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Abstract

While urban systems demonstrate high spatial heterogeneity, many urban planning, eco-

nomic and political decisions heavily rely on a deep understanding of local neighborhood

contexts. We show that the structure of 311 Service Requests enables one possible way of

building a unique signature of the local urban context, thus being able to serve as a low-cost

decision support tool for urban stakeholders. Considering examples of New York City, Bos-

ton and Chicago, we demonstrate how 311 Service Requests recorded and categorized by

type in each neighborhood can be utilized to generate a meaningful classification of loca-

tions across the city, based on distinctive socioeconomic profiles. Moreover, the 311-based

classification of urban neighborhoods can present sufficient information to model various

socioeconomic features. Finally, we show that these characteristics are capable of predict-

ing future trends in comparative local real estate prices. We demonstrate 311 Service

Requests data can be used to monitor and predict socioeconomic performance of urban

neighborhoods, allowing urban stakeholders to quantify the impacts of their interventions.

1 Introduction

Cities can be seen as a complex system composed of multiple layers of activity and interactions

across various urban domains; therefore, discovering a parsimonious description of urban

function is quite difficult [1–4]. However, urban planners, policy makers and other types of

urban stakeholders, including businesses and investors, could benefit from an intuitive proxy

of neighborhood conditions across the city and over time [5–7]. At the same time, such simple

indicators could provide not only valuable information to support urban decision-making, but

also to accelerate the scalability of successful approaches and practices across different neigh-

borhood and cities, as urban scaling patterns have become an increasing topic of interest [8–

12]. As the volume and heterogeneity of urban data have increased, machine learning has
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become a viable tool for enhancing our knowledge of urban space and in developing predictive

analytics to inform city management and policy [13–16].

The non-trivial challenge is to identify a consistent, quantifiable metric that provides com-

prehensive insights across multiple layers of urban operations and planning [17] and to locate

readily-available data to support its implementation across a range of cities. Fortunately, urban

data collected by various agencies and companies provide an opportunity to respond to this

challenge [18, 19]. In the age of ubiquitous digital media, numerous aspects of human activity

are being analyzed by means of their digital footprints, such as mobile call records [20–25],

vehicle GPS traces [26], bank card transactions [27–29], payment patterns [30–32], smart card

usage [33–35], or social media activity [36–40]. Such data sets have been successfully applied

to investigate urban [41] and regional structure [42, 43], land use [44, 45], financial activities

[46], mobility [47, 48], or well-being [49, 50].

However, one of the major limitations to widespread adoption of such analytics in the prac-

tice of urban management and planning is the extreme heterogeneity of the data coverage: dif-

ferent types of data are available for different areas and periods of time, which undermine

efforts to develop universal and reliable analytic approaches. Privacy considerations are

another significant issue that create additional practical and legal obstacles, restricting data

access and preventing their use out of a concern for confidentiality [51–54].

Increasingly, cities are introducing systems to collect service requests and complaints from

their citizens. These data, commonly referred to as 311 requests, reflect a wide range of con-

cerns raised by city residents and visitors, offering a unique indicator of local urban function,

condition, and service level. In many cities, 311 requests are publicly available through city-

managed open data platforms as part of a broader movement in local government to increase

transparency and good governance [55–57]. Although potentially biased by the self-reported

nature of the requests and complaints, these data provide a comparable measure of perceived

local quality of life across space and time.

In this article, we develop a method for classifying urban locations based on the categorical

and temporal structure of 311 Service Requests for a given neighborhood, exploring whether

these spatio-temporal patterns can reveal characteristic signatures of the area. For New York,

Boston, and Chicago, we present applications of this new urban classifier for predicting socio-

economic and demographic characteristics of a neighborhood and estimating the economic

performance and well-being of a defined spatial agglomeration. The paper begins with a dis-

cussion of the data and methodology, followed by specific use cases relating to demographics

and real estate values, and concluding with opportunities for future research.

