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Abstract

Several combinatorial methods have been developed to create focused or diverse chemical libraries 

with a wide range of linear or macrocyclic chemical molecules: peptides, non-peptide oligomers, 

peptidomimetics, small-molecules, and natural product-like organic molecules. Each 

combinatorial approach has its own unique high-throughput screening and encoding strategy. In 

this article, we provide a brief overview of combinatorial chemistry in drug discovery with 

emphasis on recently developed new technologies for design, synthesis, screening and decoding of 

combinatorial library. Examples of successful application of combinatorial chemistry in hit 

discovery and lead optimization are given. The limitations and strengths of combinatorial 

chemistry are also briefly discussed. We are now in a better position to truly leverage the power of 

combinatorial technologies for the discovery and development of next-generation drugs.
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Introduction

Combinatorial chemistry involves the generation of a large array of structurally diverse 

compounds, called a chemical library, through systematic, repetitive and covalent linkage of 

various “building blocks”. Once prepared, the compounds in the chemical library can be 

screened, concurrently, for individual interactions with biological targets of interest. Positive 

compounds can then be identified, either directly (in position-addressable libraries) or via 

decoding (using genetic or chemical means).
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The concept of combinatorial chemistry was developed in the mid 1980’s, with Geysen’s 

multi-pin technology [1] and Houghten’s tea-bag technology [2] to synthesize hundreds of 

thousands of peptides on solid support in parallel. In 1991, Lam et al. [3] introduced the one-

bead one-compound (OBOC) combinatorial peptide libraries and Houghten et al. [4] 

described the solution-phase mixtures of combinatorial peptide libraries. In 1992, Bunin and 

Ellman reported the first example of a small-molecule combinatorial library [5]. In addition 

to being displayed on microbeads, peptides and other synthetic compounds can be displayed 

on planar surfaces or solid supports, such as glass, to form planar microarrays [6]. In 1985, 

Smith described the phage-display peptide library method [7]. Similar to OBOC libraries, 

each M13 phage displays one unique peptide entity (five copies); i.e., one-phage one-

peptide. Positive phages can then be isolated for amplification, re-panning, and eventually 

decoding with DNA sequencing. Unlike synthetic library methods, early biological libraries 

(phage-display, yeast-display, polysome-display peptide libraries) are restricted to the use of 

the 20 natural L-amino acids and simple cyclization with disulfide bonds. In the mid 2000’s, 

Frankel et al. [8] Josephson et al. [9], and Murakami et al. [10] reported the mRNA-display 

macrocyclic peptide libraries using unnatural and D-amino acids as building blocks. In 2009, 

Heinis et al. introduced the method of post-translational chemical modification of phage-

displayed peptide libraries [11]. The latter approaches enable the generation of libraries of 

conformationally constrained peptides with greater chemical diversity and resistance to 

proteolysis, and are, thus, potentially more useful as drugs. Recent advances in DNA-

encoded chemical libraries (DECLs) have allowed investigators to create and decode huge 

diversity small-molecule organic, peptide or macrocyclic libraries.

Combinatorial chemistry has been used for both drug lead discovery and optimization 

[12,13,14•]. Figure 1 summarizes the various combinatorial library methods, the nature of 

the library compounds involved and the screening methods available to each of the 

technologies. As shown in Figure 1 (orange boxes), most of the combinatorial library 

methods have the ability to generate hugely diverse chemical libraries (e.g. >1 million). 

These include the phage-display, yeast-display, bacteria-display, mRNA-display, OBOC, 

DECL, and solution phase mixture libraries. In addition to generating a huge number of 

compounds, these combinatorial library methods also allow rapid concurrent screening 

against specific drug targets (see below). The parallel synthesis library and synthetic planar 

microarray library methods (black boxes, Figure 1) are much lower throughput, and the 

resultant libraries far more focused, than the aforementioned methods. The planar 

microarray method has mostly been used as a tool for peptide research; although, in theory, 

other types of compounds can be chemically prepared in situ, via automation. The highly 

focused parallel synthesis small-molecule libraries (hundreds to thousands of compounds), 

when developed in conjunction with computational chemistry, are particularly useful for 

optimization of drug leads (see below). The subject of combinatorial chemistry has been 

extensively documented and reviewed [14–16]; as such, this short review covers only recent 

advances in combinatorial library design, synthesis and high-throughput screening methods. 

