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Abstract

The P300 speller is a common brain-computer interface system that can provide a means of 

communication for patients with amyotrophic lateral sclerosis (ALS). Recent studies have shown 

that incorporating language information in signal classification can improve system performance, 

but they have largely been tested on healthy volunteers in a laboratory setting. The goal of this 

study was to demonstrate the functionality of the P300 speller system with language models when 

used by ALS patients in their homes. Six ALS patients with functional ratings ranging from two to 

28 participated in this study. All subjects had improved offline performance when using a 

language model and five subjects were able to type at least six characters per minute with over 

84% accuracy in online sessions. The results of this study indicate that the improvements in 

performance using language models in the P300 speller translate into the ALS population, which 

could help to make it a viable assistive device.
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Introduction

The P300 speller is a common brain-computer interface system that can provide a means of 

communication for “locked-in” patients, such as those with amyotrophic lateral sclerosis 

(ALS).[1] While this system was initially developed almost 30 years ago, it is not widely 

used in part because typing speed and accuracy are below those desired by the ALS 

population.[2] The system utilizes one’s electroencephalogram (EEG) to facilitate language 

communication by detecting stimulus evoked potentials and converting them into virtual 

commands in the form of typing. Non-invasive electrodes yield undesirable signal noise, 
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necessitating many stimulus trials and sophisticated computation. This decreases the speed 

of typing and calls for several system optimization studies. Approaches at system 

optimization include varying the dimensions of the character matrix,[3–5] optimizing system 

parameters,[6,7] and employing various signal processing methods.[8–11]

Recent studies have shown that performance using the system can be improved by utilizing 

knowledge of natural language to improve signal classification,[12] similar to methods used 

in other language processing domains such as speech recognition.[13] Simple n-gram 

language models have been the mainstay of BCI studies, beginning with a naïve Bayes 

model,[14,15] and later using a partially observable Markov decision process [16] and a 

hidden Markov model.[17,18] However, recently a particle filter (PF) algorithm made 

possible the use of more complicated language models by eliminating the requirement for 

sampling over entire state spaces, which was shown to have superior results, yielding a 56% 

average increase in bit rate over traditional methods in offline trials.[19] This method 

approximates distributions by projecting samples through a state-space language model 

based on the observed EEG signals. The system then determines the most likely output by 

finding the state that attracts the highest number of samples.

While the preliminary results using language models have been promising, but they have 

largely been tested on healthy volunteers in a laboratory setting. Using healthy subjects is 

advantageous for validating and testing these systems because they are more accessible than 

ALS patients; the ALS population is significantly smaller than the healthy population and 

patients generally have trouble traveling, requiring a prototype system to be mobile enough 

to transport to a patient’s home. Using healthy subjects also alleviates the research burden on 

the ALS population as they often are easily fatigued and have severe health concerns so 

constant experimentation would be both impractical and unethical. Because many ALS 

patients do not have cognitive deficits,[20] it is often presumed that healthy subjects’ EEG 

signals reflect those of ALS patients and, therefore, that improvements in healthy subject 

BCI performance will predict improvements in the ALS population. However, some ALS 

patients have deficits that can affect BCI performances such as lack of gaze control, blurry 

vision, and unstable neck muscles hindering the ability to keep the head steady. The patients’ 

environments can pose additional challenges with medical equipment such as bilevel 

positive airway pressure (BiPAP) machines and ventilators that can affect electrode 

connectivity and introduce electrical noise. Moreover, the stimulus evoked responses, 

including visual evoked signals and the p300 response may not be identical in healthy 

controls and affected subjects. Because of these differences, it is important to test BCI 

systems on the target population in order to verify that improvements seen in healthy 

subjects truly reflect a more effective system for ALS patients.

The goal of this study was to perform initial validation of the methods that have been 

developed in healthy subjects within the target patient population and to identify issues 

unique to ALS patients that should be addressed in order to make the P300 speller a viable 

augmentative and assistive communication (AAC) system. A mobile setup was constructed 

by loading a desktop and monitors onto a cart which was transported to patient homes. 

Subjects used a version of the P300 speller with language models [19] that was previously 

validated on healthy volunteers to type in both online and offline modes. Results were then 

Speier et al. Page 2

Brain Comput Interfaces (Abingdon). Author manuscript; available in PMC 2017 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



compared with those previously reported using healthy subjects to demonstrate how the 

healthy subject results translate into the target population and to identify issues unique to 

ALS patients that need to be addressed in a final system.

