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Abstract

Computationally complex systems models are needed to advance research and implement policy 

in theoretical and applied population biology. Difference and differential equations used to build 

lumped dynamic models (LDMs) may have the advantage of clarity, but are limited in their 

inability to include fine-scale spatial information and individual-specific physical, physiological, 

immunological, neural and behavioral states. Current formulations of agent-based models (ABMs) 

are too idiosyncratic and freewheeling to provide a general, coherent framework for dynamically 

linking the inner and outer worlds of organisms. Here I propose principles for a general, modular, 

hierarchically scalable, framework for building computational population models (CPMs) 

designed to treat the inner world of individual agents as complex dynamical systems that take 

information from their spatially detailed outer worlds to drive the dynamic inner worlds of these 

agents, simulate their ecology and the evolutionary pathways of their progeny. All the modeling 

elements are in place, although improvements in software technology will be helpful; but most of 

all we need a cultural shift in the way population biologists communicate and share model 

components and the models themselves, fit, test, refute, and refine models, to make the progress 

needed to meet the ecosystems management challenges posed by global change biology.
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Grounding and Motivation

This paper is about a vision for the future, but needs context and, hence, grounding in the 

past, as covered in various books (McIntosh 1985, Kingsland 1995). Here I provide only a 

very brief and selective review of material needed to develop my vision of Computational 

Population Biology (CPB) as a field in its own right. By virtue of its name CPB is a part of 

Computational Biology, but in this role it is distinct from Bioinformatics (Ouzounis 2012), 

Statistical Ecology, or even Ecoinformatics (Michener and Jones 2012): CPB essentially 
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focuses on the construction of computationally intensive dynamical systems models of the 

emergent behavior, ecology, and evolution of heterogeneous collections of organisms with 

complex internal states rather than on issues of how to gather, store and manipulate data or 

fit model parameters to data. Of course, all these latter issues are of great relevance to CPB. 

At this time all the elements required for a quantum jump in the field of CPB are in place, 

except for two. What we have are: i) the necessary modeling experience to construct all the 

components of CPB models at both the agent-based and dynamical systems levels, ii) the 

required computational power and data handling capacities, iii) well-developed data 

collection and geographical information systems (GIS) processing technologies, and iv) a 

sophisticated understanding of computational methods needed to support statistical 

inference. What we still need are: i) better software technologies to rapidly and accurately 

code complex models and, ii) a cultural shift, which has to some extend begin with the 

adoption of the ODD (Overview Design concepts and details) protocol ((Grimm et al. 2006, 

Grimm et al. 2010)) in the way we communicate the structure, fit, and results of our models, 

and how we share model components and the models themselves.

Dynamic models in population ecology can either be Eulerian differential or difference 

equation descriptions of lumped or aggregated classes or groups of individuals—a class of 

models that I refer to as LDMs (lumped dynamic models)—or they can be Lagrangian 

descriptions of the behavior—a class of models that are referred to as ABMs (agent-based 

models, also individual-based models designated IBMs (Patterson et al. 2008, Hellweger and 

Bucci 2009)). The growing field of CPB is currently best epitomized by both stochastic 

simulations of LDMs (Costantino et al. 2005) and inherently stochastic ABMs; a distinction 

that Caswell and colleagues have cast in terms of so-called i-state distribution versus i-state 

configuration models (Maley and Caswell 1993).

During the first half of the 20th Century, the foundations of population biology modeling 

were laid down through the development of a variety of LDMs of processes in demography, 

ecology, epidemiology, and evolution. Throughout the 1970s and 80s, a growing community 

of quantitative and mathematical ecologists crafted LDMs with increasing realism, as well 

as paying closer attention to using empirical data to estimate model parameters and validate 

model predictions. Only with the rise of powerful desktop computers in the late 1980s, 

however, did ABMs begin to take a foothold in population biology with calls to arms a 

number of researchers over the ensuing decade (Huston et al. 1988, Maley and Caswell 

1993, Grimm 1999). Surprisingly, ABM studies in population ecology have been increasing 

only linearly (DeAngelis and Mooij 2005), and then at a paltry rate given the ubiquity of 

ABMs in other fields of science (Fig. 1).

The reason for the paltry rate could be that LDMs maintain many advantages over ABMs 

(Table 1) and large scale LDMs, particularly in modeling oceanic systems, can become 

rather large and computationally intensive (Espinosa-Romero et al. 2011). However, LDMs 

have severe disadvantages as well, the most crucial being their inability to take heterogeneity 

into account at the individual level (Table 1). This inability to account for the uniqueness of 

individuals greatly limits the kinds of questions that LDMs can be used to address. First, in 

trophic ecology, some individuals fortuitously or despotically have greater access to 

resources than other individuals (Revilla and Wiegand 2008), with the implication that 
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populations are likely to resist negative impacts associated with a decline in resources than 

would be predicted by a mean-field LDM model. Second, in disease ecology, a full 

exploration of the impacts of superspreaders requires ABMs (Lloyd-Smith et al. 2005), 

particularly when disease processes have idiosyncratic contact network topologies (Eames 

and Keeling 2002, Keeling and Eames 2005). Third, processes in movement (Nathan et al. 

2008) and behavioral ecology (Holmgren 1995, Hock et al. 2010) essentially act at the 

individual level, with effects that depend on the current, but dynamically changing, states of 

individuals. Fourth, although LDMs have proven to be invaluable in developing evolutionary 

ecology theory through the application inter alia of trait-for-allele multi-locus models, 

coalescence models (Rousset 2004), and evolutionarily stable strategy models (McGill and 

Brown 2007), genetic algorithms (Olden et al. 2008) applied to ABMs are needed to address 

the panoply of questions that can be posed with regard to heterogeneously rich systems (i.e. 

systems with at least many thousands of distinct individuals or a large number of 

heterogeneous groups of homogeneous individuals).

