 48 patients with other
NDDs (table e-1). All patients and controls were age
matched for analysis. To perform our analysis, we
partitioned the samples into 3 learning sets defined by
similar age and sex distributions: a training set that
contained 140 patients with IPD and 153 controls,
a validation set that contained 35 patients with IPD
and 40 controls, and a test set that contained 30 IPD,
40 controls, and all 48 NDD samples (table e-2). The
training set was used for preprocessing and for testing
feature selection and classification algorithms. The
validation set was subsequently used as an initial test
of the flow and to tune the size of the final gene
signature, while the test set was used only once as
a final independent validation (figure 1A).

To identify such a classifier, we first filtered out
small batches (,10 samples) and probes with low
expression across samples (log expression value ,6
in at least 80% of samples) because samples were
collected from 2 different sites over 5 years (table e-3).
We next used frozen Surrogate Variable Analysis
(fSVA)11 on the filtered data to reduce batch effects,
producing a fixed model that could be used to reduce
batch effects in independent samples derived from
unknown batches. Using the fSVA-transformed data,
we then selected k probes (for signature size k 5

10,20.200) with the highest difference in mean
expression between patients with IPD and controls,
which we denoted as the signature. Using these sig-
nature probes, we trained a linear support vector
machine classifier and applied it to independent
fSVA-transformed samples, producing a probability
for each tested sample of being in the IPD class.

To validate the predictive value of our classifier,
we performed leave-batch-out cross-validation on
the training set by removing a batch from the data
and allowing the classifier to identify an IPD signa-
ture that was based on the remaining samples. We
found that the number of probes k 5 30 to 100
achieved results of comparable quality with high accu-
racy (figure e-2), with a maximal area under curve
score obtained for the number of probes k5 50 (area
under curve 5 0.72). To further confirm the validity
of our classifier for differentiating between patients
with IPD and controls, we trained the classifier on
the entire training set and then tested it on the vali-
dation set. When we again tested different numbers of
probes (k 5 10,20.200), the top performance was
achieved for probe number k 5 100 (figure 1C, black
line). Thus, on the basis of the validation set analysis, we
set the signature size k5 100 to establish a signature of
100 probes to use in our IPD classifier.
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To create the final signature, we trained the classi-
fier on the union of the training and validation sets
and identified a signature of 100 probes that mapped
to 87 genes (table e-4). Of these, 64 genes were upre-
gulated and 23 genes were downregulated, providing
us with a unique blood-based signature capable of dif-
ferentiating between patients with IPD and controls
(figure 1B).

Validation on an independent test set. We subsequently
tested the 87 gene signature on an independent test
set (30 patients with IPD and 40 controls). We again
observed high performance on this independent test
set in differentiating between patients with IPD and
controls (figure 1C, green line).

We further tested the robustness of our signature
by splitting the independent test set into samples

Figure 1 Identification of a blood-based gene signature for IPD

(A) Overview of the analysis. Training process (left) involved preprocessing steps: removing unexpressed probes and small batches, reducing batch effects
with fSVA, and identifying the most differential probes to learn the support vector machine classifier. Samples were partitioned into 3 datasets (DSs; right):
training, validation, and test sets. The validation and training sets were used to evaluate the training process, and the validation set was additionally used to
tune parameters (e.g., selection of the number of top probes). Finally, a classifierwas learned using the data from the training and validation sets, and its performance
was evaluated with the test set, which was excluded from all previous stages. (B) Characterization of the identified gene signature. (C) ROC curves for the validation
(black line) and independent test (green line) sets. (D) ROC curves for the independent test set divided into either samples from old batches present while learning the
classifier (46 samples; red line) or samples from new batches (24 samples; blue line). Values of p and AUC scores are listed below. AUC5 area under curve; fSVA5

frozen Surrogate Variable Analysis; IPD 5 idiopathic Parkinson disease; ROC 5 receiver operating characteristic.
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from old batches that were present while learning the
classifier (46 samples) and samples from new batches
(24 samples). We observed that our signature differ-
entiated between patients with IPD and controls in
these independent test samples derived from either
old batches (red line) or new batches (blue line) (fig-
ure 1D), further demonstrating the robustness of our
87-gene IPD signature. As expected, the signature
reliably predicted an increased IPD probability for
samples from the IPD cohort compared to healthy
control samples (figure 2).