2 Materials and resources

2.1 The 311 data

311 service request and complaint data are being collected across more than 30 cities in the

United States, including New York, Boston and Chicago. The data for those three cities is

publicly available [58–60]. Through the 311 system, local government agencies offer non-

emergency services to residents, visitors and businesses and respond to reported service dis-

ruptions, unsafe conditions, or quality-of-life disturbances. While requests are collected

through multiple sources, including text messages, web page, and dedicated mobile applica-

tions, vast majority of them comes through the phone calls. These 311 service requests and

complaints cover a wide range of concerns, including, but not limited to, noise, building heat

outages, rodent sightings, etc. Thus, these data serves as an extremely useful resource in under-

standing the delivery of critical city services and neighborhood conditions.
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We explore the 311 datasets from New York, Chicago, and Boston as major urban centers

where 311 systems are in place and commonly used. We consider a time frame between 2012

and 2015 during which the data are available for all three cities selected. In Table 1, we provide

descriptive statistics of the data. Note that the number of total requests has been increasing

from 2012 to 2015 in each city. Conceivably, the number of requests in New York City (which

now approaches 2 million per year) is higher than the others because of its population size

(over 8.5 million). Boston municipality (central part of the city for which the 311 data is col-

lected with a population around 600.000) has a substantially smaller number of requests com-

pared to the city of Chicago (around 2.7 million people) and of course much smaller than

NYC) Unfortunately, each city uses a different complaint/request coding convention, thus

there is little consistency in the classification of particular complaint types. This fact raises cer-

tain difficulties for analysis between cities, a common challenge in comparative urban analytics

given the lack of data standardization. For example, in 2015, New York City’s 311 data are cat-

egorized into 182 types, where Chicago has only 12. Even within a particular city, request cate-

gories are subject to change over time, especially in NYC where only approximately 70% of the

entire service request activity belong to common categories present in all four years. Addi-

tional adjustments are needed to re-classify complaint types into standardized categories

across the different cities and over the time period of the analysis.

The original data set provided by 311 Services contains one record for each customer’s call.

For most cities, these records include information such as: service request type, service request

open/close time and date and location(longitude and latitude). With that information, we can

aggregate the 311 service requests and group by type for any given time period and area(census

tract area, block groups, zipcode).

2.2 Demographic and socioeconomic data

As we are attempting to use 311 data as a proxy for the socioeconomic characteristics and real

estate values of urban neighborhoods, ground-truth data are needed to train and validate our

models. For socioeconomic and demographic features, we use data from the U.S. Census 2014

Table 1. General properties of the 311 data for NYC, Chicago and Boston.

Year New York City

Total Requests Requests Categories Share of common categories’ activity

2012 1414392 165 0.69

2013 1431729 162 0.69

2014 1654913 179 0.73

2015 1806560 182 0.73

Year Chicago

Total Requests Requests Types Share of common categories’ activity

2012 478532 13 0.85

2013 507956 14 0.82

2014 515258 14 0.82

2015 568576 12 0.9

Year Boston

Total Requests Requests Types Share of common categories’ activity

2012 92855 155 1

2013 112727 165 0.99

2014 112785 183 0.96

2015 161498 180 0.83

https://doi.org/10.1371/journal.pone.0186314.t001
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American Community Survey (ACS). For real estate values, we collect housing price data from

the online real estate listing site Zillow. Both are described below.

2.2.1 2014 census data. The 2014 ACS contains survey data on a number of socioeco-

nomic and demographic variables, at the spatial aggregation of the Census Blocks. For this

analysis, we have selected common features representing important phenomena in population

diversity, education, and income and employment. For example, our selection covers the num-

ber of population in the following categories: “Non-Hispanic White”, “African-American”,

“Asian”, “High school degree”, “College degree”, “Graduate degree”, “Uninsured ratio”,

“Unemployment ratio”, “Poverty ratio”, and mean for “Income (all)”, “Income of No Family”,

“Income of Families” and “Income of Households”.

One important consideration is the level of spatial aggregation for this analysis. Having

considered zip code, census tract and census block groups, we decided to proceed with census

tracts providing the best trade-off between spatial granularity, in terms of having a sufficient

number of sub-areas within each city, and having a statistically significant sample of 311 com-

plaints for each areal unit. In Boston and Chicago, there are too few zipcodes within in each

city to create a useful sample, and there is not a significant density of 311 complaints at the

census block group level (please refer to S4 Text for details). In addition, given the survey

methodology of the ACS data, census block groups data include non-trivial margins-of-error

for each variable.

2.2.2 Zillow housing price. One important indicator of local economic conditions is

housing prices [61]. We utilize Zillow housing price data that contain monthly average resi-

dential real estate sales prices by zip code. Although housing prices are a lagging indicator of

neighborhood economic strength, since recorded sales occur as much as two to more than six

months after a contract is signed, we use these values as one of the targets for our 311 predic-

tions. Our spatial level of analysis will be the zipcode, rather than census tracts, given the cov-

erage area of the Zillow aggregate data.

2.2.3 Normalization method and some notations. In order to better compare various

areas, the census data need to be normalized. Take income per capita and population with

bachelor degree for example. Firstly, these two features have different measurement units (dol-

lars versus number of people). Secondly, this number can be affected by the area’s total popula-

tion. For an area with high population, there should be a higher possibility to have higher

population with bachelor degree. Therefore, the normalization process is important in order

to compare different features and different areas with heterogeneous population. For our anal-

ysis, we normalize our census tract data set in the following way.