Materials and methods

Subjects

Six patients participated in this study. Five of the subjects (subjects A, B, D, E, and F) were 

diagnosed with ALS and the sixth (subject C) had brainstem necrosis caused by radiation 

therapy to treat a tumor. Two of the subjects (D and E) required a second visit because of 

technical problems with the equipment that prevented recording of EEG signals during the 

initial visit. All subjects consented to participate and the study was approved by the UCLA 

institutional review board. None of the subjects had gross cognitive deficits (although formal 

comprehensive testing was not immediately available) and all used non-BCI means of 

communication (table 1).

Data Collection

EEG data was recorded using g.tec amplifiers, active EEG electrodes, and an electrode cap 

(Guger Technologies, Graz, Austria). Signals were sampled at 256 Hz, referenced to the left 

ear grounded to AFz, and filtered using a band-pass of 0.1–60 Hz and a notch filter from 58–

62 Hz. The electrode set consisted of 32 channels placed according to a previously published 

configuration.[6] The system used a 6 × 6 character grid, row and column flashes, a stimulus 

onset asynchrony of 125 ms, and famous faces stimuli.[21] The hardware was loaded onto a 

cart, which was then transported to patients’ homes so they could use it in their home 

environment. Subjects were moved to the location most comfortable for them to best 

simulate realistic use of the system (Bed for subject A, kitchen chair for subject B, electric 

wheelchair for subjects C, D, and E). The application was then displayed on a monitor 

approximately 1 meter in front of the subject’s face.

Each subject first participated in an initial offline experiment, consisting of three five-minute 

trials where the subject copied a given 10 character phrase with 10 repetitions per character 

and without feedback. The data from these training phases was then analyzed using a 

standard Stepwise linear discriminant analysis (SWLDA) classifier (see below) and, if the 

classifier was successful in finding classification features in the subject’s signals, a testing 

phase followed. During the testing phase, subjects were instructed to pick a phrase that they 

wished to type, which they indicated to investigators using their standard communication 

method. They then used the system in online mode with the results being displayed in real 

time. Because of the amount of time required for setup and teaching the patient how to use 

the system, as well as offline training, fatigue was a concern during the online session. 

Subjects were told to use the system only as long as they were comfortable, which resulted 

in different amounts of online data between subjects. For comparison, a set of 10 healthy 

volunteers with normal or corrected to normal vision between the ages of 20 and 35 

underwent the same protocol in a controlled laboratory setting.
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BCI2000 was used for data acquisition and online analysis.[22] Offline analysis was 

performed using MATLAB (version 8.6.0, MathWorks, Inc, Natick, MA).

Classifier

SWLDA is a classification algorithm that uses least squares regression to select a set of 

signal features.[23] It iteratively adds significant features and removes the least significant 

features until either the target number of features is reached or a state where no features are 

added or removed is achieved.[11] The dot product of the feature vector and user’s EEG 

signal then determines a score for a given stimulus response. Using the score distributions 

for attended and non-attended signals, the likelihood of a response resulting from an 

attended signal can be determined.[15]

The PF method combines these likelihood probabilities with prior knowledge about 

language structure to decide the most probable character given the observed signal. This is 

accomplished by estimating the probability distribution over possible outputs,[19] which is 

created by sampling a batch of possible realizations of the model called particles. These so-

called particles independently move through states in the language model based on their 

transition probabilities. Once a character selection is made, particles are resampled based on 

weights derived from observed EEG responses, effectively replacing lower probability with 

higher probability realizations. The algorithm then computes a histogram to estimate a 

probability distribution over the possible output strings after the particles have moved 

through the model.

Dynamic classification was implemented by setting a threshold probability rather than a set 

number of flashes to determine when a decision should be made.[15] The classifier then 

selected the character that satisfied the highest probability. In offline analysis, the value of 

the threshold probability was varied between 0 and 1 in increments of 0.01, the 

corresponding speeds, accuracies, and bit rates were determined, and the threshold 

probability that maximized the bit rate was selected.

Evaluation

Evaluation of a BCI system is two-fold: the ability of the system to achieve the desired result 

(i.e., accuracy) and the amount of time required to reach that result must both be accounted 

for. Selection accuracy can be used as a surrogate for measuring system efficacy. We define 

accuracy by the percentage of final output characters that match the target string. Selection 

rate (SR) measures the speed of the system by taking the inverse of the average time 

required to make a selection.

Because there is a tradeoff between speed and accuracy, information transfer rate (ITR) (in 

bits/min) is also used to evaluate BCI systems. It has been shown that ITR overestimates the 

information rate in BCI typing because it assumes that all characters are equally probable 

and independent of previous selections, which do not hold when typing natural language.