Application to other NDDs. To examine whether our
signature was specific to patients with IPD, we
applied our signature to 48 samples with other NDDs
from the independent test set (27 patients with
Huntington disease, 9 with MSA, 8 with PSP, 2 with
CBD, and 2 with PDD). We found that the signature
could not robustly differentiate between patients with
NDD and controls but produced a weak signal that
classified NDD samples as intermediates between
IPD and control (figure 2). Our signature was still
capable of successfully distinguishing IPD samples
from the combined samples of controls and patients
with NDD (figure e-3, purple line).

Network analysis of IPD signature. We next examined
the cellular pathways associated with the 87 genes
in our IPD blood-based signature by examining the

functional enrichment of these genes using KEGG
pathway analysis and Gene Ontology (GO) terms via
EXPANDER.12 Most notably, with the KEGG
pathway analysis, the downregulated genes were en-
riched with genes in the PD pathway (COX4I1
[0.94], ATP5A1 [0.95], and VDAC3 [0.94]). With
the use of GO terms, several processes were identified
for downregulated genes, including genes related to
nucleotide binding, negative regulation of nucleobase-
containing compound metabolic process, cellular cata-
bolic process, and negative regulation of cellular process.
In contrast, the upregulated genes were enriched for
only 1 GO process (positive regulation of cellular met-
abolic process) (table 1).

We also used GeneMANIA13 to detect known in-
teractions among the signature genes and identified
additional genes connected to the signature genes (figure
3, black and gray nodes, respectively). The interactions
identified included protein colocalization (dark blue
line), similar protein-protein interaction networks (tan
line), and similar pathways (light blue line). Twenty-two
different biological functions (q , 0.05) were enriched
within our signature genes (table 2), with energy deri-
vation by oxidation of organic compounds the most
enriched function. We also identified 3 functions that
contained both upregulated and downregulated genes
that represented different areas in the network: cellular
respiration, protein polyubiquitination, and response to
topologically incorrect protein. The diversity of these
identified pathways suggests that various cellular pro-
cesses may be altered in IPD. A larger subset of the
genes identified in our IPD blood-based signature were
related to metabolism, oxidation, and ubiquitination
(table 2), key pathways that have previously been asso-
ciated with PD pathogenesis.

DISCUSSION In this study, we present a robust,
unbiased blood-based signature differentiating
between patients with IPD and controls. Using whole
blood gene expression profiles of a large-scale cohort,
we successfully identified a signature comprising 87
genes that classified participants into patients with
IPD or healthy controls with high performance.
Our signature differentiates between patients with
IPD and controls in an independent test set not
used in the training or validation process, sug-
gesting that our signature may be equally successful
in future cohorts.

Previous reports on PD signatures have used vari-
ous signature sizes. In our study, we chose a signature
size of 100 probes, which mapped to 87 genes,
because it produced the most reliable signature for
differentiating between patients with IPD and controls.
In addition, because batch effects may severely influence
data analysis and interpretation,14 we both filtered out
small batches (,10 samples) and applied fSVA11 to the

Figure 2 Gene signature performance on IPD, controls, and other NDDs

The y-axis is the probability that a sample is classified as PD. Each boxplot summarizes the
distribution of probabilities for samples from each cohort. The 2 left boxplots show the re-
sults for the IPD (n 5 40) and control (n 5 30) samples in the test set. The right boxplot
shows the results for new participants with other neurodegenerative diseases (n 5 48)
consisting of HD (n 5 27), MSA (n 5 9), PSP (n 5 8), CBD (n 5 2), and PDD (n 5 2). Values
of p are as follows: IPD vs control, p5 0.0004; NDD vs control, p5 0.0005; and IPD vs NDD,
p 5 0.58. CBD 5 corticobasal degeneration; HD 5 Huntington disease; IPD 5 idiopathic
Parkinson disease; MSA 5 multiple system atrophy; NDD 5 neurodegenerative diseases;
PDD 5 Parkinson disease dementia; PSP 5 progressive supranuclear palsy.
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filtered data to produce a frozen model that reduced
batch effects.