From the above examples it follows that, although LDMs have provided and will continue to 

provide a powerful framework for addressing questions and developing theory in population 

biology, ABMs are needed to address questions beyond the capabilities of an LDM 

framework (Levin et al. 1997). To date, however, few LDM models have treated the 

individual agents themselves as complex dynamical systems within their own right: entities 

that grow, develop, reproduce and die, have physical, physiological, immunological, and 

neural states that affect these four processes through movement, interactions, and other 

behaviors. I will use the term CPM (computational population model) to distinguish an 

ABM in which the agents are represented by a finite number of discrete tags (species, 

gender, age, susceptible to disease, vaccinated, etc.) from an ABM in which agents are 

represented by internal dynamical system descriptions of inter alia consumption and growth, 

and possibly physiological, immunological, and neurological processes that are influenced 

by external factors and, in return, influence the way these agents dynamically interface with 

each other in their external worlds.

Apart from the data needed to parameterize the various modules that may make up a fully 

developed CPM, an important constraint in developing CPMs has been the computational 

resources needed to implement models consisting of thousands, or even tens of thousands, of 

agents. This constraint, however, is rapidly relaxing with the advent of parallel processing 

and cloud computing (Lee et al. 2011). An equally important constraint has been the 

challenge posed by the complexity of CPMs with regard to the scientists who have 

developed a particular CPM both 1.) communicating the details of the model in ways that 

enable others to understand how the model really works (Kettenring et al. 2006) and 2.) 

using the output of the model to obtain significant and deep insights in the behavior of the 

system the model is purported to represent. Taming the complexity of the CPMs needed to 

address global change biology problems is going to require the emergence of a much more 

sophisticated modeling culture than currently exists. This culture is not meant to dispense 

with LDMs in addressing theoretical questions or ABMs for modeling moderately complex 

systems, since Occam's principle that “ceteris paribus the simplest model should be 

selected” (Riesch 2010) must always be a central tenet of CPB. Rather this culture is meant 

to facilitate the development of new methods, as well as more powerful software platforms, 
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to build a new generation of much more powerful ABMs—now called CPMs to distinguish 

them from their less complex progenitors—that are able to link the dynamic inner and 

spatially-detailed outer worlds of many different types of agents interacting in their tens of 

thousands (Fig. 2).

LDM Mean-Field Models

Lumped dynamic models (LDMs, Fig. 2), sometimes referred to as mean-field population 

models (Ovaskainen and Cornell 2006), provide the foundational vocabulary for articulating 

dynamical systems theory in population biology. The vocabulary begins with Malthusian—

that, is exponential—growth of the size of populations, either represented by the change over 

time t in the number N(t) of indistinguishable individuals, or the biomass x(t) of lumped 

homogeneous population. This vocabulary of exponential growth or decline, depending on 

whether or not the net growth rate r (births minus deaths in a closed population) of a 

particular population is respectively positive or negative was extended by the powerful 

concept of an environmental carrying capacity K. Since this concept is phenomenological, 

rather than mechanistic, the logistic growth model dx/dt=rx(-1-x/K) does not extend beyond 

the inner-outer world boundary (blue central strip in Fig. 2) even if K is made a function of 

time, unless K itself is mechanistically related to elements in the outer world of a population 

of agents through processes in the inner world of these agents. The outer-world includes 

resources needed for growth and other elements that drive the way agents interact among 

themselves and with their environment, while the inner-world processes include metabolism, 

respiration, and foraging efficiency (see (Kooijman 2010) and the references therein), where 

the latter may be influenced by memory (within lifetime learning) and genetics (evolution). 

Such links have been made (Getz 1991, 1993, South 1999, Johst et al. 2008), though the 

resulting extensions are within the LDM domain boundary if they do not deal with 

individual level heterogeneity in terms of the differential exposure of individuals to 

resources or genetic variation in the physiological and cognitive functions of individuals 

(Fig. 2).

The age-structured matrix model formulation of Leslie in the 1940's (Leslie 1945, 1948) has 

become the canonical stalwart of LDMs in nonhuman demography (Caswell 2001). With 

suitable modifications that phenomenologically account for density-dependent recruitment 

(Owen-Smith 2000, Ovaskainen and Cornell 2006, Abrams 2009), explicitly incorporate 

resource-dependent survival (Owen-Smith 2000, Wilmers and Getz 2004) or include 

environmental or demographic stochasticity (Lande et al. 2003), the Leslie framework has 

been used to assess and design harvesting policies in fisheries, forestry and wildlife 

management (Getz and Haight 1989) and to implement population viability analyses in 

conservation biology (Beissinger and Westphal 1998). In these cases, however, the LDM 

structure is maintained, albeit in a stochastic difference or differential equation framework.

The foundation for the boundary level canonical approach to modeling epidemiological 

processes—so-called SIR modeling—was laid by Kermack and McKendrick in the 1920's 

(Kermack and McKendrick 1927) (for modern expositions inter alia see (Anderson and May 

1991, Hethcote 2000, Getz and Lloyd-Smith 2006)). These models have been greatly 

extended to address questions relating to multiple strain infections (White et al. 1998, Dawes 
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and Gog 2002, Abu-Raddad and Ferguson 2005, Ackleh and Allen 2005), heterogeneity in 

susceptibility or infectiousness (Lloyd-Smith et al. 2005, Kenah and Robins 2007, Miller 

2007, 2009), evolution of virulence (Porco et al. 2005, Osnas and Dobson 2012), and even to 

include internal host-immunity dynamics (Steinmeyer et al. 2010). However, the linking of 

internal host-pathogen dynamic processes with behaviorally detailed host contact processes 

has yet to be undertaken.

One lineage of LDMs is rooted in the competition and predation models of Lotka and 

Volterra (Lotka 1925, Volterra 1926) and their extensions to modeling interactions in 

multispecies assemblages (May 1973) and food webs (Hastings and Powell 1991, Ackland 

and Gallagher 2004), or including additional age or stage classes (Murdoch et al. 2003). A 

second lineage is rooted in the host-parasitoid models of Nicholson and Bailey (Nicholson 

1933, Nicholson and Bailey 1935) and Thompson (Thompson 1924), with extensions to 

account for handling times (Hassell 1978, Getz and Gutierrez 1982), and egg versus search-

limited tradeoffs (Getz and Mills 1996, Mills and Getz 1996) in parasitoid attack rates of 

hosts. Neither of these approaches provide explicit ways to link inner and outer world 

processes, unlike the metaphysiological (Getz 1993) approach that was explicitly formulated 

to provide a link between the outer world process of resource extraction and the inner world 

process of starvation, albeit at the population level. This approach has been recently refined 

at the multispecies level as the biomass transformation web (BTW) formulation (Getz 

2011a), which differentiates between extraction (predation) and senescence (aging and 

starvation) type mortalities (Appendix A). Further, BTW has both population and individual 

level interpretations and provides a clear link between disease-induced mortalities (an inner-

outer world immunology/physiology-epidemiology link) and the poor condition of 

individuals during starvation (an inner-outer world physiology-ecology link). The 

application of LDMs in describing the states of individuals also has a long and varied 

history, as elaborated in more detail in the subsection on an agent's inner world.

