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 Abstract 
  Objective : Predictors of subclinical inflammatory obesity (SIO) can be important tools for 
early therapeutic interventions in obesity-related comorbidities. Waist circumference (WC) 
and BMI have different SIO sensitivity. We aimed to i) identify SIO predictors and ii) investi-
gate whether CD16+ monocytes are associated with BMI- (generally) or WC-defined (cen-
trally) obesity.  Methods : Anthropometric and metabolic/endocrine (namely catecholamines, 
adrenaline and noradrenaline) parameters were evaluated, and CD16+ monocytes were stud-
ied by flow cytometry in the peripheral blood from 63 blood donors, and compared and cor-
related to each other. Multiple linear regression analysis was performed to identify variables 
that best predict SIO.  Results : CD16+ monocyte counts were similar in BMI and WC groups. 
CD16+ monocytes from centrally obese (CO) showed a more inflammatory pattern, as com-
pared to non-CO subjects. WC was sensitive to lipidemia and, in CO subjects, lipidemia was 
associated with a more inflammatory phenotype of CD16+ monocytes. These differences 
were not noticed between BMI groups. Adrenaline was correlated with CD16+ monocyte ex-
pansion with a lower inflammatory pattern. Leptin, very low-density lipoprotein cholesterol 
(VLDL-C), and CD14 expression of CD16+ monocytes were found to be CO predictors.  Con-
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clusions : WC-, but not BMI-defined obesity, was associated with a more inflammatory pattern 
of CD16+ monocytes, without monocyte expansion, suggesting that a monocyte maturation 
process rather than an independent arise of CD16+ monocytes occurs in CO. Thus, in a pop-
ulation with low cardiovascular risk, leptin, VLDL-C, and CD14 expression of CD16+ monocytes 
predict CO, constituting a putative tool for screening of SIO.   © 2017 The Author(s)

Published by S. Karger GmbH, Freiburg 

 Introduction 

 Obesity is a major threat to human health and lifespan. In the pathogenesis of obesity and 
its comorbidities, increasing evidence points to a pivotal role of the crosstalk between meta-
bolic and immune systems, with adipocytes exhibiting immune functions and immune cells 
being influenced by endogenous metabolites, namely lipids  [1, 2] . Obesity induces macro-
phage infiltration into white adipose tissue (AT) in both humans  [3]  and mice  [4] , orches-
trating local and systemic inflammation, and consequently leading to insulin resistance, type 
2 diabetes, and cardiovascular disease (CVD). The recruitment of circulating monocytes into 
the AT is an early event in obesity-induced AT inflammation  [1] . Although monocyte counts 
have a strong and independent relationship with the overall cardiovascular risk  [5] , the role 
of the distinct circulating monocyte subsets in obesity is still undetermined. 

  Even though inflammation remains a key mechanism underlying this pathophysiology, 
finding sensitive tools towards the identification of subclinical inflammatory obesity (SIO) is 
challenging. In the context of our study, SIO is defined as the presence of inflammatory 
markers in a healthy population without obesity-associated metabolic disease or CVD  [6] . 
Discovery of biomarkers to allow earlier detection of inflammatory obesity will help to assess 
therapeutic effectiveness for obesity-related comorbidities such as CVD and cancer, which 
are increasing in incidence worldwide  [7] . 

  BMI is the most used and widely accepted method in epidemiological studies to measure 
obesity  [8] . However, BMI neither indicates fat distribution nor does distinguish fat mass 
from fat-free mass, which have opposite associations with health risk  [8] . In contrast, waist 
circumference (WC), a measure of central adiposity, has been found to be highly correlated 
with visceral fat measured by computed tomography  [9]  and better estimates obesity-asso-
ciated cardiovascular risk in comparison to BMI  [9] . Obesity, mainly the central type, is asso-
ciated with both a chronic inflammatory state and sympathetic nervous system over-activity 
 [1, 10] . The catecholamines (CA) adrenaline (AD) and noradrenaline (NA), potent modulators 
of neuroendocrine/immune/inflammatory networks, regulate monocyte inflammatory 
response during health and disease  [11] . The crosstalk between adipokines and CA suggests 
a role for these molecules linking obesity to inflammation  [12] . Among immune cells, mono-
cytes are key players in obesity-associated systemic inflammatory processes and in the devel-
opment of CVD  [1] . In obesity, visceral AT becomes infiltrated by a large number of monocytes 
mainly originated from the peripheral blood  [4] . Two major peripheral blood monocyte 
subsets have been described, according to their immunophenotype: classical CD14+ CD16– 
(CD16–) and non-classical CD14+ CD16+ (CD16+) subsets  [13] . CD16+ monocytes have also 
been shown to have lower expression of both CD11b (integrin alpha M or complement 
receptor type 3), and CD36 (fatty acid translocase, a scavenger receptor), as compared to 
CD16– monocytes, and they are considered ‘pro-inflammatory’ cells since they exhibit a 
macrophage-like phenotype with enhanced antigen-presenting capacities, higher endothelial 
affinity, and production of pro-inflammatory cytokines  [13, 14] . Accordingly, increased 
percentages and/or absolute numbers of CD16+ monocytes have been described in the 
peripheral blood from patients with inflammatory pathologies, such as sepsis, rheumatoid 