[24,25] Furthermore, ITR assumes that all errors are uniformly distributed across all possible 

characters, which is not true in the presence of a language model which biases the system 

towards more probable characters. Nevertheless, it is a standard metric used for evaluation of 

P300 communication systems, so we include it here in addition to the more appropriate 
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accuracy and selection rate metrics. Because of the violated assumptions, however, this 

value should only be used as a basis for comparison to other language-based systems and not 

as an accurate assessment of the true information.

The ITR is found by first calculating the bits per symbol, B, the amount of information 

transmitted per selection when taking into account the accuracy and the number of possible 

selections [26]:

where N is the number of characters in the grid (36) and Acc is the selection accuracy. ITR 

can then be found by multiplying the selection rate by the bits per symbol. Significance was 

tested using Wilcoxon rank-sum tests. In offline analysis, the optimal threshold probability 

was determined independently per subject. However, this optimization was impractical for 

online experiments, so a previously reported value of 0.95 was used for all trials.[18]

Results

Offline Performance

In retrospective analysis of the training data using the offline version of the particle filter 

classifier, five of the subjects were able to achieve above 90% accuracy using fewer than 40 

flashes on average (figure 1). When optimizing the selection threshold, all subjects other 

than subject C had accuracies above 80% with selection rates of at least 10 characters/

minute (table 2). The ITR values for these five subjects ranged from 34.15 (subject D) to 

61.19 (subject B).

Using the full signal, the SWLDA classifier was not able to find sufficient features in subject 

C’s data in order to detect P300 signals. When manually inspecting the signal, P300 

responses were seen in the parietal and occipital electrodes (figure 2). Limiting the classifier 

to these channels, the classifier was able to achieve 53.33% accuracy with a selection rate of 

5.54 characters/minute, both substantially lower than the other subjects.

Overall, the full set of six subjects averaged 10.38 characters/minute with an accuracy of 

86.11%, resulting in an ITR of 43.96 bits/minute using the particle filter classifier. All three 

values were higher than those found using a standard SWLDA classifier with dynamic 

stopping (7.53 characters/minute, 82.22%, and 28.88 bits/minute, respectively). The 

differences in selection rate and ITR were significant (p=0.03 and p=0.03, respectively), but 

the difference in accuracy was not significant (p=0.13). The values found using the particle 

filter algorithm were lower than those achieved by healthy subjects (11.97 characters/

minute, 96.00%, and 57.00 bits/minute), but none were significant (p=0.25, p=0.19, and 

p=0.15, respectively using Wilcoxon rank-sum tests). Excluding subject C from analysis 

resulted in a higher average selection rate (11.35 characters/minute), accuracy (92.67%) and 

bit rate (50.78 bits/minute). The selection rate and ITR were still lower than the values for 

healthy subjects, but none of the differences between the data sets were significantly 

different (p=0.50, p=0.40, and p=0.31, respectively).

Speier et al. Page 5

Brain Comput Interfaces (Abingdon). Author manuscript; available in PMC 2017 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Online Performance

The four subjects who were able to use the system in online mode were all able to type using 

the system with at least 84% accuracy, with three (subjects A, B, and D) having perfect 

accuracy. The subjects typed different numbers of characters based on the length of the 

phrase chosen, with subjects A, B, D, E, and F typing nine, 15, 18, 50, and 19 characters, 

respectively. There were 11 incorrect selections across all subjects of which five (45.5%) 

were automatically corrected by the PF algorithm. Selection rates varied from 5.96 

characters/minutes (subject D) to 12.61 characters/minute (subject E), resulting in ITR 

values from 30.79 bits/minute to 60.08 bits/minute.

The average accuracy for ALS patients (95.64%) was slightly higher than that found in 

healthy subjects (94.21%) using this system and the average selection rate (9.90 characters/

minute) was lower than that reported for healthy subjects (11.16 characters/minute), but 

neither difference was statistically significant (p=0.31 and p=0.16, respectively). The lack of 

significance for the selection rate is likely due to the small sample size and a large variance 

in performance as subject D had a lower selection rate than any of the healthy subjects and 

the selection rates for subjects A and E were lower than all but one of the healthy subjects. 

Similarly, the average ITR value for ALS patients (46.26 bits/minute) was lower than that 

reported for healthy subjects (52.27 bits/minute), but not significantly (p=0.16).