Selected examples that utilize combinatorial library approaches for drug discovery will also 

be briefly discussed; however, nucleic acid-based combinatorial libraries (e.g. aptamer 

library [17]) will not be discussed here.

Liu et al. Page 2

Curr Opin Chem Biol. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Computational Chemistry for Combinatorial Library Design

As the fields of combinatorial chemistry and computational chemistry began to mature, it 

became clear that combining the two would lead to higher hit rates. It is more cost-effective 

to design and screen virtual chemical libraries in silico, such that subsets of the chemical 

space of likely hits can be defined, prior to the actual synthesis and screening of the libraries. 

Computer-assisted drug design, such as generation of virtual libraries, analogue docking and 

in silico screening now becomes the standard procedure used in drug discovery programs. 

Fragment-based drug design (FBDD) involves the experimental screening of libraries of 

small chemical fragments, via nuclear magnetic resonance (NMR) spectroscopy or other 

biophysical technologies such as surface plasmon resonance (SPR) for low affinity hits (low 

mM to high μM), or in silico screening of virtual fragments if the structural information of 

the target is available. Proper linkers are then used to connect the fragment hits while 

maintaining their relative positions in the sub-pockets. High-affinity ligands have been found 

with these approaches [18,19]. Vemurafenib is the first drug discovered via FBDD to gain 

FDA approval [20]. To enhance the probability of obtaining hits that are more drug-like, 

ADMET (absorption, distribution, metabolism, excretion and toxicity) filters have also been 

included in the algorithm for library design [21]. Examples of other library design methods 

include multi-objective optimization methods [22], the “adaptive” library approach with a 

simulated evolutionary process [23], and the multiple copy simultaneous search method 

which uses active site mapping and a de novo structure-based design tool [24]. A rapid and 

simple Python-based method for target-focused combinatorial library design was recently 

developed by Li et al. [25]. This method utilizes flexible SMILES strings, which are 

concatenated by Python language, to encode structures of molecules and create the library at 

a rate of approximately 70,000 molecules per second. The authors used the hybrid 3D 

similarity calculation software SHAFTS to help refine the size of the libraries and improve 

hit rates. Although the aforementioned computational methods can be applied to both 

diverse and focused library design, they are particularly important for the development of 

focused libraries of limited diversity, so that the hit rate can be increased.

Generation of Combinatorial Libraries

Parallel synthesis of combinatorial libraries can be achieved manually or robotically, in 

solution or on solid support. Diversity of these libraries tends to be small (hundred to a few 

thousands) but the choice of coupling chemistry is not limiting, and each library compound 

can be purified via automatic chromatography if needed. The intended structures of each of 

the library compounds are known. In contrast, the OBOC libraries are synthesized on 

microbeads using the split-pool synthesis strategy [3,4,26], resulting in greater diversity 

(thousands to millions) of bead-bound library compounds. However, these library 

compounds are non-addressable, and the positive bead isolated from screening must be 

decoded via a chemical or physical barcode, which can be constructed during library 

synthesis. Solution-phase positional scanning libraries can be prepared on solid support via 

split-pool synthesis, and later cleaved off the beads into a compound mixture in solution. 

Methods for the generation of biological peptide libraries such as phage-display, yeast-

display, mRNA-display, and chemically modified phage-display libraries have been well 

described in the literature [14,27] and will not be discussed here. DECL libraries can be 
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assembled via proximity ligation of DNA-tagged building blocks to form peptides, small-

molecules or macrocycles. The available coupling chemistries for DECL; however, are more 

limited because they must be mild and compatible with the oligonucleotide tags. For reviews 

on the synthesis of chemical libraries, please refer to references [28–30] and the series of 

“Comprehensive Survey of Combinatorial Library Synthesis” in the Journal of 
Combinatorial Chemistry (currently ACS Combinatorial Science). Here, we would like to 

highlight several recently developed new chemical approaches and technologies in the 

preparation of combinatorial libraries.