ABM Outer World Models

As illustrated in Fig. 1, the use of ABMs in population ecology (Grimm and Railsback 2005, 

Grimm et al. 2006, Railsback and Grimm 2011) has been growing slowly but surely over the 

past two decades. With the advent of cloud computing (Lee et al. 2011), the computational 

constraints are significantly reduced, thereby transferring the impediment of ABMs to issues 

of documenting and communicating the structure of models, exploring the behavior of 

models, and interpreting results following the ODD approach propounded by Grimm and 

colleagues ((Grimm et al. 2006, Grimm et al. 2010)). A first step to reigning in the 

complexity of ABMs is to understand the behavior of associated mean-field LDMs obtained 

through mathematical averaging and aggregating procedures (Durrett 1999, Johansson and 

Sumpter 2003, Ovaskainen and Cornell 2006, Adams et al. 2011). The behavior of mean-

field LDMs provides a basis to understanding to what extent the behavior of related ABMs 

is determined by averages of processes and to what extend the behavior is due to the 

heterogeneity introduced through spatial variation and individual agency. Of course the 

relationship between LDMs and the ABMs from which they have been generated may 

diverge considerably when heterogeneity is large and idiosyncratic. The latter is the case for 

many disease processes where contact networks have nonrandom topologies (Grassly and 
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Fraser 2008, Givan et al. 2011) or spatial peculiarities or irregularities (Hahn et al. 1999, Liu 

et al. 2009).

Until recently most ABMs focused more on the spatial heterogeneities of the external world 

(Travers et al. 2009) rather than on details of the internal dynamics of the agents themselves. 

The central component of these models is related to characterizing either the diffusion of 

individuals, or their propagules in the case of plants and sessile animals, through space 

(Turchin 1998), random walks of individuals over landscapes (Berg 1993, Edwards et al. 

2007, Fryxell et al. 2008), the interactions of individuals or groups of individuals on contact 

networks (Hanski and Thomas 1994, Kretzschmar et al. 1995, Grassly and Fraser 2008), 

often reflecting social relationships (Zeggelink 1994) or interactions being spatial-scale 

dependent (Boots et al. 2009). Earlier movement studies focused on the statistical properties 

of elements in the movement tracks of individuals obtained by sampling the locations of 

individuals at different points in time (Berg 1983). Generally the properties of these tracks 

were expressed in terms of the distributions of step sizes and shifts in the directions of 

consecutive steps (Benhamou 2004, Edwards et al. 2007), and comparisons of these data 

with uncorrelated or correlated Gaussian and Lévy walks (Metzler and Klafter 2000, 

Edwards et al. 2007, Getz and Saltz 2008, Duffy 2011) or mixed-distribution walks (Morales 

et al. 2004, Fryxell et al. 2008). More recently individual movement has been related to 

structures on real landscapes (Gough and Rushton 2000, Clark et al. 2001, Harper et al. 

2002, Macdonald and Rushton 2003, Wiegand et al. 2004, Bar-David et al. 2005, Bar-David 

et al. 2008, Elderd and Nott 2008), as well as and the presence of other organisms on the 

landscape (Getz and Saltz 2008, Willems and Hill 2009). In particular conspecifics influence 

the movement of individuals through herding, mating, and territoriality, while 

heterospecifics influence movement through foraging behavior, territoriality or predator 

avoidance, where the latter has been expressed in terms of the so-called “landscape of fear” 

(Laundre et al. 2001, Willems and Hill 2009, Laundre 2010).

An Agent's Inner World

The development of LDMs to characterize the dynamic state of populations has been 

paralleled by the development of LDMs to characterize the dynamic internal state of 

individual organisms. Some of the earliest models dealt with the growth of individuals (von 

Bertalanffy 1957, Turner et al. 1976) (i.e. the state variable was the organism's size or mass), 

including accounting for developmental and growth as a function of temperature (Chang et 

al. 2011) and energy intake (Mangel and Clark 1988, Clark and Mangel 2000, Nisbet et al. 

2000, Jusup et al. 2011). Increasingly, however, quantitative descriptions of the biological 

state of individuals is being made more complex by moving from simple tags that denote 

gender, age, size or discrete disease class (e.g. susceptible, infectious, vaccinated, etc.) to 

dynamical systems representations of the physiological, neurological, immunological, 

serological and bacteremic or viremic states of individuals. Thus individuals are being 

associated with their own within-host pathogen-immunology models (Nowak and May 2000, 

Steinmeyer et al. 2010), neural cognitive and memory process models (Olsson and 

Holmgren 1998, Norrstrom et al. 2006, Holmgren et al. 2007, Dalziel et al. 2008), or 

dynamical systems formulations of individual level reproductive and physiological process 

models (e.g. see Individual Level Model in Appendix A).
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The features required of any inner world model obviously relate to the problem at hand. 

Each agent would be associated with one or more modules, each of which is an LDM model 

of a particular subsystem (Appendix B), such as a growth module; a within-host disease 
module; one or more perceptual modules that gather information from the external world; 

one or more brain modules that use neural nets to process perceptual input (e.g. see 

(Holmgren and Getz 2000, Norrström et al. 2011) for the application of perceptron models 

(Haykin 1999) to habitat selection), one or more execution modules that instruct the agent 

how to behave (e.g. mate selection, path selection, direction of movement—see Appendix B, 

or decisions made during agonistic interactions). In addition, one or more developmental 

clocks will likely be included that either directly monitor the passing of time or calculate 

developmental rates as influenced by temperature (e.g. phenology models—see (Pau et al. 