Let pi be the total population in census tract, while vi denotes one feature recorded in the

same census tract i, for example, “the total population who holds graduate degree in census

tract i”. Next, we normalize it by defining

yi ¼
vipiP
j2O

vjpj

We define O as a set of all census tracts in New York City.

In section 2, we use 311 complaint frequency categorized by census tracts to cluster and

investigate the difference in local socioeconomic features y. In section 3 we use machine learn-

ing regression models to predict these features y using normalized 311 data.

3 Classification based on 311 service categories

In order to get initial insights on the usage of 311 service across the considered cities, we define

for each census tract area, a 311 pattern signature—a vector of the relative frequencies of 311
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requests of different types. This signature is supposed to characterize the unique way people

use 311 service in the given neighborhood, showing which particular concerns are the most

important ones for the local community. Each t-th component of the signature vector will be

the frequency of each category of requests t among all the requests made with a given area a.

Specifically, let the total number of service requests of each type t within an area a be s(a, t)
and let s(a) = ∑t s(a, t) be the total number of service requests in the area a. Then a vector

S(a) = (s(a, t)/s(a), t = 1..T), where T is the total number of service request types, serves as a sig-

nature of the location’s aggregated 311 service request behavior. The vector S highlights the

primary reasons for service requests or complaints in the specific area, allowing for straightfor-

ward comparison across tracts and cities.

Signatures S(a) serve as unique characteristics of each location a, and we would expect simi-

lar spatio-temporal patterns to emerge in 311 service requests across a city or cities. Our

hypothesis here is that these similarities also suggest similarities in the socioeconomic charac-

teristics of the areas. In order to explore this further, we apply a k-mean clustering approach to

the set of multi-dimensional vectors S(a). In order to ensure we get an optimal clustering we

run the algorithm 100 times, selecting the best solution in terms of cumulative square sum of

distances from centroids. A comparison with an alternative clustering approach DBSCAN [62]

able to handle the outliers is provided in the S6 Text. Also while k-means clustering deals

exclusively with the 311 patterns without any spatial considerations, an impact of additional

spatial regularization is considered in S7 Text.

One crucial step in this approach is to pick up an appropriate number of clusters to con-

sider. For that purpose we have evaluated the clustering model with both Silhouette method

and Elbow method. While different methods give a slightly different optimal number of clus-

ters for the cities in our sample, in most cases it is within a range of two to four clusters.

Given the socioeconomic diversity across neighborhoods in the selected cities, we determine

that a minimum of four clusters is an appropriate value. Readers can find more details in

S1 Text.

We consider NYC first. In Fig 1, we see below with approximate 2000 census tracts divided

into four clusters based on our clustering results. Midtown Manhattan, downtown Brooklyn

and several outliers such as JFK and LGA airports belong to cluster 1; Staten Island and eastern

Brooklyn/Queens constitute cluster 2; Northern Manhattan, the Bronx, and central Brooklyn

are included in cluster 3; and Southern Brooklyn, Flushing and some eastern parts of Bronx

comprise cluster 4.

In order to evaluate how different each cluster is with respect to the nature of 311 service

requests, (see Fig 2) we present the distribution of top service requests over the four clusters.

We observe clear variation in this distribution. For example, complaints/requests within clus-

ter 1 more often report noise concerns than others, cluster 2 experiences more issues relating

to residential heating, cluster 3 has the highest relative complaints about blocked driveways,

while cluster 4 reports concerns about street conditions. Clusters 2 and 4 are perhaps the most

similar ones in terms of their profiles, they still present considerable differences, such as

blocked driveway complain intensity. Indeed those two clusters represent different parts of

Brooklyn-Queens area, while cluster 2 is more residential, which perfectly explains why

blocked driveways are that much of a concern.

Similarly, we repeat the same clustering process for Chicago and Boston and the clustering

results for census tracts in those cities are shown in Figs 3 and 4.