Our IPD blood-based 87-gene signature was made
up of 64 upregulated and 23 downregulated genes. In
addition, network analysis identified enrichment of

22 biological functions using GeneMANIA and 1 up-
regulated pathway and 4 downregulated pathways
using GO terms. These included PD-associated bio-
logical pathways such as ubiquitination/proteasomal
activity, metabolic processes, and mitochondrial

Table 2 GeneMANIA enrichment analysis on IPD signature

GO identifier Description q Value Occurrences in sample, n Occurrences in genome, n

GO:0015980 Energy derivation by oxidation of organic compounds 0.0151 9 279

GO:0045333 Cellular respiration 0.0151 7 136

GO:0000209 Protein polyubiquitination 0.0182 7 156

GO:0031398 Positive regulation of protein ubiquitination 0.0299 6 119

GO:0016469 Proton-transporting 2-sector ATPase complex 0.0299 4 31

GO:0051351 Positive regulation of ligase activity 0.0331 5 85

GO:0010565 Regulation of cellular ketone metabolic process 0.0331 6 141

GO:0042455 Ribonucleoside biosynthetic process 0.0331 4 42

GO:0015985 Energy coupled proton transport, down electrochemical gradient 0.0331 3 15

GO:0015986 ATP synthesis coupled proton transport 0.0331 3 15

GO:0002720 Positive regulation of cytokine production involved in immune response 0.0331 3 12

GO:0042776 Mitochondrial ATP synthesis coupled proton transport 0.0331 3 15

GO:0010498 Proteasomal protein catabolic process 0.0331 7 221

GO:0035967 Cellular response to topologically incorrect protein 0.0331 5 82

GO:0002702 Positive regulation of production of molecular mediator of immune response 0.0331 3 14

GO:0043161 Proteasomal ubiquitin-dependent protein catabolic process 0.0331 7 211

GO:0015992 Proton transport 0.0342 4 45

GO:0005759 Mitochondrial matrix 0.0361 7 232

GO:0031396 Regulation of protein ubiquitination 0.0361 6 157

GO:0006818 Hydrogen transport 0.0361 4 47

GO:0006839 Mitochondrial transport 0.0383 5 97

GO:0051340 Regulation of ligase activity 0.0384 5 98

Abbreviations: GO 5 Gene Ontology; IPD 5 idiopathic Parkinson disease.

Table 1 Enrichment analysis of the IPD blood-based gene signature

Pathway
Corrected
p value Genes

KEGG analysis
(<0.1
Bonferroni)

Down Parkinson disease 0.051 COX4I1, ATP5A1, VDAC3

GO analysis
(<0.05 FDR)

Down Nucleotide binding (GO:0000166) 0.022 XRCC5, HSP90B1, CCT5, GNAI3, KIF5B, RAB18, SUCLG1, TRA2A, ETNK1,
ATP5A1, VDAC3

Down Negative regulation of nucleobase-containing
compound metabolic process (GO:0045934)

0.029 XRCC5, WDTC1, GNAI3, BPTF, RPS14, ZNF24, TRAF6

Down Cellular catabolic process (GO:0044248) 0.038 XRCC5, HSP90B1, GNAI3, BPTF, RAB18, RPS14, SUCLG1, ATP5A1, PSMA7

Down Negative regulation of cellular process
(GO:0048523)

0.039 XRCC5, HSP90B1, WDTC1, GNAI3, BPTF, RPS14, ZNF24, ATP5A1, PSMA7,
TRAF6, RASA2

Up Positive regulation of cellular metabolic process
(GO:0031325)

0.047 ANAPC2, TADA3, ZNF639, NFYC, FKBP1A, MID1IP1, STUB1, CALCOCO1,
STAT3, CD74, TNFRSF1B, USP21, ARMCX3, ATP6V0D1, RHOG, MLL2