2011)) or other environmental drivers. The primary clock would determine the age or 

developmental stage of an individual beginning with its conception or its birth, and 

secondary clocks would determine periods elapsed since the occurrence of critical events 

such as mating or reproduction.

In closing this section we note two things. First, adhering to the principle of Occam's razor 

(Riesch 2010), only modules that are key to the behavior of the system in the context of 

addressing the specific question at hand should be incorporated——since otherwise the 

complexity of CPM behavior and output will ultimately lead to obfuscation in addressing the 

question at hand. The key challenge though is to know a priori what processes are indeed 

critical to incorporate in the model—a challenge that should not be underestimated and can 

be partially redressed using current methods in model selection theory (Burnham and 

Anderson 2002). Second, all modules that are used should be developed in a way that allows 

them to be linked to elements in the external world in a sensible way. Thus, for example, the 

BTW formulation presented in Appendix A, explicitly includes a resource variable R(t) that 

can be set to some constant or periodic function of time when exploring the affects that 

different extraction functions or model parameters have on the growth of individuals. This is 

equivalent to embedding the individual in a constant or idealized seasonal environment, but 

leaving open the option to of replacing R(t) with a dynamical systems module that computes 

a vector of resources available to each agent as time progresses, if there is a need to extend 

the model in this direction.

Merging the Inner and Outer Worlds with CPMs

In developing CPMs (Fig. 2, Table 2), the goal should be to create a powerful and 

comprehensive modularized software platform with toolboxes containing easily linkable, 

substitutable, and vetted procedures; the latter preferably through an open access 

participatory community resulting over time in a Darwinian selection of the most 

appropriate and computationally valid procedures and modules. The constituency served by 

this software is likely to include both students and professionals from a range of 

backgrounds and competences in the natural and engineering sciences. These users should 

be able to apply the contents of the toolboxes to rapidly and accurately assemble models 

capable of addressing both theoretical and applied questions in population ecology (see 

areas listed in Table 1), community ecology, systems ecology, and ecosystems and 

environmental sciences. Applications of the models would then include sustainable use of 
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biological resources (fisheries, forests, regulated hunting), conservation of species and 

biological diversity in general, epidemiology (particular enzootic and plant diseases), 

biological remediation (pollution landscape restoration, river and wetlands restoration), and 

global change biology.

Implementation of CPMs involves simulating the internal dynamics of developmental, 

physiological, neural and immunological states dynamics of individuals (agents) and 

generating interaction and life history event lines, as the individuals move around 

theoretically constructed or empirically specified landscapes (Fig 3). Life-path constructions 

within CPMs require individuals to be generated de novo (birth, first event), be stationary 

(sessile phased) or allowed to move (vagile phases) across real landscapes (represented in 

geographic information systems layered data bases), interact with conspecifics (social 

behavior) and heterospecifics (commensal, predatory or avoidance), consume resources or 

be consumed by others, perceive their landscape and make decisions on where to move, 

remember landscape features, change their internal states (continuously or discretely), 

choose mates, reproduce, evolve and ultimately die (predation, starvation, senescence, 

accidents). A framework that includes this level of reality, generality, plasticity, and 

adaptability would need to consist of at least several linked computational modules coded in 

a way that allows for heritability and mutability of parameter values so that genetic 

algorithms can be implemented to simulate evolutionary processes as well (Eiben and Smith 

2003, Olden et al. 2008, Clark et al. 2011).

The modular elements of a CPM framework are outlined in Table 2A. Underpinning all 

these elements is a GIS foundation that will provide the environmental details in terms of a 

series of geographic information system (GIS) landscape data layers (Skidmore et al. 2011). 

These layers will provide information on the placement of sessile agents or, at least suitable 

areas for the model to place sessile agents. The model will also initiate sites for the location 

of vagile agents and then move these agents over the landscape (Getz and Saltz 2008, 

Nathan et al. 2008) using modules listed in Table 2 to carry the behavioral, ecological and 

evolutionary processes that drive the model. Also underpinning all agent-related modules in 

the CPM (cf. Fig. 3) is a procedure for mapping parameter values onto genetic structures 

associated with each agent. Then through the application of genetic algorithms that carry out 

computations for expressing genetic traits through the setting of parameter values taking into 

account ploidy, dominance, mutations, and genetic crossover processes during zygote 

formation (Holmgren and Getz 2000, Holmgren et al. 2007), evolutionary processes can be 

simulated over multiple generations using individual fitness computations (Eiben and Smith 

2003, Clark et al. 2011, Norrström et al. 2011).

A key module in many applications is modeling the process of converting resources 

extracted by each agent into agent biomass (growth) and condition (possible starvation), as 

well as life-history events (developmental life stages, reproduction and death). This 

enterprise has a considerable history (e.g. see (Kooijman 2010) and references therein). 

Resource extraction will typically include effects due to resource density, extraction 

efficiency, satiation, intraspecific competition and, where applicable, interspecific 

competition; although competition processes may be expressed at the resource location 

rather than extraction phase. One might expect that both the growth and condition of agents 
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depend on their net converted intake (i.e. accounting for conversion efficiency, metabolism 

and excretion), while mortality depends on both condition (senescence) and predation 

(extraction). These ideas can applied at both the population and individual levels using the 

BTW approach outlined in Appendix A (Getz 2011b).

Linked to development are computations that will be carried out as individuals make 

transitions among various demographic classes (age, stage, sex), since many behavioral and 

ecological process are either age, size or sex-specific or proceed at age, size and sex-

dependent rates. Beyond demographic classes, structured LDMs or ABMs that include 

infectious disease processes compute transitions among epidemiological classes (e.g. 

susceptible, exposed or infected, infectious individuals, and dead, and in some cases 

recovered individuals with some degree of immunity). On the other hand, CPMs that include 

infectious disease processes need to take a step beyond ABMs by including within-host 

pathogen-immune cell dynamics (Nowak and May 2000, Steinmeyer et al. 2010), thereby 

enabling CPMs to account for the following phenomena: i) dose-dependent initial infection 

effects, ii) infectiousness of individuals as a function of current pathogen levels, iii) risk of 

individuals dying as a function of current viremic or bacteremic, immunological and 

physiological states, iv) immunity/susceptibility as a function of the individual's history of 

exposure to pathogens.