An alternative 311-based clustering approach using timelines of the 311 activity rather than

the categories of 311 requests is considered in S2 Text.
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4 Socioeconomic features among clusters

Given the knowledge of the local spatial contexts for the analyzed cities, the clusters that

emerge make certain intuitive sense. However, in order to quantitatively address the hypothe-

sis formulated in the previous section—that similarities in local 311 service request signatures

Fig 1. Classification of urban locations based on the categorical structure of the 311 requests.

https://doi.org/10.1371/journal.pone.0186314.g001

Fig 2. Patterns of 311 activity within clusters: Top 20 service request categories and their frequency distribution among clusters.

https://doi.org/10.1371/journal.pone.0186314.g002
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Fig 3. Classification of urban locations based on the categorical structure of the 311 service requests

for Chicago.

https://doi.org/10.1371/journal.pone.0186314.g003

Fig 4. Classification of urban locations based on the categorical structure of the 311 service requests

for Boston.

https://doi.org/10.1371/journal.pone.0186314.g004
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also imply similarities in the socioeconomic profiles of those areas—here we summarize and

analyze the socioeconomic characteristics for each of the discovered clusters.

Recall that thus far the clustering results are obtained based on the 311 service requests fre-

quency alone with no socioeconomic information considered. Next we summarize the socio-

economic features such as the levels of income, education, unemployment, medical insurance

as well as racial decomposition, and compare the normalized mean level for each feature in

each of the considered clusters. The results for our three cities are presented in the radar plots

in Figs 5–7. From the output, we can see that the socioeconomic features among the defined

clusters are quite distinctive.

Take NYC for example:

• Education and Income: People with higher levels of education (with graduate degree and

above) are found in cluster 1, which, as expected, also has highest income level. Cluster 3

appears to show the opposite results.

• Racial diversity: There are above average concentrations of Non-Hispanic Whites living in

clusters 1 and 2, of Asian origin in cluster 4, and African-American populations in cluster 3.

Similarly we have (for both Chicago and Boston):

• Cluster 1 has the highest income and education level, while cluster 3 is the lowest.

• Cluster 2 is predominantly Asian and African-Americans, while Non-Hispanic Whites tend

to live in clusters 1 and 4.

The observations above provide some evidence for our hypothesis, revealing links between

socioeconomic features and 311 service request data structure. Indeed, while the clustering is

performed based on the 311 data alone, the socioeconomic features happen to be quite

Fig 5. Comparison of the average level of socioeconomic features among clusters in New York.

https://doi.org/10.1371/journal.pone.0186314.g005
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Fig 7. Comparison of the average level of socioeconomic features among clusters in Boston.

https://doi.org/10.1371/journal.pone.0186314.g007

Fig 6. Comparison of the average level of socioeconomic features among clusters in Chicago.

https://doi.org/10.1371/journal.pone.0186314.g006

Structure of 311 service requests as a signature of urban location

PLOS ONE | https://doi.org/10.1371/journal.pone.0186314 October 17, 2017 9 / 21

https://doi.org/10.1371/journal.pone.0186314.g007
https://doi.org/10.1371/journal.pone.0186314.g006
https://doi.org/10.1371/journal.pone.0186314


distinctive among the clusters. Of course this only reveals the existence of a certain relation in

principle, which might not be that practical. However this gives rise to another hypothesis—

can one use 311 service request data to actually model socioeconomic features at the local

scale?

5 Modeling the socioeconomic features

We find that 311 service request signatures allow the city to be divided into clusters based on

distinctive patterns of socioeconomic characteristics. Following this, we explore whether 311

service requests can be used to model these socioeconomic patterns. Such a model could be

useful as socioeconomic data are often unavailable or inconsistent at a given spatio-temporal

scale, and therefore having a proxy derived from a model based on regularly-updated open

data could have considerable potential for city operations and neighborhood planning.

We train regression models in order to estimate the selected socioeconomic features

described in subsection 1.2.1, using relative frequencies of 311 service requests of each type in

each census tract as predictors. This way the service request frequencies s(a, t)/s(a) (compo-

nents of the signature vectors as used in the section 2, showing how often a service request

within a given area a belongs to a given category t) constitute our feature space, including 179

different features (one per each request type t) in the case of NYC, across 2000 census tracts

following the data cleaning/filtering process.

We consider six target variables to model including income per capita, percentage of resi-

dents with a graduate degree, percentage of unemployed residents, percentage of residents liv-

ing below the poverty level, as well as demographic characteristics including percentage of

Non-Hispanic White and African-American populations.

The objective of the modeling is to use partial information about the target variables

defined in a certain part of the city to train the model so that it can explain the target variables

over the rest of the city.

For the purpose of a comprehensive model evaluation we use a cross-validation procedure,

training the model over different subsets of the data sample and evaluating its performance

over the rest of the data (how well the modeled values of target variable correspond to the

known values). We try several models including Lasso [63], Neural Networks with regulariza-

tion (NN) [64–66], Random Forests Regression (RF) [67] and Extra Trees Regression (ETR)

[68, 69].