310Obes Facts 2017;10:308–322

 DOI: 10.1159/000464294 

 Leite et al.: Predictors of Subclinical Inflammatory Obesity: Plasma Levels of Leptin, 
Very Low-Density Lipoprotein Cholesterol and CD14 Expression of CD16+ Monocytes 

www.karger.com/ofa
© 2017 The Author(s). Published by S. Karger GmbH, Freiburg

arthritis, and infections  [13] , and in patients with a high cardiovascular mortality risk  [15] . 
Rogacev et al.  [16]  described a weak association between CD16+ monocyte counts and BMI 
in a healthy population. However, the pathophysiological significance of these findings is still 
controversial. Moreover, in inflammatory obesity, it is uncertain whether there is an expansion 
of CD16+ cells or a maturation process from classical to non-classical monocytes and if CA 
(AD and NA) are associated with monocyte characteristics observed in that condition. Previ-
ously, we have demonstrated that central obesity (CO) is associated with a higher immune 
inflammatory pattern and a downregulation of dopaminergic pathways in peripheral blood 
mononuclear cells  [17] . 

  The main aims of our study were i) to identify predictors of SIO, ii) to investigate whether 
pro-inflammatory CD16+ monocytes are preferentially associated with BMI-defined or 
WC-defined obesity, and iii) to evaluate which anthropometric, metabolic or endocrine 
parameters are associated with CD16+ monocyte characteristics. 

  Our work, for the first time, addresses the prediction of SIO, a major issue in public health 
given its comorbidities associated with a decrease in human lifespan.  

  Material and Methods 

 Study Population 
 This study was conducted in 65 blood donors from the Blood Bank of Clinical Hematology Department 

of Centro Hospitalar of Porto (CHP), Portugal; it meets the standards of the Declaration of Helsinki in its 
revised version of 1975 and its amendments of 1983, 1989, and 1996 and was approved by the Ethical 
Committee and Research Office, and authorized by the administration board of CHP, being registered with 
the identifier 072/09 (047-DEFI/065-CES). All participants signed a written informed consent, after being 
ware informed the objectives of the study and the confidentiality of the data. The individuals met the selection 
criteria for blood donation and were not under any medicines during the previous month. Two blood donors 
that were not fasting for at least 12 h at the time of blood withdrawal were finally excluded. After 5 min of 
rest, blood pressure (systolic blood pressure (SBP) and diastolic blood pressure (DBP)) was measured twice, 
and the mean values were used in the analysis.  

 Anthropometrics 
 Height (in meters) was based on an identification document and confirmed by medical record. Body 

weight was measured to the nearest 100 g on electronic weight scales. BMI was calculated by dividing weight 
by squared height and expressed in kg/m 2 . Participants, all Caucasian, were divided into three BMI categories 
that correspond to the definitions of normal weight (NW; BMI 18.5–24.9 kg/m 2 ), overweight (OW; BMI 25.0–
29.9 kg/m 2 ), and obesity (OB; BMI  ≥  30.0 kg/m 2 ), according to the World Health Organization (WHO) guide-
lines  [8] . WC was measured with a flexible tape at the level midway between the lowest rib margin and the 
iliac crest. As stated by the International Diabetes Federation, CO was defined as WC  ≥  0.80 m in women and 
WC  ≥ 0.94 m in men  [18] .

  Biochemical Analysis 
 Blood samples were taken from all subjects under standardized conditions. Fasting plasma glucose, 

triacylglycerol (TAG), total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-C), low-density lipo-
protein cholesterol (LDL-C), and very low-density lipoprotein cholesterol (VLDL-C) were measured with 
turbidometry and spectrophotometry methodology using the Cobas ®  8000 autoanalyzer (Roche Diagnostics 
International Ltd, Rotkreuz, Switzerland). Glycosylated hemoglobin (HbA1c) measurements were done by 
high performance liquid chromatography (HPLC), using the Hi-Auto A1c HA-8140 HPLC (Menarini Diag-
nostics, Florence, Italy). Plasma CA (NA and AD) were determined by HPLC with electrochemical detection 
(HPLC-ED) (Chromosystems Instruments & Chemicals GmbH, Munich, Germany). Determination of cortisol 
in plasma was performed with an electrochemiluminescence immunoassay (Elecsys Systems analyzer Roche; 
Roche Diagnostics International Ltd). Leptin levels were measured in serum by solid-phase two-site enzyme 
immunoassay (Mercodia Leptin ELISA; Mercodia AB, Uppsala, Sweden). High-sensitivity C-reactive protein 
(hsCRP) (mg/l) was determined by nephelometry (CardioPhase TM  hsCRP – BnProSpe;c Siemens Healthcare 
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Diagnostics Inc. New York, NY, USA) and categorized by cardiovascular event risk groups: <1 = low,  ≥ 1 to 
<3 = intermediate, and >3 = high risk, as described before  [19] . 