Ultimately all ecological and epidemiological processes require assessments of interactions 

among individuals to compute rates of resource consumption, predation, and disease 

transmission, as well as outcomes of mate selection, agonistic interactions among agents for 

control of resources, and social interactions of importance to the fitness of individuals. These 

interactions can occur either due to encounters as individuals move over the landscape, or to 

deliberate interactions based on empirically determined or theoretically generated contact 

matrices (e.g. in epidemiology—see (Grassly and Fraser 2008)) or connectance topologies 

(e.g. food web ecology—see (Bersier et al. 2002)).

The way individuals move on landscapes can be characterized by distributions that provide 

information on directions taken and distances moved per unit time, as well as serial 

correlations among these data. Distributions derived from empirical movement data and their 

statistical properties (i.e. single and joint moments), however, depend on sampling frequency 

(Codling and Hill 2005, Codling and Plank 2011). The reason is that movement pathways 

are constructed from fundamental movement elements (sitting, walking, trotting, dashing, 

gliding, flapping) determined by the mechanical properties of the movement process, but 

understood from an ecological point of view in terms of the emergent canonical activity 

modes (CAMs: e.g. steadily heading to a distant location, milling around, grazing; (Morales 

et al. 2004, Fryxell et al. 2008, Getz and Saltz 2008)). It is insufficient for CPMs to simulate 

movement if the simulation does not produce the correct CAMs, which are usually 

influenced by either landscape structures or the internal states of the individuals (e.g. hunger 

or thirst, fear, and even memory of currently distant landscape features).

Movement models have been developed that incorporate elements of memory (Dalziel et al. 

2008), as well as discrete internal states associated with fitting hidden Markov models to 

movement data (Patterson et al. 2008). Such models, however, have yet to combine 
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continuously changing internal states driven by physiologically realistic dynamical systems 

models with externally detailed GIS landscape maps obtained using the latest remote 

sensing technology (e.g. lidar (Selkowitz et al. 2012)) to determine movement behavior. In a 

recent Kenyan elephant study (Boettiger et al. 2011), food resources (as represented by the 

NDVI greenness index obtained through remote sensing satellite data), aggregated over a 

radius of five miles from the center of the daily movements (cf. Appendix B) of individuals, 

were correlated, along with factors relating to the location of water and human habitation 

(roads and villages) to movement patterns; but this study did not include any information 

relating to the inner state of individuals (e.g. fear of humans).

CPM models that link the inner and outer worlds of individuals require that for each type of 

behavior (e.g., feeding, fleeing, heading to water or home) each individual is provided with a 

perceptual module that gathers and aggregates landscape information using kernel methods 

(Appendix B) to create redistribution kernels that contain the probabilities that individuals 

will next be move to or be located at particular points on the landscape (cf. Getz and Saltz 

2008). Thus feeding behavior requires information on resources that for short time scales are 

within immediate sensory perception and for long time scales are within memory (learned 

experience or from parent) or instinctual (migrations), while herding behavior requires an 

assessment of where the herd leaders are or where some approximation of the geometric 

center of the herd, or a fragment of the herd, is located. Once all the relevant perceptual 

information has been collected with regard to a particular behavior (e.g. movement, or mate 

choice) and inputted along with relevant information on the internal state of the agent, a 

decision module is needed to determine the actual behavior to be implemented (Mueller et 

al. 2011). This module also needs to account for the fact that certain behaviors can only be 

performed sequentially and require fixed times for their execution. Decision modules can 

consist of a detailed set of rules. However, for many organisms, experience and learning play 

a central role (Appendix B), and neural network models or other types of learning machines 

have been used to model host selection (Norrstrom et al. 2006, Holmgren et al. 2007), 

movement (Dalziel et al. 2010), and mate selection (Ryan and Getz 2000) behavior.

Moving Forward

A cultural adjustment is needed for the field of Computational Population Biology (CPB) to 

develop in the same way that the field of bioinformatics (Ouzounis 2012) flowered over a 

decade-and-a-half ago (Fig. 4) and the new field of Ecoinformatics is beginning to flower 

now (Reichman et al. 2011, Michener and Jones 2012). Prior to 1995 only 14 publications 

were listed in 2012 in the Web-Of-Knowledge database under the topic “Bioinformatics”. 

Then in 1995 another 15 appeared with the numbers growing exponentially for the next 

decade but tapering off to just under 2000 publications by 2011. Currently several journals 

exist with “bioinformatics” or “computational biology” (with a bioinformatics mission) in 

their titles (Bioinformatics, BMC Bioinformatics, Briefings in Bioinformatics, Journal of 

Bioinformatics and Computational Biology, Journal of Computational Biology, and PLoS 

Computational Biology). Also, many undergraduate and graduate degree programs in 

bioinformatics are offered at major colleges and universities around the world. If CPB is to 

follow Bioinformatics in emerging as a recognized field of research in its own right—with 

its own societies, journals, and training programs—it needs to be clearly distinguished from 
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the field of Bioinformatics, as well as the general field of Statistical Ecology, particularly 

since CPB, Bioinformatics, and Statistical Ecology are all parts of Computational Biology 

writ large. CPB is different from other parts of computational biology in that its primary 

focus is to build CPMs and use these as a way to better understand complex ecological 

systems and manage changes taking place in earth systems due to global anthropogenic 

forces (Barnosky et al. 2012). Of course, parameter estimation (Beeravolu et al. 2009 (Hartig 

et al. 2011)) and model selection methods, which are also being driven by the computational 

revolution, are critical handmaidens to CPM: they will be used to fit both module (some 

times prior to incorporation in models) and model parameters, as well as select among 

alternative modules in fitting models to real data. But again CPB is the model formulation 

and construction side of population biology, and CPB can only realize its full potential 

through being recognized as a field in its own right.