For each model, we treat the different set of hyper parameters as different models. For Neu-

ral Networks, we try 5, 10, 20, 40 hidden unites and for each hidden unit, we try penalization

lambda for 0.0005, 0.005, 0.05, 0.5. As to the learning process, we use mini batch size 20 and

we use the following learning rate and epochs: (0.1,100), (0.05,200), (0.01,500), (0.005,1000).

For RF and ETR, we use 500 trees(since increasing trees does not help) and try maximum leaf

nodes: 10, 20, 30, . . . 100. In total we have 64 sets of hyper parameters for NN and 10 for RF

and 10 for ERF.

More details on the model selection process is presented in S3 Text. We select the final

model with suitable hyper parameters with the help of cross-validation. We divide the data set

into training and testing set by the ratio 7:3. As described above, we have 84 different models.

For each model, we randomly divide our training set into training and validation sets and

train the model on the training set and report the R-squared on the validation set. We repeat

this process 20 times for each model and get the average R-squared. We pick the best model

and use it for prediction on the test set. Finally, we report the corresponding out-of-sample R-

squared in Table 2. Generally speaking, RF and ETR usually give us best performance based on

R-squared.
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We consider this modeling result important because:

• it indicates that a relationship exists between 311 request signature and the local socioeco-

nomic features of each area;

• it enables possible prediction and estimation of other local socioeconomic features by using

311 requests data, particularly those features for which data are collected at low temporal fre-

quency, such as Census data; and,

• it can be easily scaled by geographic aggregation for various research, operational, or plan-

ning purposes.

For all 3 cities the data indicates spatial autocorrelation in both—311 patterns and target

socio-economic quantities. Most of the 311 request categories demonstrate modest spatial

autocorrelation, while some show a more substantial one; average values are reported in

Table 3. Distributions of autocorrelation values for each category could be found in S3 Text.

Thus, it seems reasonable to use spatial information for the modeling purposes. First, we check

if spatial correlation occurs for the residuals for the existing models. Indeed, as displayed in

Table 4, there is a significant correlation for most of the features. As those socio-economic fea-

tures demonstrate high spatial autocorrelation, accounting for it could help further improving

the models, at least when the entire neighborhood information is available. Next, we apply

Spatial Lag model [70] to see how much it could help improving the accuracy. While perfor-

mance vary across the features, this model works well for some of them, such as Median

Income, Percentage of White/European, African-American and Asian population as reported

in the Table 4. we also tried Spatial Error model but, as presented in Table 5, Spatial Lag largely

outperforms it, so we stick to the best model going forward.

While we see that spatial regression might improve the model in-sample performance,

using it for predictive modeling is more problematic as it would require to learn the spatial

Table 2. Best 311-based model performance for modeling socio-economic features in different cities.

City White/European Afro-American Graduate Degree Income per cap Below Poverty Unemployment

NYC 0.54 0.50 0.48 0.70 0.44 0.26

Chicago 0.76 0.85 0.45 0.55 0.52 0.65

Boston 0.54 0.68 0.26 0.62 0.63 0.36

https://doi.org/10.1371/journal.pone.0186314.t002

Table 3. Average spatial autocorrelation in the relative amounts of various categories of 311 service

requests.

City Avg. Autocorrelation St.Dev.

NYC 0.19 0.175

Chicago 0.06 0.09

Boston 0.43 0.126

https://doi.org/10.1371/journal.pone.0186314.t003

Table 4. Spatial autocorrelation for 311-based socio-economic model errors (Moran’s I).

City Asian Afro-American Graduate Degree Income per cap.

NYC 0.3 0.23 0.14 0.28

Chicago 0.3 0.23 0.14 0.28

Boston 0.2 0.41 0.26 0.18

https://doi.org/10.1371/journal.pone.0186314.t004
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correlation from the training data, which then need to span all over the city; this is rarely the

case in practical applications. In any case the purpose of this study is not to build applicable

predictive models but to show the modeling and/or predictive power of the 311 service

requests, so that one can consider them for inclusion into the comprehensive applied models.

This way we do not necessary aim for the paramount accuracy nor for a detailed modeling

approach, including spatial regression techniques. Those are largely subject of the further

study when 311-data will be incorporated into actual practical models together with all other

available data sets.

6 Prediction of the real estate prices

Following our previous analysis, we attempt to understand the practical applicability of the

prediction models. Although the findings above once again highlight a strong relation

between 311 service request data and socioeconomic context of urban locations, this by itself

has limited practical implications except for filling gaps in the data availability. In this sec-

tion we show that 311 service request data could be also used to predict future socioeco-

nomic variations, which may have more important practical implications for urban

analytics.