Huang and Bode recently reported a “synthetic fermentation” method that does not require 

the use of organisms, enzymes or reagents to generate a combinatorial library of complex 

organic molecules “grown” from small building blocks in water [31••]. In this method, the 

authors adapted ketoacid ligation, which produces β-amino acid linkages. By adjusting the 

reaction conditions and the building blocks, products with different sequences, structures 

and compositions can be modulated. The authors prepared a 6,000-membered library from 

23 simple building blocks and discovered a 1.0-μM inhibitor against hepatitis C virus 

NS3/4A protease.

Litovchick et al. developed a chemical ligation method for the construction of DECLs [32•]. 

The method relies on the ability of the Klenow fragment of DNA Polymerase I to translocate 

to a DNA backbone through triazole linkages via click cycloaddition. The authors have 

developed a strategy that allows for repetitive and specific installation of multiple 

oligonucleotide tags. Compared with previous DECL methods, this chemical ligation 

method represents an advance over, and could expand the scope and diversity of chemistry 

suitable for DECLs.

Many bioactive peptidic natural products contain macrocyclic structures. Suga and 

Bashiruddin recently published a review article [33] on the construction and screening of 

large libraries of natural product-like macrocyclic peptides using reconstituted translation 

systems where designated codons are made vacant and then reassigned to unnatural amino 

acids. Ribosomal synthesis of macrocyclic peptides can be achieved with a custom-made in 
vitro translation system containing flexizymes, amino acids (natural and unnatural), as well 

as unnatural amino acid capable of crosslinking with other amino acids. Fasan et al. recently 

reported a novel and versatile method for generating side chain-to-tail cyclic peptide 

macrocycles from ribosomally derived polypeptides in vitro in a pH-triggered manner or 

directly in living bacterial cells [34••]. Unnatural amino acids bearing a side chain of 1,3-

aminothiol (AmmF) or 1,2-aminothiol (MeaF) are first ribosomally inserted into intein-

containing precursor proteins (Figure 2). Then spontaneous post-translational cyclization via 

a C-terminal ligation/ring contraction is achieved via an intein-catalyzed intramolecular 

transthioesterification, followed by ring closure through an irreversible S, N acyl transfer 

rearrangement. More recently, the Suga group reported a strategy for efficient post-

translational modification of a library of ribosomally translated peptides by introducing 

exogenous free thiols, followed by ligation of carbohydrates to generate proteolytically 

stable thioglycopeptides [35].
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Screening of Combinatorial Libraries

The screening of a combinatorial library can be divided into two categories: virtual 

screening and experimental real screening. Virtual screening uses computational methods to 

predict or simulate how a particular compound interacts with a given target protein. The 

three virtual screening methods used in modern drug discovery include molecular docking, 

pharmacopoeia mapping, and quantitative structure-activity relationships. The disadvantages 

of virtual screening are that it cannot replace real screening, and generated hits may be very 

difficult to chemically synthesize. Real screening approaches, such as high-throughput 

screening (HTS), can test the activity of hundreds of thousands of compounds 

experimentally, providing real results; however, these methods are far more expensive and 

slower than virtual screening methods.

The most common assay to screen a combinatorial library is to determine the binding of the 

library compounds to the target protein. Other common assays are functional assays, such as 

biochemical and enzymatic assays, or cell-based assays. Cell-based assays can be direct 

cytotoxic assays, receptor-binding assays, or cell-signaling assays using cell lines with 

specific genetic reporter systems. Selection of screening methods greatly depends on the 

nature of the combinatorial libraries to be screened. Position-addressable soluble libraries 

prepared from parallel synthesis can be screened with automated HTS methods in 96-, 384-, 

and 1536-well plates. Libraries on solid supports (e.g. OBOC library) can be easily screened 

against a variety of biological targets (proteins, cells, viruses, etc.) for binding or functional 

activities [14], or released in situ for solution phase functional assays [36]. Phage-display 

peptide libraries can be screened with bio-panning [37]or limited cell-based functional 

assays, such as cell-binding and cellular uptake assays [37]. Structure-based virtual libraries 

are screened in silico. Several new screening approaches for combinatorial libraries have 

recently been developed; below are some examples.