At the time of writing this paper, Wikipedia had a page entitled “Bioinformatics Software” 

with hyperlinks to more than 150 Wikipedia pages describing specific bioinformatics 

software packages and platforms. Included on this list were packages for comparing strings 

of nucleotide and amino-acid sequences (e.g. BLAST (Mount 2007)) and for creating, 

handling and analyzing phylogenetic trees package (e.g. phyloXML (Han and Zmasek 

2009). Also included was a page on an XML package called SBML (Systems Biology 

Markup Language, (Finney et al. 2001, Dada et al. 2010)) for storage and communication of 

computational models of biochemical and cellular systems, and on the software platform 

Galaxy (Goecks et al. 2010) for making computational biology methods accessible to 

scientists who have no model building or computer programming experience. Because 

building CPMs is at the heart of CPB, a Galaxy type platform for CPB would not have to 

cater to complete modeling neophytes. However, progress in and growth of CPB would be 

tied to the existence of software platforms and packages that facilitate the construction, 

classification, storage, analysis and comparisons of CPMs (cf. Table 2B, points 9-11) for 

individuals with minimal programming skills.

Software platforms for constructing CPMs are likely to be based on a scripting language that 

is able to seamlessly manage communication among computational procedures that have 

been written in any one of several mainstream computer languages. Beyond this multilingual 

object-oriented modularity of implementation, a suitable CPM platform would need to be 

flexible in the level of detail it incorporates at different levels of temporal resolution (cf. 

frame-based modeling pioneered by Starfield and colleagues: (Starfield et al. 1993, Hahn et 

al. 1999, Rupp et al. 2000)). It would also need to be scalable by being able to 1.) take any 

program that uses several or many of these independent procedures and wraps them up into a 

more complex procedure that then in its own right constitutes a new independent module or 

procedure (i.e. packing, or wiring chips together to create a more complex chip); 2.) take any 

parameter in any one of the procedures handled by the platform and replace it with a 

complete systems model that can be implemented as a module or chip in larger model. In the 

area of complex physical systems modeling “a non-proprietary, object-oriented, equation 

based language” called Modelica® exits that is used as a standard by both commercial and 

free physical systems simulation environments (Fritzson 2011). Modelica has its own 

association of users that runs regular symposia and workshops and publishers a newsletter1. 
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A similar type of platform and organization is needed to promote the growth of the CPB 

community.

Experienced scientists may initiate new fields of research, but the field can only grow if a 

cadre of young scientists are trained and cultivated. Thus the growth of a CPB user 

community would also be tied to the existence of software able to support educational 

activities in the field: classes, workshops, and online training. Further, in the same way that 

the above mentioned Galaxy platform (Goecks et al. 2010) serves computationally 

challenged researchers in the bioinformatics community, so would an especially user-

friendly CPM software platform serve population biologists who have not been rigorously 

trained in dynamical systems modeling or do not have strong computer coding skills. One or 

more such software platforms, and I do not exclude the possibility of current platforms with 

active user communities (e.g. R in conjunction with a powerful front end) evolving to meet 

the needs articulated in Table 2, would facilitate rapid development of models. The most 

promising of these is NOVA (Salter 2013), a innovative platform for graphically 

constructing system dynamics, spatial, and agent-based models with automatic code 

generation—in this case NovaScript, which is an extension of the JavaScript language. Since 

much of Nova's code is contained in prefabricated “code chips,” Nova can be used to 

accurately and rapidly assemble NovaScript programs that are tens of thousands of lines 

long from code chips and other graphical elements that themselves have been thoroughly 

tested through constant reuse, with their history of use provided in accompanying 

documents. Such platforms would also facilitate the communication of model structure 

(Kettenring et al. 2006) in terms of modules used and module wiring diagrams, with coding 

details buried within the module documentation if closer examination is desired. Good 

communication of model structure is needed to promote the construction of ever more 

complex models, while retaining reliability, comparability and interpretability of model 

structures and output, as well as facilitating repeatability of studies (Ellison 2010) in which 

modeling has played a central role. Modularization and clear communication of model 

structure would also greatly facilitate assumptions analysis (Jarre et al. 2008, Starfield and 

Salter 2010, Starfield and Jarre 2011) by allowing modules representing different underlying 

assumptions to be easily exchanged and the effects of these exchanges coherently discussed.

The utility of CPM models, however, with their extensive numerical outputs, is predicated 

on the existence of powerful data manipulation and visualization tools that are needed to 

present and aid in interpreting results, and also to fitting modules to data. This challenge is 

epitomized by the problem of how to interpret both empirical and simulated animal 

movement data, with pattern-oriented methods (POM) providing a way forward for 

comparing data (Wiegand et al. 2003, Grimm et al. 2005) in ways that permit statistical 

inferences to be performed on such comparisons (Hartig et al. 2011). As already mentioned 

above, movement data can be characterized in terms of step size and direction distributions 

and their single and joint statistical properties. However, movement data with the same first 

and second order statistical properties may produce very different patterns on landscapes if 

these data differ in their higher order statistics due to the influence of landscape factors and 

1See https:/modelica.org/
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internal agent states. Thus, CPMs that employ Monte Carlo methods to simulate empirical 

data must not only match the first and second order statistics of the empirical data, but must 

produce output that matches emergent landscape and spatio-temporal patterns in this data.

As an illustrative example of emergent spatio-temporal patterns in empirical data, Lyons and 

colleagues developed a method for identifying regions on a landscape that individuals visit 

for varying lengths of time at different times in the daily and seasonal cycles, and revisit at 

varying rates (Lyons et al. 2013). Plots of revisitation rates versus length of visits then 

produce a signature pattern, that can be more comprehensively understood in terms of plots 

of length of visits and revisitation rates versus time of day or day of year (Fig. 5 reproduced 

from Lyons et al. 2013). It is only once these kinds of patterns—diurnal, weekly/monthly, 

and seasonal spatial location and movement statistics—have been matched by CPM output 

that we can verify if the model indeed simulates the empirical data. Further it is only once 

we understand how various ecological factors, including projected temperature and 

precipitation shifts, affect these emergent patterns that we can claim to have models capable 

of evaluating the impacts of global change on ecosystems.