As an example, consider the annual average sale price of housing per square foot in differ-

ent neighborhoods of NYC as the target variable for our prediction. Our housing price is

reported by Zillow at the zip code level; therefore, we rescale our 311 service request frequen-

cies to this spatial aggregation.

To match available housing price data, we only include those 311 service categories that

were recorded consistently between 2012 and 2015. New York City has 145 of such categories,

covering about 70 percent of total service requests.

The target variable is updated annually and is available for each year from 2012 to 2015.

The Zillow data cover 112 of the 145 zip codes in New York City where the density and fre-

quency of 311 requests is sufficient to satisfy the filtering procedure described in the Data sec-

tion. Thus, our sample for this prediction is based on data from 112 zipcodes.

We do not attempt to predict the absolute level of prices, but changes over time relative to

the NYC mean. Our output therefore indicates how much more (less) expensive the housing

price in a given zip code area is going to be compared to the average relative increase

(decrease) in housing prices across NYC from the previous year. This way we define a new

log-scale target variable Yt(z) in year t as

YtðzÞ ¼ logðPtðzÞ=Pt
meanÞ

where Pt(z) is the average price per square foot in zip code z during the year t, while Pt
mean is the

average price per square foot across the entire city during the year t, estimated as the mean of

Pt(z) for all the locations z weighted by residential population of the locations used as a proxy

for the locations’ size.

We begin by modeling the output variable Y2015. We train the model using 2012 and 2013

data (both—features and output variable) over the entire NYC and use 2014 data for tuning

Table 5. Spatial regression helping to improve OLS performance (In-Sample R-squared) for New York.

City Asian Afro-American Graduate Degree Income per cap.

OLS 0.42 0.58 0.49 0.69

Spatial Lag 0.74 0.84 0.65 0.73

https://doi.org/10.1371/journal.pone.0186314.t005
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hyper-parameters, then apply it to 2015 using the features defined based on 2015 service

requests. To reiterate, the feature space as before consists of the relative service requests fre-

quencies s(a, t)/s(a), but now including only 145 categories of service requests, while the num-

ber of observations is 112 zip codes.

We subsequently train four different machine learning regression models as before: Lasso

[63], Neural Networks with regularization (NN) [64–66], Random Forests Regression (RF)

[67] and Extra Trees Regression (ETR) [68, 69].

The results are reported in Table 6 (we also include Boston and Chicago here just for com-

parison, although the number of zip codes in these cities is much smaller and thus the model

becomes less significant).

As one can see from the Table 6, we achieve reasonable predictive power, especially with RF

and ETR approaching R2 values of 0.80 for all three cities.

However, note that modeling housing prices in 2015 is not our objective here, since a sim-

plified model Y2015 = Y2014 would achieve better results given the serial correlation in the time

series and the relatively small year-to-year variation in price levels. Instead, we rather focus on

the model’s ability to predict the magnitude and direction of those fluctuations, forecasting

price trends at the zip code level.

Let Yt
PðzÞ be the predicted value of Yt(z). We define D(z) = Y2015(z) − Y2014(z) as the actual

tendency of relative real estate prices in the zip code z and DPðzÞ ¼ Y2015
P � Y2014

P as the pre-

dicted tendency of comparative housing price.

We classify the 112 zip codes of NYC into three groups based on the predicted tendency

strength D2015
P :

GPositive ¼ fz : DiP > m � sðDPÞ; where i ¼ 1; 2; . . . ; 112g: group of areas with strong positive

tendency;

GNegative ¼ fz : DiP < � m � sðDPÞ; where i ¼ 1; 2; . . . ; 112g: group of areas with strong nega-

tive tendency;

GNeutral = {z: −m � σ(DP)< DP(z)< m � σ(DP), i = 1, 2, . . ., 112}: group of areas with close to

neutral tendency,

where m is a certain threshold and σ(DP) indicates the standard deviation of DP(z).

Additionally we classify the zip codes based on the actual tendency strength, i.e. let us intro-

duce G0Positive;G
0
Negative;G

0
Neutral in the same way as above but replacing the estimated DP(z) with

the real D(z) in the corresponding. In this way, compared to defining strong tendency using

predicted results, we define strong tendency by the real values and then test the performance

of our model by the following indicators.

Table 6. R-squared.