Heusermann et al. recently reported the use of a standard wide-field fluorescence 

microscope, equipped with LED-based excitation and a modern CMOS camera [38] to 

detect signals associated with target proteins bound to beads in an OBOC library. The 

autofluorescence issue was overcome by an optical image subtraction approach. The 

screening system is ultra-high throughput and >200,000 bead-bound compounds can be 

screened in 1.5 h. Perez-Pineiro et al. reported a direct label-free ultra-fast method for the 

identification and spectroscopic classification of hits from OBOC peptide libraries [39]. 

They synthesized peptides directly on TentaGel beads decorated with bimetallic Au/Ag 

clusters on the surface, and subsequently use surface-enhanced Raman scattering analysis to 

detect the signals of the peptide on each bead. Because the Raman scattering intensity is 

closely associated with the distance to the surface, this method is limited to short peptides 

with lengths of 7 to 10 amino acids. MacConnell et al. described a microfluidic circuit that 

enables automated and quantitative functional screening of DNA-encoded compound beads 

[40]. The device sequentially carries out the following steps: distribution of the library bead 

into picoliter-scale assay reagent droplets, photo-cleavage of compound from the bead, assay 

incubation, laser-induced fluorescence-based assay detection, and fluorescence-activated 

droplet sorting to isolate hits.
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Agnew et al. reported the use of in situ click chemistry as a screening approach to assemble 

multi-ligand protein-capture agents on an OBOC library [41]. This method has several 

advantages, including: 1) the production of the capture agent does not require prior 

knowledge of affinity agents against the target protein; 2) the in situ click screening covers a 

very large chemical space; and 3) the process can be repeated until ligands with the desired 

affinity and specificity are identified. For example, once a bi-ligand has been identified, it 

can serve as the anchor ligand to click back to the same OBOC library for discovery of a tri-

ligand, and so forth. Upon the addition of each ligand to the capture agent, the affinity and 

the selectivity of the capture agent for its target protein increase rapidly.

We have recently developed a screening platform to identify death ligands (pro-apoptotic 

agents) via the screening of one-bead two-compound (OB2C) libraries [42–44]. In an OB2C 

library, a fixed cell-capturing ligand and a random library compound are co-displayed on 

each bead surface, and a coding tag resides inside the bead to exclude screening interference 

(Figure 3A). When live cells bind to the capturing ligand on the bead surface, the cells are 

forced to expose their cell membrane proteins to the OB2C library compounds (Figure 3B). 

After incubation, dead cells or cells undergoing apoptosis can be readily detected using 

propidium iodide (PI) or anti-cleaved caspase 3 antibody staining (Figure 3C). Peptide 

(LWK1) [42], peptidomimetic (S7-Y) [43] and small-molecule (LLS2) [44] death ligands 

have been identified through OB2C library approach (Figure 3D).

Several approaches have been used to generate DECLs with different library-encoding 

methods and assembly of chemical building blocks [45••,46••]. As all compounds in the 

library can be identified by their DNA tags, a very large number of compounds (up to 

billions of molecules) can be screened simultaneously in mixture in affinity-capture 

experiments on target proteins. The screening process involves three steps: 1) physical 

isolation of the binder using automated affinity selection; 2) PCR-amplification and 

sequencing of the DNA codes of the isolated binders; and, 3) evaluation of the obtained 

sequencing data using a computer program to eliminate false binders. DECL technology can 

yield specific binders to a variety of target proteins and is a very useful tool for hit discovery 

and lead expansion.

Encoding and Decoding of Combinatorial Libraries

Since the chemical structure of individual compounds in conventional addressable 

combinatorial libraries or planar microarray libraries are known, there is no need to encode 

and decode the chemical hits. For mixture libraries in solution, such as positional-scanning 

libraries, deconvolution is needed to determine the identity of the hits. Biological-displayed 

peptide libraries (e.g., phage, yeast or mRNA-display) are genetically encoded and can be 

decoded with PCR and DNA sequencing. Similarly, DECL decoding can be easily achieved 

through PCR-amplification of the DNA barcode, followed by high-throughput DNA 

sequencing. Buller et al. reported another approach named “Illumina sequencing of DECLs” 

which can yield over 10 million DNA sequence tags per flow-lane [47]. This technology can 

be used in a multiplex format, allowing the encoding and subsequent sequencing of multiple 

selections in the same experiment.
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Many encoding and decoding strategies have previously been developed for OBOC libraries 