  Flow Cytometry Assay of Monocytes 
 Monocytes were analyzed in fresh ethylenediaminetetraacetic acid tripotassium (EDTA-K3) anticoagu-

lated blood samples by means of flow cytometry using a previously described technique  [20] . The enumer-
ation and the immunophenotypic analysis of monocytes were performed. Immunophenotypic studies were 
done through a whole blood stain-lyse-and-then-wash method and a direct immunofluorescence technique 
using the following a four-color panel of monoclonal antibodies (mAbs): mouse anti-human CD36 conjugated 
with fluorescein isothiocyanate (FITC) (clone FA6.152, IgG1), mouse anti-human CD16 conjugated with 
phycoerythrin (PE) (clone 3G8, IgG1), and mouse anti-human CD14 conjugated with PE-Cy5 (IgG2a, clone 
RMO52), all obtained from Beckman Coulter (Brea, CA, USA; catalogue numbers IM0766U, IM1238U and 
IM2640U, respectively), as well as mouse anti-human CD11b conjugated with allophycocyanin (APC) (IgG2a, 
clone D12), obtained from Becton Dickinson (BD) (Franklin Lakes, NJ, USA; catalogue number 333143). Data 
acquisition was carried out on a FACSCalibur flow cytometer (BD), using the Cell Quest software program 
(BD). Information on a minimum of 2 × 10 5  events was acquired for each staining and stored as FCS data. The 
Paint-a-Gate Pro software program (BD) was used for data analysis. Monocytes were quantified based on the 
CD14 expression, while CD16 was used to differentiate classical (CD16–) and non-classical (CD16+) monocyte 
populations ( fig. 1 ). The median fluorescence intensity (MFI) of CD14, CD36 and CD11b was assessed in each 
subset and expressed as fluorescence arbitrary units (AU). The forward light scatter (FSC), which is related 
to cell size, and the sideward light scatter (SSC), which correlates with cell complexity/granularity, were also 
measured. The ratio of CD14+ CD16+ non-classical monocytes and CD14+ CD16– classical monocytes for 
each parameter in each individual was calculated to overcome inter-individual variations.

  Instrument setup, calibration, and daily monitoring were performed with the protocols in use in our 
laboratory at the time of the study. Briefly, for instrument setup and calibration, unstained cells (autofluo-
rescence controls) were used to adjust FSC and SSC detector settings so that cells of interest were displayed 
on scale. Next, also using unstained cells and gating on lymphocytes, FL1, FL2, FL3 and FL4 detector settings 
were adjusted so that autofluorescence background was roughly within the first decade of the log scale of the 
respective fluorescence histogram. Subsequently, electronic compensation was performed by running cell 
samples stained individually with FITC-, PE-, PE-Cy5- and APC-conjugated anti-CD8 mAbs (single stains). 
Finally, compensation was checked by running cell samples stained simultaneously with FITC-, PE-, -PE-Cy5- 
and APC-conjugated mAbs staining mutually exclusive cell populations. Daily control was performed using 
Calibrite beads and monitored by plotting MFI values in Levy Jennings charts. 

  Blood Cell Counts 
 Blood cell counts were obtained using a Coulter LH750 automated hematology analyzer (Beckman 

Coulter). Absolute counts of total, CD16– and CD16+ peripheral blood monocytes, expressed as numbers of 
cells/μl, were calculated using a dual-platform method in which total white blood cell counts were derived 
from the hematology analyzer and the correspondent percentages of monocytes were obtained by flow 
cytometry.