Model; NYC Chicago Boston

In Out In Out In Out

Lasso .68 .49 .76 .57 .64 .38

NN(Regularized) .84 .70 .82 .65 .84 .68

RF .96 .78 .97 .81 .98 .79

ETR .97 .79 .98 .90 .98 .83

https://doi.org/10.1371/journal.pone.0186314.t006
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For each group GPositive, GNegative, GNeutral, we calculate its the normalized population

weighted average value of actual D(z) using the following formulae:

�DPositive ¼ ð

P
i2GPositive

DðzÞ � NðzÞ
P112

z¼1
DðzÞ � NðzÞ

Þ=sðDðzÞÞ;

�DNegative ¼ ð

P
i2GNegative

DðzÞ � NðzÞ
P112

z¼1
DðzÞ � NðzÞ

Þ=sðDðzÞÞ;

�DNeutral ¼ ð

P
i2GNeutral

DðzÞ � NðzÞ
P112

z¼1
DðzÞ � NðzÞ

Þ=sðDðzÞÞ;

where N(z) is the population of the zip code z. Similarly for each of the groups

G0Positive;G
0
Negative;G

0
Neutral we calculate the average prediction

�D0Positive ¼ ð

P0

i2GPositive
DpðzÞ � NðzÞ

P112

z¼1
DpðzÞ � NðzÞ

Þ=sðDðzÞÞ;

�D0Negative ¼ ð

P0

i2GNegative
DpðzÞ � NðzÞ

P112

z¼1
DpðzÞ � NðzÞ

Þ=sðDðzÞÞ;

�D0Neutral ¼ ð

P0

i2GNeutral
DpðzÞ � NðzÞ

P112

z¼1
DpðzÞ � NðzÞ

Þ=sðDðzÞÞ;

The values of those quantities for different values of the threshold (m = 0.15, example of a

very loose threshold classifying most of the predictions as strong, m = 0.35, 0.65, 1) are

reported in the Tables 7 and 8 and we can see consistent inequalities

�DPositive > 0 > �DNegative

and

�D0Positive > 0 > �D0Negative

Table 7. Accuracy of discovering actual strong relative real estate price trends by the predictive model.

Threshold m = 0.15 m = 0.35

+/-:Strong Positive/Negative + - Neutral + - Neutral

Number of Observations 23 75 14 20 62 30

�D 0Positive=�D 0Negative=�D 0Neutral 134.57 -84.28 -3.75 148.60 -95.41 -7.97

Accuracy for Strong P/N 0.7 0.72

Threshold m = 0.65 m = 1

+/-:Strong Positive/Negative + - Neutral + - Neutral

Number of Observations 19 43 50 14 24 74

�D 0Positive=�D 0Negative=�D 0Neutral 156.73 -114.82 -24.5 179.69 -137.11 -32.56

Accuracy for Strong P/N 0.82 0.77

https://doi.org/10.1371/journal.pone.0186314.t007
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holding for all the values of the threshold m, which means that our predicted trend directions

are consistent with the real trends on average.

Moreover, we compare the signs of the predicted values of DP(z) for the strong predicted

trends GPositive [ GNegative vs the ground-truth D(z), as well as the actual values D(z) for the

strong actual trends G0Positive [ G0Negative, reporting the accuracy ratio of predicting the correct

trend direction for strong actual trends and the accuracy ratio for having strong predicted

trends to reveal correct trend directions (DP(z)D(z)> 0). Those indicators are listed in Tables

7 and 8 demonstrating the model’s performance.

From Tables 7 and 8, we see that, for around 40 percent of strongest tendency observations

or predictions (m = 0.65), our prediction accuracy of a trend direction is higher than 80 per-

cent compared to around 43/62(69%) percent random guess baseline model in Table 7 and

31/51(60.7%) baseline in Table 8. Moreover, in Table 7, we see that when the threshold m

increases from 0.15 to 0.65, the accuracy ratio of prediction goes up from 70 percent to 82 per-

cent, meaning that the stronger the actual trend, the more likely to achieve correct prediction.

In Table 8, we see that while m increases from 0.15 to 1, the accuracy ratio of prediction goes

up from 72 percent to 90 percent, hence the stronger the predicted trend, the more accurately

our prediction reflects the reality.

The results presented in this section demonstrate that the 311-based model can indeed pre-

dict future fluctuations of socio-economic characteristics, including real estate price trends.

This serves as an initial proof of concept for multiple potential urban applications using 311

data as a proxy for local socio-economic conditions.