Discussion

BCI typing with a language model classifiers results in improved performance over that 

generally reported in the literature in subjects who are the intended users of such devices, 

similar to the improvements seen in healthy subjects. The online typing speeds achieved 

using the classifier implemented in this study (5.96–12.61 characters/minute) are also higher 

than those previously reported in the ALS population using other language models. In a 10 

subject ALS study, Mainsah et al. [27] reported an average selection rate of 1.7 characters/

minute with an accuracy of 80% using a standard classifier. Incorporating dynamic stopping 

and a language model using naïve Bayes, subjects were able to increase average typing 

speeds to 3.5 characters/minute with a nonsignificant decrease in accuracy. In a pair of 

previous experiments using the rapid serial visual presentation BCI communication system 

with a similar naïve Bayes language model, a total of seven patients had individual typing 

sessions that ranged from 0 to 3.7 correct characters/minute depending on the subject and 

the likelihood of the target string.[28,29] The online bit rates for the ALS patients in this 

study were (46.07 bits/minute) also higher than those reported from healthy subjects using 

simpler language model based classifiers such as naïve Bayes or hidden Markov models, 

which generally range from 20.83 bits/minute to 42.31 bits/minute.[18,30,31]

Of the five subjects who successfully used the system in online mode, one subject (subject 

B) had comparable performance to the healthy volunteers, while the other four were lower. 

The four subjects who had lower performance all used headrests that pushed against their 

occipital electrodes. Because the electrodes used in this study were not flat against the head, 

this pressure could cause them to turn, reducing their connectivity over time. Subject D in 

particular moved his head to focus on each new character, which caused shifting in the 

electrodes and resulted in noise for the first few stimuli for each character. Additionally, 
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subject E used a BiPAP mask continuously through the experiment, which required shifting 

electrodes to avoid the straps. While no obvious differences were noticed in the signals, the 

slight change in location and additional pressure could have affected connectivity. 

Nevertheless, these subjects were able to use the system to successfully communicate in an 

online setting. However, the obstacles unique to the target patient population should be taken 

into account when choosing hardware for a production system as they can possibly affect 

how well the system translates into a realistic environment.

While five subjects were able to successfully use the system in online mode, there was one 

subject for whom the classifier could not detect P300 signals, preventing online use. This 

subject reported subjective blurry vision and difficulty focusing his gaze, which prevented 

him from using eye tracking systems. After manually choosing the channels with the best 

signal, however, offline analysis showed that communication could still be possible. 

Identifying the set of channels that can best discriminate between attended and non-attended 

stimuli is therefore highly important for the creation of a usable P300 speller system. Even 

after channel selection in this case, performance was lower than necessary for a reasonable 

communication system. It is possible that altering the interface could have improved the 

SNR for this subject, improving the system’s performance. Increasing the size and spacing 

of the targets, for instance, could make stimuli easier to distinguish. Creating a general 

system that can work for the majority of subjects allows for mass production, reducing costs 

and making the system more accessible to the ALS community. However, it is important to 

identify ways that the system can be customized in order to reach those subjects with 

additional concerns.

Limitations and future directions

The main limitation of this study is the relatively low amount of online data recorded for 

each subject, with each subject using the system online for only one to five minutes. Because 

of the small amount of data involved, the performance estimates for the target population 

presented here are likely less precise than those for the healthy subjects. The reason for this 

limitation is the time was spent during each session for setup, instructing the user on how to 

use the system, and collecting 30 offline trials, resulting in fatigue. Presumably, serial 

studies within subjects would yield more online data for further analysis, which is required 

for future studies. Reducing the number of channels used by the system could also decrease 

the amount of time required for setup.[32] In order to focus on online trials, future studies 

can also reduce the amount of training data required or remove the training session 

completely and instead learning the subjects’ EEG features online.[17,33]

While several of the subjects needed assistive devices to use a computer, none of them were 

fully “locked-in,” so speech or commercially available AAC devices such as a head mouse 

or eye tracker were effective. While BCI systems have some potential advantages over these 

devices (eye trackers, for instance, may need to be recalibrated when lighting changes in a 

room), additional work is needed before BCI systems can be considered to supplant existing 

AAC devices, including assessment of relative performance, both with respect to character 

selection rate and accuracy in the target environment. Currently, BCI solutions are the only 

option for fully “locked-in” patients. There are additional challenges in using the P300 
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speller for these subjects as the lack of gaze control will hinder the strength of the stimulus 

response.[34] Future studies should pay particular attention to this subpopulation as they are 

the patients who can be helped the most.