  Statistical Analysis 
 The modified Kolmogorov-Smirnov test with the correction of Lilliefors was used to evaluate the fit of 

the data to a normal distribution. Variables were summarized using relative and absolute frequencies, mean 
and standard deviation, and median (interquartile range (25th and 75th percentiles). To compare the quan-
titative independent variables, we used bivariate statistical analysis ANOVA with Bonferroni post hoc testing 
(comparisons between more than 2 groups) or non-parametric Mann-Whitney (comparison between 2 
groups) and Kruskal-Wallis (comparison of more than 2 groups) tests for normal and non-normal distributed 
data, respectively. Correlations were assessed by non-parametric Spearman rank analysis. Pearson’s chi-
square test was used to compare the distribution of qualitative independent variables. Multiple linear 
regression analysis was performed to identify the variables that best predict CO after controlling for potential 
confounders. Linear regression models require only two subjects per variable for adequate estimation of 
regression coefficients, standard errors, and confidence intervals  [21] . Variables that in the univariate 
analysis showed statistical significance below 5% (p < 0.05) were included in the regression. Data analysis 
was performed using the SPSS version 22.0 (IBM Analytics, New York, NY, USA). A p value lower than 0.05 
was considered statistically significant.
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  Results 

 Baseline Characteristics and Anthropometrics, Metabolic/Endocrine Parameters and 
hsCRP in BMI and WC Groups 
 The baseline characteristics of the study sample are shown in  table 1 . The mean ages 

(years) of the individuals in the three BMI ((normal weight = 38 ± 11 vs. overweight = 40 ± 
11 vs. obesity = 44 ± 11 years, F (2, 60) = 1.199, p = 0.309) and in the two CO groups (with CO 
= 42 ± 10 vs. without CO = 36 ± 11 years, F (1, 61) = 3.855, p = 0.054) were similar. 55.6% of 
the participants were male. The prevalence of BMI-defined overweight/obesity and of 
WC-defined CO was 75% and 73%, respectively. DBP (obesity = 89 ± 9 vs. overweight = 80 ± 
9 vs. normal weight 73 ± 8 mm Hg, F (2, 60) = 12.748, p < 0.001) and leptin plasma levels 
(obesity = 1.17 (0.85–3.47) vs. overweight = 0.50 (0.30–1.05) vs. normal weight = 0.20 (0.04–
0.63) ng/ml, p = 0.002) were significantly higher in the obesity group than in both overweight 
and normal-weight participants, . Mean DBP in overweight participants was also higher than 

  Fig. 1.  Total monocytes (red dots) were selected in the SSC versus CD14 dot plot, based on the expression of 
CD14 ( panel A ). Afterwards, classical CD14+ CD16– monocytes (green dots) and pro-inflammatory CD14+ 
CD16+ monocytes (blue dots) were identified in the CD16 vs. CD14 dot plot, based on the expression of CD14 
and CD16 ( panel B ). Subsequently, these two monocyte populations were gated and separately analyzed for 
the levels of CD11b, CD14 and CD36 expression, using theMFI obtained for each marker; the FSC and SSC 
were also measured. Finally, the ratio between the values obtained on CD14+ CD16+ and CD14+ CD16– 
monocytes was calculated, for each parameter and in each individual. CD14 and CD16 positivity were defined 
using fluorescence minus one controls. Other leukocytes are represented as gray dots. Dot plots showed in 
this figure were obtained using the Infinicyt software (Cytognos). 
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in normal-weight subjects (p = 0.025). Obese individuals also presented higher SBP than 
normal-weight subjects ((44 ± 16 vs. (129 ± 16 mm Hg, F (2, 60) = 4.413, p = 0.016). Subjects 
with CO in comparison with those without CO had not only higher DBP (82 ± 11 vs. 76 ± 7 mm 
Hg, F (1, 61) = 4.244, p = 0.044) and leptin levels (0.870 (0.510–1.300) vs. 0.100 (0.040–
0.210) ng/ml, p = 0.006) but also showed differences in lipid profile. These include higher 
levels of TC (200 ± 35 vs. 178 ± 35, mg/dl, F (1, 59) = 4.978, p = 0.029), TAG (100 (68–135) 
vs, 78 (50–99) mg/dl, p = 0.034) and VLDL-C (20 (14–27) vs. 16 (10–20) mg/dl, p = 0.033). 
None of the other metabolic/endocrine parameters were significantly different between BMI 
and WC groups. The plasma levels of hsCRP (data as median and interquartile range (25th 
and 75th percentiles)) were neither different between BMI-defined (normal weight = 1.410 
(0.352–1.920) vs. overweight = 1.190 (0.571–2.250) vs. obesity = 3.020 (1.090–3.860) mg/l, 
p = 0.171) nor between WC-defined groups (with CO = 1.530 (0.764–3.560) vs. without CU = 
0.757 (0.469–1.750), p = 0.099). Plasma leptin values were different between hsCRP-defined 
cardiovascular risk groups (low risk = 0.320 (0.100–0.850) vs. intermediate risk = 0.615 

 Table 1.  Baseline characteristics of study participants (n = 63)