[48], with chemical barcodes usually decoded using automatic Edman microsequencing of 

bead-bound peptide tags [49] or mass spectroscopy of released coding tags [50,51]. Marcon 

et al. recently reported a fluorescence-based encoding method called “on-the-fly” encoding 

using colloidal barcoding [52]. In this method, 10–20 μm beads were encoded during a split-

pool synthesis with smaller 0.6–0.8 μm silica colloids that contain specific and identifiable 

combinations of fluorescent dye. After screening, the colloidal barcode can be decoded with 

confocal microscopy. Recently, Lee et al. reported a simple and efficient surface-enhanced 

Raman spectroscopic (SERS) barcoding method using highly sensitive SERS nanoparticles 

(SERS ID) [53]. More than one million codes can be generated by using combinations of 44 

different SERS IDs, which are highly stable and reliable under bioassay conditions.

Applications of Combinatorial Chemistry for Drug Discovery – Examples

Over the last decade, the combinatorial library approach has been applied successfully to 

various applications including drug discovery. Table 1 summarizes some of the published 

applications of various different combinatorial library approaches. Below is an account on 

two recent reports on using DECL for drug development.

Blakskjaer et al. reported a screening method called “binder trap enrichment”, which allows 

libraries to be screened robustly in a homogeneous manner [62]. In this method, building 

blocks are spatially confined at the center of the DNA junction (called Yoctoreactor), 

facilitating both the chemical reaction between building blocks and library encoding. The 

screening of DECLs can be performed in a single tube for binding. This approach has 

increasingly been applied as a viable technology for the identification of small-molecule 

modulators to protein targets. Wichert et al. recently reported using dual-pharmacophore 

DECLs to efficiently identify synergistic ligand pairs that bind to a target protein [63••]. In 

this method, small-molecules were first conjugated to the 3′ and 5′ ends of complementary 

DNA strands that contain a unique identifying code, followed by DNA hybridization and 

subsequent inter-strand code-transfer. The authors identified a low micromolar binder to 

alpha-1-acid glycoprotein from a dual-pharmacophore DECL containing 111,100 unique 

small molecules. The authors also applied dual-display technology to affinity maturation of 

a known inhibitor of carbonic anhydrase IX (CAIX). They successfully developed a high 

affinity bidentate ligand of CAIX (KD=0.2 nM) which showed efficient in vivo tumor 

targeting in a SK-RC-52 kidney cancer xenograft mouse model.

Conclusion and Perspectives

Combinatorial chemistry has accelerated the development of a whole set of combinatorial 

tools comprising combinatorial library design, efficient synthetic methods, reagents for 

library synthesis (including solid supported reagents), linkers, bilayer beads, library 

encoding and decoding strategies, HTS methods and equipment, etc. The large diversity 

combinatorial bead and planar microarrays in the early 1990’s had inspired investigators in 

fields beyond chemistry to think “combinatorially”; this change in thinking led to the 

development of oligonuleotide bead and planar microarrays, genomics and many other “-

omics” technologies that involve the concurrent interrogation of thousands to hundreds of 
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thousands of analytes or biomolecules. A recent report on single-cell RNAseq analysis with 

nanodroplet, indeed uses the “split-pool” synthesis approach to prepare sets of DNA 

barcodes on microbeads, for subsequent tracking of sequences derived from the same cell 

[64]. Many investigators, particularly in the pharmaceutical industry, are now working on 

smaller target-focused solution-phase libraries of compounds with drug-like properties, and 

incorporating ADMET filters and structure-based drug design approaches into library 

development [65]. However, for novel lead discovery against a large number of therapeutic 

targets, particularly for those targets with little structural information, the various high 

diversity library methods outlined in this mini-review will undoubtedly be invaluable.

Many macrocyclic natural products are non-peptides. Some of them are polyketide-based. 