Abbreviations: FDR 5 false discovery rate; GO 5 Gene Ontology; IPD 5 idiopathic Parkinson disease.
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function, suggesting that the use of a larger patient
cohort may be beneficial for elucidating cellular
mechanisms involved in PD pathophysiology. Genes
linked to ubiquitination/proteasomal activity
included E3 ubiquitin ligase Traf6 and the protea-
some subunit alpha 7 (PSMA7), which were both
downregulated. Of note, the ubiquitin proteasome
system has been previously implicated in PD patho-
genesis,15 and mutations in the E3 ubiquitin ligase
Parkin cause familial PD.16 In addition, genes linked
to mitochondrial function included 3 mitochondria-
localized genes (COX4I1, ATP5A1, and VDAC3),
which were also downregulated and classified under
the PD pathway by KEGG analysis. COX4I1 is the
terminal enzyme of the mitochondrial respiratory
chain, while ATP5A1 is a subunit of mitochondrial
ATP synthase. VDAC3 encodes a voltage-dependent
anion channel located on the outer mitochondrial
membrane and has been implicated in recruiting Par-
kin to depolarized mitochondria for efficient

autophagic degradation.17 Indeed, autosomal reces-
sive PD-linked mutations in Parkin, PINK1, and
DJ-1 have been linked to defective mitochondrial
homeostasis,18 and cellular bioenergetics and mito-
chondrial electron transport genes are downregulated
in laser-captured human dopaminergic neuron and
substantia nigra PD transcriptomes,19 suggesting that
downregulation of key mitochondrial genes may be
an important characteristic of an IPD blood-based
signature.

Establishing a reliable and reproducible PD gene
signature across different studies has proved to be
challenging for the field. Indeed, comparison of signa-
tures from 6 other blood-based PD studies6,7,20–23

shows that the only notable overlap between these
previous studies was in the signatures from 2
studies.7,21 Several factors may contribute to the var-
iability between previous blood-based PD gene signa-
tures,6,7,20–31 particularly between those published by
different groups.32 These include lack of replication in

Figure 3 Functional analysis of IPD signature genes

GeneMANIA was used to detect known interactions among signature genes. Both upregulated (black rectangles) and downregulated (black hexagons) genes
are displayed. Additional genes that are highly connected to the signature are also identified by GeneMANIA (gray nodes). Three main enriched functional
groups were detected: cellular respiration (q 5 0.015), protein polyubiquitination (q 5 0.033), and cellular response to topologically incorrect protein (q 5

0.033). The color of the frame around a gene indicates its enriched function, and the lines connecting genes represent colocalization, PPI, or similar pathways
(see edge legend). IPD 5 idiopathic Parkinson disease; PPI 5 protein-protein interaction.
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independent samples from multisite cohorts; lack of
standardization in sample collection, processing, gene
expression profiling, and bioinformatics analysis; and
relatively small changes in gene expression levels,
along with low signal-to-noise ratios.2 In addition,
samples across studies often derive from heteroge-
neous PD populations with different genetic back-
grounds and varying rates of progression and disease
stages. Moreover, batch effects and small cohort sizes
further hinder the ability of the field to identify a re-
liable PD gene signature. Of note, the lack of
reproducibility of exact gene signatures has been
acknowledged as a prevalent problem across multiple
diseases, although dissimilar signatures may produce
equally useful predictive classifiers.33–35 We propose
that larger cohort sizes for gene signature studies are
critical for establishing a reliable PD diagnostic sig-
nature and that a comprehensive understanding of
the transcriptional landscape in patients with PD may
ultimately require thousands of samples and the use of
digital expression analysis platforms such as NanoString
or RNA-seq. Of note, while our signature was trained
to differentiate between PD and control samples, future
signatures trained to differentiate between controls and
different NDDs, including PD, will have obvious
important diagnostic benefits. Ultimately, identifying
robust and reliable PD gene expression signatures will
be critical for establishing clinically accessible blood-
based biomarkers for presymptomatic PD and serving
as effective readouts for the efficacy of future presymp-
tomatic therapeutics.
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