Variable Dat a Min–max Normal range F/M

Age, years 40 ± 11 20–63 – ns
Weight, kg 77.1 ± 13.3 51–120 – 70 ± 10 / 83 ± 13**
Height, m 1.67 ± 0.09 1.50–1.87 – 1.60 ± 0.07 / 1.73 ± 0.06**
BMI, kg/m2 27.6 ± 4.2 19.6–40.1 – ns
WC, m 0.97 ± 0.12 0.75–1.24 – ns
SBP, mm Hg 134 ± 15 103–177 <130 127 ± 13 / 140 ± 14**
DBP, mm Hg 80 ± 10 61–107 <85 ns
Glycemia, mg/dl 86 ± 9 67–115 70–105 ns
HbA1c, % 5.2 ± 0.3 4.5–5.8 3.8–5.6 ns
TC , mg/dl 194 ± 36 117–283 0–200 ns
HDL-C, mg/dl 50 ± 15 25–91 35–55 57 ± 15 / 45 ± 12*
LDL-C, mg/dl 123 ± 33 60–209 0–130 ns
VLDL-C, mg/dla 19 (13–25) 6–58 3–56 15 (10–20) / 23 (15–28)*
TAG, mg/dla 94 (67–124) 32–475 40–160 75 (51–99) /116 (76–140)*
NA, pmol/la 690 (395–1,552) 40–3,760 709–4019 ns
AD, pmol/la 154 (81–227) 55–965 <328 151 (81–185) /163 (103–279)*
Cortisol, μg/dla 15 (13–18) 6.4–28.4 6.2–19.4 ns
Leptin, ng/mla, b 0.63 (0.28–1.10) 0.003–5.3 2–5.6 1.05 (0.70–2.09) /0.31 (0.10–0.50)**
hsCRP, mg/la, c 1.460 (0.617–3.015) 0.150-17.800 <1.0 low risk

1.0 to <3.0 intermediate risk
>3.0 high risk

ns

Leukocytes, cells/μl 6,494 ± 1,585 3,500–11,600 4,500–13,000 ns
Monocytes, cells/μl 439 ± 157 82–964 400–500 384 ± 107 / 483 ± 177*
CD14 expression ratio 
(CD16+/CD16– 
monocytes)

0.40 ± 0.17 0.14–0.87 – 0.35 ± 0.14 / 0.44 ± 0.17*

 ns = Nonsignificant; F/M = female/male ratio (=28/35).
Data are shown as mean ± SD for normally distributed data. ANOVA and non-parametric Mann-Whitney test was used to 

compare quantitative independent variables by gender for normally and non-normally distributed data, respectively. 
aNon-parametric data as median (interquartile range); or percentage as appropriate. 
bn=41. 
cn = 60. 
*p < 0.05 and ** = p < 0.001.
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(0.480–1.140) vs. high risk = 3.100 (0.800–5.170) ng/ml, p = 0.011). hsCRP-defined groups 
did not show sensitivity for other studied parameters. However, hsCRP plasma levels corre-
lated with DBP (ρ = 0.286; p = 0.027), VLDL-C (ρ = 0.276; p = 0.033), TAG (ρ = 0.284; p = 
0.028), and leptin (ρ = 0.397; p = 0.011).

  Frequency and Immunophenotype of Monocyte Subpopulations in BMI- and WC-defined 
groups 
 In the whole population, total monocytes were on average 439 cells/μl ( table 1 ), and 

were not different in both BMI- (obesity = 446 ± 141 vs. overweight = 445 ± 151 vs. normal 
weight =422 ± 188 cells /μl, F (2, 60) = 0.121, p = 0.886) and WC-defined groups (with CO = 
425 ± 150 vs. without CO 479 ± 174, F (1, 61) = 1.488, p = 0.227). Classical CD16– monocytes 
accounted for 89% and inflammatory CD16+ monocytes for 11% of total monocytes ( table 2 ). 
As previously described  [14] , CD16+ monocytes showed lower cellular complexity/granu-
larity (SSC) and lower expression of CD14, CD36 and CD11b, as compared to CD16– mono-
cytes ( table 2 ). The frequency and the immunophenotype of either CD16+ or CD16– mono-
cytes in BMI-defined groups were similar. However, CD16+ monocytes from CO subjects 
showed a more inflammatory pattern, with lower SSC and lower expression of CD14 as 
compared with subjects without CO, as evaluated by the ratio of SSC and CD14 expression on 
CD16+(p = 0.003) and CD16– monocytes (p = 0.017) in each individual  ( table 3 ).

  CD16+ Monocytes and Anthropometric and Metabolic/Endocrine Parameters in BMI- and 
WC-Defined Groups 
 In the whole sample, plasma levels of AD correlated positively with both CD16+ monocyte 

size (FSC) and CD14 expression ( fig. 2 ). In BMI-defined obese subjects, CD14 expression was 
negatively correlated with plasma TC (ρ = –0.764, p = 0.006) and, similarly to whole popu-
lation, AD was correlated with the FSC of monocytes (ρ = 0.619, p = 0.032). 