The problem of fitting CPMs to data is a field of research in its own right. Its methods apply 

to all types of models—LDMs, ABMs, phylogenetic tree models and other types of 

bioinformatics, ecoinformatics and computational biology models—and rely heavily on 

statistical and stochastic process theory, particularly hierarchical methods of analysis (Royle 

and Dorazio 2008). Methods both for estimating the value of the parameters in the various 

modules of CPMs and for validating model fits of empirical data, in terms of low order 

statics and emergent patterns, constitute fields of study with vast literatures of their own 

(Burnham and Anderson 2002, Royle and Dorazio 2008). Clearly CPMs rely on these 

methods as much as any other field of computational modeling, though a real challenge for 

CPMs will be to find the best way to handle the large number of repeated simulations 

needed to implement these methods. The central challenge for CPB, however, remains in 

finding ways for it to flourish and grow through the development of appropriate CPMs. The 

prescription for such CPMs is contained in Table 2, as well as suggestions for fostering a 

facilitating CPB culture. These prescriptions and suggestions outline the beginnings of a 

CPB program for constructing the computational tools needed to help us wisely manage 

earth systems during the global change upheavals we will face in the coming decades.
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Appendix: Appendix A. A Biomass Transformation Web (BTW) Formulation

Definitions and Assumptions

Suppose at time t that

Getz Page 13

Isr J Ecol Evol. Author manuscript; available in PMC 2017 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



i. a consumer of biomass B(t) (this can either be and individual or a population) 

has access to resources at density R(t) (either a flux or pool),

ii. a variable V(t)∈[0,1](V=1 is death from starvation) represents an average stress 

measure associated with each unit of biomass arising from a resource-intake 

deficit (individual or population average)

iii. interference competition arises through a measure X(t) (=B(t) in a spatially 

lumped LDM or is a weighted sum of local competitors in an ABM)

iv. F(R,B,X,t) is a function that specifies the resource extraction rate per-unit 

consumer B and per-unit resource R

v. ε(t) is a loss rate per unit B of biomass to the process of metabolism and 

excretion

vi. is the proportion of extracted resource ingested

vii. κ(t)∈[0,1] is the proportion of ingested resource converted to consumer biomass

viii. the only source of non-extracted mortality (i.e. besides predation) is a senescence 

rate m(V,t), which includes death by starvation and disease (when the pathogen 

is included implicitly) and hence depends on V(t).

Mean Field Model

Under definitions and assumptions i)-viii) the total rate of biomass incorporation rate per 

unit B is on average:

Net biomass incorporation

(B1.1)

Thus growth at a population level is net resource incorporation minus mortality:

Population biomass growth equation

(B1.2)

Now assume that if ψ<0 then a resource stress-deficit accumulates at a rate wψ (w>0), but 

relaxes back to 0 at a rate rψ when ψ>0; that is, noting these equations hold only for V(t)∈
[0,1]:
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Stress-deficit state

(B1.3)

Individual Level Model

If the mean field mortality rate is m(V(t),t) then for an individual subject to this rate, the 

probability s(t) of surviving the interval [t,t+Δt] for small Δt is

Individual survival probability on [t,t+Δt]

(B1.4)

Growth at the individual level represents both the growth of the individual given by

Individual growth equation

(B1.5)

For a point tb at which reproduction of n offspring occurs, each of mass bi, i=0,1,…n, where 

b0 is the mass of the ‘after-birth,’ we have

Reproduction perturbation

(B1.6)

Appendix B. Perceptual Kernels and Brain Modules Perception Kernels

Kernels have many different meanings in mathematics. Our use is closest to the weighting 

function concept that tells us how to relate landscape information in the vector-valued 

function f(z|z′) at points z=(x,y) in the plane in the context of a designated point z′. If Ki(z,z
′) represents the weighting function associated with the ith element fi(z|z′) of the landscape 

information vector f(z|z′), then the ith element of an accumulated information vector F(z′) is

Informational input

(B2.1)
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Kernels often satisfy Ki(z,z′)>0 for all z, though asymptotically approach 0 as the distance 

(Euclidean) between z and z′ approaches infinity. In population biology compact kernels are 

more realistic: i.e. K (z,z′)=0 for z and z′ sufficiently far apart. Thus we naturally define an 

area of perception Ai(z|z′) associated with the ith type of information such as the location of 

food resources, location of predators, or location of mates. The corresponding informational 

input may then be the center of mass of the resources, the location of the nearest predator, or 

the geometric center of the potential mates in Ai(z|z′). These areas of action could either be 

regular geometric shapes such as circles or ellipses covered by uniform height, conical-

shaped or Epanechnikov-shaped kernels, or could be kernels constructed from the point of 

interest and its k nearest neighbors (e.g. LoCoH methods (Getz et al. 2007))

Brain Modules, Actions, and Teachers

A brain module is a vector-value function N that transforms the values of a perceptual input 

vector F, with elements possibly calculated using equation B2.1, an agent state vector v 
(inner dynamical system) and a brain state vector w (weighting parameters) into an output 

action vector a given by

Action output

(B2.1)

If the action is implementation of a movement event, then a would contain the information 

on the direction of heading plus the step size to be taken, where this information my be 

distributional rather than a single value—in which case the action is a stochastic event 

associated with a draw from these distributions.

A teacher is a device that instructs an agent after an action a has been taken on what would 

have been the correct action a′ to take. The error E(a,a′) in this case is based on an 

appropriately defined measure of the distance between a and a′. Learning is then defined as 

an algorithm L for updating the brain state parameters w to w* such that

Learning

(B2.1)

Within the lifetime of an agent, a teacher could be a second agent able to make computations 

with lower errors (e.g. a mother instructing young) or an individual able to assess its own 

mistakes after the fact. For the case where N is a perceptron, an algorithm L called back-

propagation exists to update the weights to improve the performance of N (Haykin 1999). 

Over evolutionary time, if the error is ultimately expressed in terms of the individual's 

fitness, then natural selection “teaches” the population of individuals over evolutionary time. 