7 Discussion

As we see from the results above, 311 service requests can be used in order to characterize the

local context of the urban neighborhood and demonstrate moderate to strong correlations

with wealth, education level, unemployment, racial structure of its population, as well as with

the housing prices in the area. This way 311 data can contribute towards modeling the socio-

economic features of the area. Clearly, multiple components of the complex urban systems are

strongly related leading to all sorts of correlations between urban characteristics. The fact that

the structure of 311 reports is correlated with socio-economic quantities of course does not

serve as an evidence of any causal relation—both might simply have the same underlying

causes. In addition, 311 reports might pick various causes in different cities, affecting the scal-

ability of the approach. In order to verify the least we applied it to the three different cities—

NYC, Boston and Chicago. And while the overall predictive power of 311 service requests is

seen in all three, specific patterns/relations are different (also because of the different

Table 8. Accuracy of the correspondence of the predicted strong relative real estate price trends to the actual ones.

Threshold m = 0.15 m = 0.35

+/-:Strong Positive/Negative + - Neutral + - Neutral

Number of Observations 43 58 11 32 42 38

�DPositive=�DNegative=�DNeutral 22.61 -75.99 -4.56 42.23 -71.18 -40.78

Accuracy for Strong P/N 0.72 0.77

Threshold m = 0.65 m = 1

+/-:Strong Positive/Negative + - Neutral + - Neutral

Number of Observations 20 31 61 15 12 85

�DPositive=�DNegative=�DNeutral 44.93 -70.55 -29.83 110.80 -76.29 -41.17

Accuracy for Strong P/N 0.83 0.90

https://doi.org/10.1371/journal.pone.0186314.t008
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categorization systems used by 311 in different spatial context). So while modeling of socio-

economic characteristics using 311 seems feasible in diverse cities, the models need to be

tuned in each specific urban context before they can be applied. Such models could be quite

useful for city planners, government, and other urban stakeholders since 311 data is publicly

available in nearly real-time compared to official socio-economic measurements collected typi-

cally on the annual basis. Of course 311 data has its own limitations. Perhaps, the main one is

related to the fact that 311 service requests represent an indirect proxy of the real urban condi-

tions, since propensity to report different types of issues might vary depending on the demo-

graphics and other parameters of the location. However, in the current study we aim to verify

the modeling/predictive utility of the 311 data as it is, i.e. incorporating both—information of

the actual problems and reporting propensity issues at the same time. While the prediction

accuracy of socio-economic models based on 311 data exclusively is not perfect and likely

insufficient for practical applications, its possible practical utility is two-fold: a) 311-based indi-

cators can strengthen predictive models when used along with other conventional data, b) rela-

tive dynamics of 311-based indicators could evidence the underlying dynamics of the socio-

economic characteristics of the considered area, enabling early-detection of the local urban

trends. The real estate model presented in the previous paragraph, despite its low accuracy,

confirms the predictive power of the approach, i.e. its capability of predicting future trends

based on the past data in principle.

8 Conclusions

A quantitative understanding of urban neighborhoods can be quite challenging for urban

planners and policy-makers given significant gaps in the spatial and temporal resolution of

data and data collection modalities. However, this subject is crucial for urban planning and

decision making, as well as for the study of urban economic and neighborhood change. In

this paper, we provide an approach to quantify local signatures of urban function via 311 ser-

vice request data collected in various cities across the US. These datasets, which can be easily

scaled by spatial (zip code, census tracts/block groups, etc.) and temporal level of aggregation,

are open to the public and updated regularly. Importantly, we demonstrate consistent rela-

tionships between socioeconomic features of urban neighborhoods and their 311 service

requests.

For all three cities analyzed—New York City, Boston and Chicago—we demonstrate how

clustering of census tracts by the relative frequency vectors of different types of 311 requests

reveal distinctive socioeconomic patterns across the city. Moreover, those frequency vectors

allow us to train and cross-validate regression models successfully explaining selected socio-

economic features, such as education level, income, unemployment and racial composition of

urban neighborhoods. For example, the accuracy of the model explaining local average income

in NYC is characterized by a R-squared value of 0.7, while Extra Trees Regression results in a

0.9 out of sample R-squared in explaining housing prices in Chicago (although this must be

considered with respect to the smaller sample size). Finally, we illustrate the predictive capacity

of the approach by training and validating the model to detect comparative average real estate

price trends for zip codes in New York City.

In the nascent field of urban science and more traditional disciplines of economics and

urban planning, there is increasing attention on how data collected by cities can be combined

with novel machine learning approaches to yield insight for researchers and policy-makers. It

is possible that such data can be used to better understand the dynamics of local areas in cities,

and support more informed decision-making. In addition, it is conceivable that a set of effi-

cient instrumental variables based on widely-available 311 data can be used to replace survey-
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based socioeconomic statistics at spatio-temporal scale where such official survey data is non-

existent or inconsistent, thus broadening opportunities for urban analytics.
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