  In CO subjects, AD correlated positively with the number and with the immunophenotype 
characteristics of CD16+ monocytes, namely size (FSC), complexity (SSC) as well as CD14 and 
CD11b expression ( table 4 ). 

  No other associations between anthropometric or metabolic/endocrine parameters, 
namely leptin, and CD16+ monocyte characteristics (counting and phenotype) were verified. 

 Table 2.  Immunophenotypic characterization of CD16+ and CD16– monocytes in the whole population of 
study participants

CD16+ CD16– ratio CD16+/CD16– p

Cells/μl 52 ± 51 387 ± 134 0.14 ± 0.10 <0.001
% of total monocytes 11.4 ± 6.8 88.6 ± 6.8 0.14 ± 0.10 <0.001
FSC 557 ± 65 556 ± 63 1.0 ± 0.03 0.654
SSC 410 ± 53 481 ± 45 0.85 ± 0.06 <0.001
CD14 892 ± 558 2,384 ± 1,522 0.40 ± 0.17 <0.001
CD36 317 ± 138 740 ± 205 0.44 ± 0.15 <0.001
CD11b 82 ± 72 212 ± 301 0.59 ± 0.32 0.006

 The median fluorescence intensities of CD14, CD36, and CD11b were assessed in each subset and 
expressed as fluorescence arbitrary units. Data are presented as means ± SD or as percentages, as appropriate. 
T test was used for the comparison of paired variables. Significant differences are given in italics.
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  CD16+ Monocytes and Anthropometric and Metabolic/Endocrine Parameters: Impact of 
Gender 
 The female/male ratio was different between CO groups and not verified among BMI 

groups ( table 3 ). Thus, we analyzed the differences between genders concerning the anthro-
pometric, metabolic and endocrine variables in the whole population ( table 1 ). Relatively to 
the monocyte subsets, women, comparatively to men, showed lower numbers of CD16– 
monocytes (women = 343 ± 99 vs. men = 424 ± 149 cells /μl, F (1, 60) = 5.994, p = 0.017) but 
similar numbers CD16+ monocytes (women = 41 ± 28 vs. men = 61 ± 63 cells/ml, F (1, 60) = 
2.529, p = 0.117). The ratio of CD14 expression on CD16+ and CD16– monocytes was lower 
in females when compared to males (F (1, 60) = 4.953, p = 0.030) ( table 1 ), indicating a more 
inflammatory pattern of CD16+ monocytes in women. No other differences were noticed 
between genders in relation to monocyte characteristics.

  The number of CD16+ monocytes did not correlate either with the metabolic or the endo-
crine parameters in both women and men. The plasma levels of LDL-C were found to correlate 
positively with a more inflammatory phenotype of the CD16+ monocytes in both females and 
males (SSC: ρ = –0.394, p = 0.042; CD14: ρ = –0.385, p = 0.033). AD, as in whole sample, also 
correlated positively with CD16+ monocyte size (FSC) in both females (ρ = 0.472, p = 0.013) 
and males (ρ = 0.405, p = 0.020). In females, AD was correlated with a less inflammatory 

  Fig. 2.  Correlation between plasma levels of AD and CD14 expression ( A ) and FSC ( B ) of CD16+ monocytes. 
ρ = Correlation coefficients calculated by Spearman test. 

 Table 4.  Correlation between plasma level of AD and CD16+ monocytes number and phenotype in central 
obesity

CD16+ monocytes

number FSC SSC CD14  CD11b

ρ p ρ p ρ p ρ p ρ p

AD 0.309 0.044 0.488 0.001 0.307 0.045 0.307 0.050 0.468 0.033

 ρ = Spearman’s rho.
The MFI of CD14, CD36 and CD11b were assessed in each subset and expressed as fluorescence AU. 

Significant correlations are given in italics.
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pattern of CD16+ monocytes: (SSC: ρ = 0.417, p = 0.031); CD14: ρ = 0.411, p = 0.041). On the 
contrary, in males, AD was inversely correlated with the expression of CD36 (ρ = –0.362, p = 
0.038). NA was correlated with a higher inflammatory pattern of the CD16+ monocytes in 
females (CD11b: ρ = –0.618, p = 0.019), but this correlation was not verified in males.

  We performed a multiple linear regression analysis in order to find a predictive model 
for CO, controlling for gender. The independent variables weight, height, SBP, HDL-C, VLDL-C, 
TAG, AD, leptin, total number of monocytes, classical monocyte (CD16–) counting ,and CD14 
ratio were included in the analysis, as they were significantly different between genders. We 
found that 33.7% of the CO is explained by a model that includes leptin, CD14 ratio, and 
VLDL-C (R 2  = 0.337; Z = 8.576; df 1; p = 0.006).