There is a great need to develop novel and efficient chemistry for the generation of 

macrocycles that mimic such structures [33]. Incorporating chemical features of such 

molecules into the design of “easy-to-couple” building blocks will enable the development 

of large, diverse natural productlike macrocyclic libraries for the discovery of novel drug 

leads. Another promising method in combinatorial chemistry is the use of nature’s highly 

stable peptides, such as cyclotides [66], as scaffolds [67] for library design. Random peptide 

loops can be grafted, chemically [68] or recombinantly [69], into cysteine knots to form 

cyclotide libraries.

Although the initial high expectations of combinatorial chemistry for drug discovery have 

yet to be realized, much has been learned over the last 30 years. Many new chemical, 

biological, computational, and screening tools have been developed. The limitations and 

strengths of combinatorial chemistry are better understood. We are now in a better position 

to truly leverage the power of combinatorial technologies for the discovery and development 

of next-generation drugs. The future of utilizing combinatorial chemistry for drug discovery 

is bright.
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Figure 1. 
Overview of combinatorial technologies. The various combinatorial technologies are shown 

in orange (diverse and focused libraries) and black (focused small library), the nature of 

chemical compounds is shown in blue, and the two broad groups of screening assays are 

shown in green. Depicted within the red ovals are the screening assays and nature of library 

compounds pertaining to each technology. The question mark indicated that, in practice, 

synthetic planar microarray is limited to peptides and simple oligomers.
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Figure 2. 
Strategy for generating side chain-to-tail macrocyclic peptides in vitro in a pH-triggered 

manner or directly in living cells.
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Figure 3. OB2C combinatorial library technology for the discovery of death ligands
A: Structure of an OB2C combinatorial library bead (an example). B: A cartoon illustrates 

the OB2C concept. C: A snapshot of a positive bead (indicated by a red arrow, stained with 

anti-cleaved caspase 3 antibody) from an OB2C library. D: Structures of representative 

death ligands identified from OB2C libraries. LWK1: peptide; S7-Y: peptidomimetic; LLS2: 

small-molecule.
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Table 1

Examples of recent application of combinatorial chemistry for drug discovery

Library type Library structure Screening Note Ref.

DECL affinity screening a potent hit compound 
(X066/Y469) inhibited 
tankyrase 1 with an IC50 

of 250 nM

[54]

PNA-encoded small-molecule library affinity screening one ligand (2a) showed 
high affinity to Hsp70 
with a KD of 1.58 nM.

[55]

Spatially addressable solution-phase 
library

plasmid relaxation assay compound 4 is an 
inhibitor of LdTop1 with 
antileishmanial activity 
(EC50 = 4.2 μM). It 
showed anti-protozoal 
activity against 
Leishmania donovani 
promastigote, but non-
toxic against normal 
mammalian COS7 cells

[56]

OBOC COPA library protein-binding assay compound 14a is the 
first non-covalent small-
molecule ligand for the 
wild-type p53 DBD (KD 

= 10 μM)

[57•]

OBOC peptidomimetic library cell-binding assay for 
α4β1 integrin ligand 

(LLP2A)

LLP2A-aledronate for 
the treatment of 
osteoporosis, ongoing 
Phase I clinical trial

[58]

OBOC peptoid library in situ releasable assay 
against Cryptococcus 

Neoformans

one peptoid (AEC5) 
showed comparable 
antifungal potency to 
existing clinical agents, 
excellent stability, and 
minimal cytotoxicity in 
mammalian cells

[59]
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Library type Library structure Screening Note Ref.

OBOC bi-cyclic peptide library on-bead enzyme-linked 
assay against oncoprotein 

K-Ras G12V

a moderately potent and 
cell-permeable K-Ras 
inhibitor was identified

[60]

Positional scanning small-molecule 
library

antibacterial activity 
against the ESKAPE 

pathogens

five bis-cyclic 
guanidines showed 
broadly antibacterial 
activity in vitro but with 
antibiofilm effects and 
low toxicity. the 
compounds are highly 
efficacious in vivo in a 
murine model of 
peritonitis

[61•]

*
A in the PNA-encoded library are fragments from FDA-approved drugs, bioactive natural products or fragments; B are heterocycles; COPA: chiral 

oligomers of pentenoic amides; LdTop1: Leishmania donovani Topoisomerase 1; EED: embryonic ectoderm development; PRC2: polycomb 
repressive complex 2. DBD: DNA-binding domain; Nal2: L-2-naphthylalanine.
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