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ABSTRACT
The endoplasmic reticulum (ER) stress sensor protein kinase RNA-like endoplasmic reticulum kinase (PERK)
plays a major role during the unfolded protein response (UPR), mainly through eIF2a phosphorylation. We
uncovered that PERK, by interacting with Filamin A, elicits F-actin remodeling required for ER-plasma
membrane contact site formation after ER-Ca2C depletion, through a UPR-independent mechanism. KEYWORDS
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Endoplasmic reticulum (ER) stress is caused by an imbalance in
the ER protein folding machinery leading to a luminal increase
in unfolded proteins, as the ER can no longer cope with protein
folding demand. ER stress, which underlies pathologies like
cancer, diabetes and neurodegeneration and is triggered by
various intrinsic and extrinsic insults, is sensed by a dedicated
signaling machinery, called the unfolded protein response
(UPR). The UPR aims to restore ER protein-folding capacity,
or when this initial attempt fails, drives cell death.1 UPR
engages 3 main pathways activated by the Inositol Requiring
Enzyme 1 (IRE1), activating transcription factor 6 (ATF6) and
the protein kinase RNA-like endoplasmic reticulum kinase
(PERK). The pro-survival role of the UPR entails PERK-
mediated translational arrest through eukaryotic Initiation Fac-
tor 2 a (eIF2a) phosphorylation,2,3 and the activation of a tran-
scriptional program regulated by 3 main transcription factors,
namely ATF6, X-box binding protein 1 (XBP1) and ATF4.1

Recently, our understanding of these ER stress sensors in
cellular homeostasis has greatly advanced, mainly through the
characterization of the UPRosome.4 Most notably, IRE1a,
which harbours kinase and endoribonuclease activities, was
found to further fine-tune the UPR through its scaffolding and
regulated Ire1-dependent decay (RIDD) functions.5 However,
whether other ER stress sensors like PERK could have addi-
tional roles remains unclear. We previously unravelled that
PERK has a tethering role at the ER-mitochondria juxtaposi-
tions,6 regulating cell death, inflammation and autophagy. Also
PERK coordinates ER stress pathways leading to immunogenic
cancer cell death, through mechanisms for which eIF2a phos-
phorylation could be dispensable, but which required Ca2C

signals and actin-cytoskeleton mediated exocytosis of danger

signals.4 Moreover, PERK regulates intracellular Ca2C fluxes
and store operated calcium entry (SOCE),7,8 the main process
used to replenish ER-Ca2C levels upon ER-Ca2C depletion, but
the mechanism remained unknown.

Thus, we set out to find novel PERK interactors that
could explain these findings. We used proximity-dependent
biotin identification (BioID), and identified Filamin A
(FLNA) as a PERK interactor. FLNA is a major orchestrator
of the Filamentous-Actin (F-Actin) cytoskeleton, and forms
crosslinked, orthogonal networks of F-Actin fibers. We
mapped the binding of PERK to a small C-terminal stretch
of 3 b-barrel domains on FLNA. In unstressed cells PERK
deficiency caused a cortical relocation and increased poly-
merization of F-Actin, which reduced cell migration and
focal adhesions, highlighting the link between PERK and
FLNA. We then asked whether this PERK-mediated
phenotype was relevant for Ca2C signaling. We postulated
that an increased presence of cortical F-Actin underneath
the plasma membrane (PM) could have an effect on the
formation of ER-PM contact sites triggered by ER-Ca2C

store depletion. Total internal reflection fluorescence (TIRF)
microscopic experiments and electron microscopic analyses
confirmed that the increase in cortical F-Actin caused
by PERK ablation could prevent ER tubules from making
contact with the PM.

In store-depleted cells, the ER membrane resident protein
Stromal interaction molecule 1 (STIM1) homo-oligomerizes
and translocates to the PM where it interacts with the Ca2C

channel Orai1 to induce SOCE.9 This interaction will cause
Ca2C to enter the cell and is one of the most studied biologic
processes known to be regulated by ER-PM contacts.
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PERK deficiency strongly blunted the re-localization of
STIM1 to the PM. Re-expression of a kinase dead PERK signifi-
cantly restored STIM1-mediated ER-PM contacts, indicating
that PERK’s regulation of ER-PM appositions is independent
of its canonical role in the UPR.

To investigate if this PERK-mediated phenotype was
restricted to STIM1-driven ER-PM contacts we studied another
ER-PM tethering protein; Extended Synaptotagmin-1 (E-Syt1).
E-Syt1 is an ER-transmembrane protein recently found to
elicits ER-PM contacts after cytosolic Ca2C elevations sensed
by its Ca2C sensitive C2 domains.10 In analogy with STIM1,
PERK deficiency also abrogated E-Syt1 PM translocation upon
ER-Ca2C depletion and this phenotype was again rescued by
the re-expression of kinase dead PERK. The formation of
STIM1 and E-Syt1 mediated ER-PM contact sites required an
intact PERK-FLNA axis and involved a tight spatial organiza-
tion of ER-PM juxtapositions assisted by PM-localized F-Actin.
Interestingly, this tight association was largely lost in PERK
deficient cells. Furthermore, polymerizing or depolymerizing
actin could inhibit and restore ER-PM contact site formation
after ER-Ca2C depletion, respectively.

But how does PERK link ER-Ca2C depletion to ER-PM con-
tact site formation? We found that after ER-Ca2C depletion
PERK rapidly dimerizes and autophosphorylates independently
of its ER stress sensing luminal domain. Furthermore, after
ER-Ca2C depletion, the interaction between PERK and FLNA
increased.

Ca2C induced PERK dimerization stabilized the PERK-
FLNA interaction, leading to F-Actin remodelling and ER-PM
contact site formation. Artificial triggering of PERK dimeriza-
tion, with the commercial GSK inhibitor GSK2606414,11

increased PERK-FLNA interaction and led to increased PM
recruitment of STIM1, indicating that PERK dimerization
itself –but not PERK activity- is a major event leading up to
FLNA assisted ER-PM contact site formation (Fig. 1).

Research into the UPR, and specifically on how to harness
the UPR in the context of disease (cancer, cancer therapy, neu-
rodegeneration) have focused only on the previously known
role of PERK. This study shows that PERK has broader roles
beyond the traditional UPR and regulates the functional con-
nection between the ER and other crucial cellular compart-
ments, like the PM. Since the dynamic regulation of contact
sites between the ER and the PM affects critical cellular pro-
cesses including but not limited to, PM signaling and lipid
composition, endocytosis and exocytosis, this study may open
up new and exciting avenues expanding on the role of PERK in
ER stress.12
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Figure 1. Functional consequences of the interaction between PERK and FLNA on ER-PM contact site formation. Protein kinase RNA-like endoplasmic reticulum kinase
(PERK) interacts with Filamin A (FLNA) in resting conditions. After endoplasmic reticulum (ER)-Ca2C store depletion and subsequent cytosolic Ca2C elevation, the cytosolic
domain of PERK dimerizes. This dimerization event strengthens the interaction of PERK with FLNA. This leads to actin rearrangement and altered actin polymerization
dynamics, allowing efficient Stromal interaction molecule 1 (STIM1) and Extended Synaptotagmin-1 (E-Syt1) translocation to the plasma membrane (PM) and the forma-
tion of ER-PM contacts.
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