  Discussion 

 The main findings of the present study are threefold. First, we identified a prediction 
model of SIO identified by CO, but not by BMI; CO is predicted in more than one-third with a 
model that includes the determination of plasma levels of leptin and VLDL-C, and CD14 
expression in monocytes subsets. Second, in SIO, CD16+ monocytes showed a ‘more inflam-
matory’ phenotype signature, although no increase in the frequency or absolute number of 
pro-inflammatory monocytes has been observed, suggesting that the maturation process 
from classical to pro-inflammatory monocytes already occurs in early stages of inflammatory 
obesity. Third, CA (AD and NA) were associated with the characteristics of CD16+ monocytes 
with a putative immunomodulatory role in obesity. 

  A review of determinants for subclinical inflammation in obesity, namely in children, 
described a significant increase in C-reactive protein (CRP), interleukin 6 (IL-6), and leptin 
with increasing adiposity, independent of age  [22] . Total dietary fat and percentage of energy 
from fat were significant predictors of CRP concentration, independently of BMI  [6] .

  Our study demonstrated that leptin and VLDL-C plasma levels as well as CD14 expression 
on CD16+ monocytes are predictors of inflammatory obesity in a cardiovascular low-risk 
population. Understanding that more than one-third of inflammatory obesity is explained by 
these parameters, this data may contribute to clarify why the adiposity measurements 
(general and/or central) per se fail in prediction of CVD  [22] . The interpretation of the results 
from a collaborative analysis of 58 prospective studies was that measures of general obesity 
and CO did not improve CVD risk assessment when information is available on SBP, diabetes, 
and lipids  [23] . Moreover, it is widely accepted that the cluster metabolic syndrome is 
explained by underlying inflammation the trigger of which is not completely understood. Our 
model predicts obesity-associated inflammation. Leptin plays a main inflammatory/immu-
nomodulatory role  [24] , and increased levels of VLDL-C are one of the first events of dyslip-
idemia associated to obesity  [25] . In addition, the more inflammatory pattern observed on 
CD16+ monocytes from CO subjects may facilitate their transmigration to AT and subsequent 
local inflammation. Prospective studies would be necessary to evaluate our predictive model 
of inflammatory obesity in CVD risk assessment.

  In the present work, a cardiovascular low-risk population was recruited to study SIO. CO 
was associated with dyslipidemia and a distinct phenotypic inflammatory pattern of CD16+ 
monocytes (with no expansion), while no significant differences were noticed between BMI 
groups. Using a flow cytometric approach, we differentiated two monocyte subsets as 
described before  [13] : classical CD16– monocytes and non-classical CD16+ monocytes (with 
lower SSC and lower expression of CD14, CD36, and CD11b in comparison to classical mono-
cytes). Although an intermediate subset of CD16+ monocytes has been reported  [26] , which 
shares the gene expression profile  [27]  and a higher expression of CD14  [26]  with the clas-
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sical subset, its biological role remains unclear. This intermediate subset that in physiological 
states constitutes a very small percentage in circulation seems to represent a transitional 
maturation stage from CD16– to CD16+ monocytes  [26] . Moreover, it has been demonstrated 
that non-classical monocytes (and not the intermediate monocytes) are the primary inflam-
matory monocytes in acute and chronic inflammatory conditions  [28] . Our findings, showing 
an association between CO and a subset of CD16+ cells with lower expression of CD14, would 
suggest that CD16+ monocytes more likely belong to the non-classical subset. 

  According to our results, several studies in human chronic pathologies associated with 
low-grade inflammation did not find changes in CD16+ monocyte counts  [29–31] . In contrast, 
Rogacev et al.  [16]  have shown a weak correlation between BMI and CD16+ monocyte counts 
(total CD16+ and intermediate, but not non-classical monocyte subsets). Curiously enough, 
Berg et al.    [32]  showed that elevated numbers of CD16– monocytes predicted cardiovascular 
events, independent of gender, age, current smoking, HDL-C , and the presence of diabetes 
and hypertension. 

  The expression of adhesion molecules (CD11b)  [33]  and scavenger receptors (CD36) 
 [34]  in peripheral blood monocytes have been used to characterize the inflammatory response 
in metabolic disorders because of their involvement in the pathogenesis of diabetes and 
obesity  [35, 36] . CD11b has been associated with high-fat diet-induced obesity  [37] , and 
carotid intima-media thickness  [38] , and CD11b expression was described as lowest for non-
classical monocytes after lipopolysaccharide stimulation  [39]  and in a rodent model of type 
2 diabetes  [40] . Results concerning CD36 atherogenicity are also contradictory since an 
increase  [35]  or deficiency  [41]  of its expression have been associated with the pathogenesis 
of atherosclerosis and CVD. 