(cf. (Norrström et al. 2011)).
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Figure 1. 
A Web-Of-KnowledgeSM search on the phrase “Individual-based model* OR Agent-based 

model*” for all years up until 2010 yields approximately 1.987 million hits that reduce to 

1,561 once “AND Population Ecology” had been added. The first in this latter group of 

publications, as graphed here, appeared in 1989 with the number of ABM publications in 

population ecology increasing by an average of around 7-8 publications each year to an 

annual rate of around 150 in 2010.
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Figure 2. 
A depiction of the inner and outer worlds of individuals divides population models into 

kinds according to how the models span this universe: LDMs (lumped dynamics models), 

ABMs (agent-based models), and CPMs (computational population models). Agents at the 

boundary of the two worlds inherit their designated type from their internal state, with some 

designations, such as sex, being fixed early on, other designations, such as age class 

membership progressing linearly, and finally designations related to biomass and disease 

classes changing dynamically with food intake rates and immunological interactions. The 

internal states of individuals, however, are essentially driven by the inputs they receive from 

their external worlds (e.g. food intake, pathogen transmission, conspecific and heterospecific 

interactions).
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Figure 3. 
A pictorial representation of CPMs (lower half – see Appendix A for details on the 

consumer-resource interactions and Table 2 for a list of CPM modules) and how they relate 

to LDMs (upper right), or structurally elaborated LDMs and ABMs (upper left) where the 

latter do not account for the internal processes that take place within individual agents 

moving over landscapes, interacting with conspecifics and heterospecifics, extracting 

resources, growing, reproducing and evolving over generations.
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Figure 4. 
Number of publications, plotted on a natural logarithm scale (verticle axis: ln(1) = 0 to ln 8 

= 2981), categorized by a Web-Of-KnowledgeSM search using the topic “Bioinformatics” 

for all year 1993 to 2011. Only three publications appear before 1992 (1 each in 1989, 1990, 

and 1991, 0 in 1992) and roughly each year (dotted line) from 4 in 1993 to 98 in 1998, and 

then tapering off to under 1920 in 2011.
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Figure 5. 
Points in panel A are the locations of a springbok male in the vicinity of the Okaukuejo 

research camp, Etosha National Park, collected every 30 minutes from early September 2009 

to mid-April 2010. The points are color coded, as binned, in panel B according to the 

amount of time spent in a local neighborhood of the point and the number of times this local 

neighbor hood was revisit through the 7.5 month period (see Lyons et al in press for details). 

The four sections of panels C show how the binned points are distributed over the daily as 

the 7.5-month period progresses. (Reprinted with permission from Lyons et al. 2013.)
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Table 1

A limited list of the advantages and disadvantages of LDMs compared with ABMs in addressing questions in 

different subfields of ecology.

LDM ABM

Subfield Advantage Disadvantage Advantage Disadvantage

Demography Stable stage-structure theory Individual traits averaged Relevant individual 
traits maintained

Lack of coherent 
theory

Disease Ecology Coherent invasion and burnout 
theory

Limited account of 
superspreaders and variation in 
susceptibility

Unlimited account 
of variation in 
transmission and 
susceptibility

Difficult to 
generalize among 
diseases

Movement Ecology Provides highly aggregated 
overview of population 
movement

Cannot account for movement 
at fine spatio-temporal scales

Can relate fine 
scale movements to 
local landscape 
factors

Theory of scaling up 
individual 
movements to 
population level 
needed

Behavioral Ecology Simple fitness maximization 
theories possible: e.g. optimal 
foraging

Ignores fact that behavior is 
often highly heterogeneous at 
the individual level

Can account for 
heterogeneity of 
behavior at the 
individual level

More care is needed 
to handle the 
complexity of fitness 
maximizing theories

Trophic Ecology Allows first order effects 
(averages) to be clearly assessed

Variation in resources available 
to individuals largely ignored

Critical effects due 
resource variation 
can be incorporated

Enormity of 
computations may be 
overwhelming if not 
handled carefully

Evolutionary Ecology Well developed gene-for-trait and 
coalescence theory models exists

Links between genetic and 
ecological heterogeneity hard 
to make

Easy to link genetic 
and ecological 
heterogeneity

Hard to characterize 
emergent properties 
and processes 
responsible for 
speciation
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Table 2

Computational Population Biology in a Nutshell.

A. Modeling Elements

1 Geographic information systems (GIS) foundation including complex environmental drivers

2 Resource extraction, growth, and population interaction modules

3 Demographic structure modules

4 Epidemic structure modules

5 Populations of agents that may include:

i. internal states (physical/structural, physiological, immunological)

ii. connectance matrices (feeding, social, etc.)

iii. perceptual kernels (process specific: visual, olfactory, auditory, etc.)

iv. brain modules (input: perceptual, other neural modules, internal states, memory)

v. behavioral modules (movement, consumption related, mate choice, mating etc.)

vi. reproduction modules (output of propagules, production of young, investment)

vii. genome modules (genetic mapping of parameters, inheritance processes, genetic algorithms)

6 A simulation engine that has:

i. Modularity (object oriented chip design)

ii. Hierarchical/nested scalability (unpacking parameters, packing models)

iii. Interchangeability (swapping chips doing the same task with differing complexity)

iv. Parameter estimation procedures for applying to both individual modules and full models

v. Model selection procedures using information theory to minimize parameters

7 Data manipulation and visualization procedures

B. Cultural Elements

1 Set up a user community (e.g. societies, journals, websites, workshops) to:

i. set standards for publishing CPB studies

ii. develop protocols for naming modules and models

iii. develop protocols for sharing modules, models, data, and software

2 Develop protocols for communicating model structure that include:

i. a list of modules used with specification of their function, data developed and software implementation, as well as 
information on input and output structures

ii. connectance topologies, numbers of modules used, and a description of how module parameter values were specified 
or generated

iii. complete mathematical and coding details of new modules used

iv. specifications of GIS layers and environmental inputs

3 Protocols for validating modules should include:

i. a documented list of publications that have used the module.

ii. an associated file (e.g. a wiki) that documents the history of the module in terms of code quality and verification tests, 
modifications that have been made, etc.

4 Efforts to facilitate comparative studies should include

i. specifications for standardized output structures (in addition to study specific output)

ii. identification of existing and needed baseline studies
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A. Modeling Elements

iii. documents (e.g. wiki) that contain a list of all modules performing a particular task, a comparative discussion of their 
relative complexity and input requirements

5 More attention must be paid to developing software to fulfill educational needs and providing powerful tools for the CPB user 
community.
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