Alternative BCI systems have been developed which address the gaze dependence challenge 

by presenting all stimuli in the center of the screen, removing the need to shift gaze.[35] 

Other systems remove the dependence on vision entirely by eliciting P300 signals through 

either tactile or auditory stimuli.[36,37] While these systems are generally slower, they can 

potentially be viable for subjects with vision deficits that prevent usage of the P300 speller 

(such as that reported for the one subject in this study who could not use the speller in online 

mode). The language model and PF algorithm used here are independent of the graphical 

interface, so they can be directly implemented in these alternative systems. Future studies 

should explore this integration to determine whether similar gains can be obtained using 

these systems.

While the results of this study show that current methods can work as a means of 

communication for ALS patients, the current system needs to be modified in order to be a 

truly viable communication method. The hardware used consisted of a montage of 32 

electrodes, which takes significant time to set up and can be prohibitively expensive. The 

current software is run on a desktop computer, which is overly cumbersome to move around 

so that subjects can communicate in different rooms. Also, the current implementation does 

not provide a means for users to initiate or terminate communication, limiting autonomy. 

Future studies should include tailoring the system to the target population by minimizing the 

required hardware and giving the subjects more control so that less assistance is needed in 

order to use the system.

This study serves as a demonstration of how the results using this system translate to 

communication performance by the targeted used population. However, the results are for a 

single, brief session and do not reflect the benefits and concerns that are encountered during 

long-term use. During the session, users expressed some challenges with getting used to the 

system, which could have adversely affected results and would not be present during actual 

use. Subject C, for example, said that he had difficulty finding the target letter in time 

because he was used to a QWERTY keyboard layout rather than the alphabetical one used 

here. Also, subject E mentioned that he modified his strategy between testing and training 

because it helped him concentrate. The language model used in this study was also trained 

on generic English text and is likely not the most accurate representation of the target strings 

that ALS patients will use the system to type. Tailoring the language model to ALS patients 

in general or individual subjects can further improve results. However, there are also 

additional concerns with long-term use such as fatigue and habituation, which may reduce 

the effectiveness of this system. Longitudinal studies within the ALS population need to be 

conducted in order to accurately gauge the utility of BCI communication systems.

Conclusion

This study indicates that the improvements in performance using language models in the 

P300 speller translate into the ALS population, which could help to make it a viable assistive 
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device. However, the home environment and ALS subjects pose additional challenges, which 

should be considered when developing technology for use in an AAC device.
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Figure 1. 
Offline accuracy versus average number of stimuli (i.e., row/column flashes) used for 

classification. As the selection threshold is increased in offline analysis, the number of 

stimuli used for classification increases, increasing the selection accuracy. The results of the 

five ALS patients are plotted along with the average and standard deviation for a set of 10 

healthy subjects.
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Figure 2. 
Average signal response for attended (solid) and non-attended (dashed) stimuli in the 

parieto-occipital channels for subject C.
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Table 1

Description of ALS subjects participating in this study, including their function ratings (ALS-FRS) and current 

communication methods.

Subject Description ALS-FRS Communication Method

A Subject in on ventilator with only gaze control. 2 Eye tracker

B Subject is able to walk and speak with difficulty. 24 Talking

C Subject is able to speak with difficulty, has control of arms, but cannot walk. 18 Talking

D Subject is able to walk with walker, can speak, but has trouble supporting head while 
sitting. 28 Talking

E Subject is able to speak and move head with minimal difficulty, uses a BiPAP mask, has 
some control of one hand, but cannot move legs. 11 Talking, head mouse

F Subject is paralyzed from the neck down and has no ability to speak. 8 Head mounted laser
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Table 2

Offline selection rates, accuracies, and information transfer rates (ITR) for each ALS subject along with the 

average results from a group of healthy subjects using the same system when using two different classifiers: 

the standard linear discriminant analysis with dynamic stopping (DYN) or particle filtering with a language 

model (PF).

Subject SR (selections/minute) ACC (%)

DYN PF DYN PF

A 6.33 9.65 83.33 96.67

B 9.68 13.68 93.33 93.33

C 4.66 5.54 46.67 53.33

D 7.54 9.98 76.67 80.00

E 8.53 11.88 90.00 96.67

F 8.42 11.92 96.67 96.67

Average 7.53 10.38 81.11 86.11

Healthy Average 9.78 11.97 95.00 96.00
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Table 3

Online selection rates, accuracies, and information transfer rates for each ALS subject along with the average 

results from a group of healthy subjects using the same system. Subject C did not participate in the online trial 

because the classifier was not able to successfully distinguish between attended and non-attended signals.

subject
SR

(selections/minute) ACC (%)

A 9.24 100.00

B 11.62 100.00

C N/A N/A

D 5.96 100.00

E 10.06 94.00

F 12.61 84.21

Average 9.90 95.64

Healthy average 11.16 94.21
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