  These contradictory results relatively to monocyte subset characteristics (counting and 
phenotype) may be explained by discrepancies in gating strategies for flow cytometric char-
acterization and purification protocols contributing to significant changes in receptor 
expression. We have adopted whole blood and staining protocol to perform the flow cyto-
metric study in a robust gating strategy. 

  Circulating monocytes undergo phenotypic modifications due to exposure to systemic 
environmental factors  [2] . Plasma lipids and leptin are immune modulators  [2, 24] , and they 
could have affected the phenotype of CD16+ monocytes. Circulating lipids may also influence 
the function of the immune cells  [2] . Despite the regulatory role of leptin on human mono-
cytes  [42] , it seems unlikely that this adipokine could be the only factor explaining the more 
inflammatory pattern observed on CD16+ monocytes from CO subjects, as its levels were also 
elevated in the generally obese. On the other hand, individuals with CO showed significantly 
higher levels of TAG, TC, and VLDL-C compared to those without CO. Furthermore, BMI, 
frequently associated with dyslipidemia  [1] , was not sensitive for differences in lipid plas-
matic profile. Apart from the fact that BMI-defined obesity has missed the detection of 
subclinical inflammation in our study, it has also been reported that visceral fat measure-
ments elucidate relationships between obesity and cancer otherwise not significant when 
evaluated by BMI  [43] .

  CD16+ monocytes seem to reside in a marginal pool mobilized by a CA-dependent 
pathway  [44] . In CO, AD was correlated with number and size and with a lower inflammatory 
pattern of CD16+ monocytes. This suggests that AD is associated with the expansion of this 
monocyte subset, as already described in stressful conditions such as coronary artery disease 
 [45] , but with a less inflammatory phenotype, ias described by Takahashi et al.  [46] . Our work 
also suggests that CA such as AD and NA have an immunomodulatory role in obesity. The 
adrenergic regulation of human monocytes was recently reviewed  [47] . On human mono-
cytes, even if under certain conditions pro-inflammatory responses may arise, the predom-
inant view is that β-adrenoceptor (β-AR) activation is usually anti-inflammatory and immu-
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nosuppressive. In this context, the putative immune effects of β-AR agonists in CO requires 
further investigation. 

  Usually correlated with adiposity  [48] , hsCRP was not a useful marker for SIO in our 
population with low cardiovascular risk. Others have also described a non-linear relation 
between hsCRP concentration and adiposity  [49] . Although we have found an association 
between hsCRP and DBP, VLDL-C, TAG or leptin, the cardiovascular risk groups defined by 
hsCRP only differentiated plasma levels of leptin. Indeed, leptin may mediate the relation 
between hsCRP and obesity  [49] .

  Our study describes a stronger association of inflammation and obesity in females, which 
is in line with the results of Thorand et al.    [50] . Indeed, women showed higher levels of leptin 
usually associated with inflammatory immune responses  [24] . Moreover, CA behave differ-
ently by gender  [51] . AD plasma levels were associated with a less pro-inflammatory CD16+ 
monocyte phenotype in females and with a higher level of inflammation in males. In opposite, 
NA was associated with a higher inflammatory phenotype only in females. These data could 
be explained by a higher percentage of adiposity in females and differences in endogeneous 
hormones.

  Our work suggests that in SIO, dyslipidemia and leptin could induce a monocyte matu-
ration process rather than an independent rise of CD16+ monocytes. Moreover, our model, 
explaining a significant part of CO, can be an important tool for early therapeutic interven-
tions to reduce health risks associated to obesity. 

  In a cardiovascular low-risk population, those with central, but not with general, adiposity 
wee sensitive to metabolic risk factors and to a more pro-inflammatory pattern of CD16+ 
monocytes (reflecting a higher activation of the innate immune system). Our findings point 
to the need to further investigate the phenotypic pattern of circulating monocytes in an early 
phase of CO and its relation with migratory and inflammatory functions. 

  Conclusions 

 CO, but not general obesity, is associated with subclinical inflammation. A model that 
includes the determination of plasma leptin and VLDL-C levels and CD14 expression in 
monocyte subsets predicts and explains a significant part of CO. Our work suggests that in SIO 
dyslipidemia and leptin induce a monocyte maturation process, rather than an independent 
rise of CD16+ monocytes, and also suggests CA (AD, NA) immunomodulation in obesity. The 
stronger association found between CO and cardiometabolic risk factors in comparison with 
that between general obesity assessed by BMI and these risk factors demonstrates that WC 
measurement should be used as priority tool for the screening of inflammation in populations 
with low cardiovascular risk.
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