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ABSTRACT
We suggest a new variant of a row layout problem: Find an ordering of n
departments with given lengths such that the total weighted sum of their
distances to a given checkpoint is minimized. The Checkpoint Ordering
Problem (COP) is both of theoretical and practical interest. It has several
applications and is conceptually related to some well-studied combinatorial
optimization problems, namely the Single-Row Facility Layout Problem, the
Linear Ordering Problem and a variant of parallel machine scheduling. In
this paper we study the complexity of the (COP) and its special cases.
The general version of the (COP)with an arbitrary but fixed number of
checkpoints is NP-hard in the weak sense. We propose both a dynamic
programming algorithm and an integer linear programming approach for
the (COP) . Our computational experiments indicate that the (COP) is
hard to solve in practice. While the run time of the dynamic programming
algorithm strongly depends on the length of the departments, the integer
linear programming approach is able to solve instances with up to 25
departments to optimality.
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1. Introduction

In this paper we introduce and analyse a new variant of a row layout problem. An instance of
the Checkpoint Ordering Problem (COP) consists of n one-dimensional departments, with given
positive lengths �1, . . . , �n and weights w1, . . . ,wn, and a checkpoint on a fixed position, e.g. left-
aligned or at the center position. The optimization problem can be written down as

min
π∈�n

∑
i∈[n]

wizπ
i , (1)

where �n is the set of permutations of the indices [n] := {1, 2, . . . , n} and zπ
i is the distance between

the center of department i and the checkpoint with respect to a particular permutation π ∈ �n.
Let us start with elaborating on the connections of the (COP) to the Linear Ordering Problem

(LOP), the Single-Row Facility Layout Problem (SRFLP) and scheduling on identical parallel
machines with the objective of minimizing the sum of weighted completion times.

1.1. The Single-Row Facility Layout Problem (SRFLP)

The simplest known layout type is single-row layout. It arises as the problem of ordering stations on
a production line, where the material flow is handled by an automated guided vehicle (AGV) in both
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directions on a straight-line path [1]. An instance of the (SRFLP) consists of n one-dimensional
departments, with given positive lengths �1, . . . , �n, and pairwise weights wij. The optimization
problem can be written down as

min
π∈�n

∑
i,j∈[n]
i<j

wijzπ
ij , (2)

where�n is the set of permutations of the indices [n] and zπ
ij is the center-to-center distance between

departments i and j with respect to a particular permutation π ∈ �n. Note that the weights are
assumed to be non-negative for all row layout problems to ensure boundedness of the objective value
of the optimal layout. For the (SRFLP)wij ≥ 0 further guarantees that all departments are placed
next to each other without spacing. For the (COP)we do not need this restriction on the weights as
space between the departments is not allowed.

Several practical applications of the (SRFLP)have been identified in the literature, such as the
arrangement of rooms on a corridor in hospitals, supermarkets, or offices [2], the assignment of
airplanes to gates in an airport terminal [3], the arrangement of machines in flexible manufacturing
systems [1], the arrangement of books on a shelf and the assignment of disk cylinders to files [4].

Similar applications are conceivable for the(COP), e.g. the roomson a corridor could be arranged
such that the weighted sum of their distances with the office of the head is minimized or planes
could be assigned to gates such that the weighted sum of their distances from the entrance of the
airport terminal is minimized. When comparing the (SRFLP)with the (COP), we observe that
the problems are quite similar. One difference is that an (SRFLP) instance has

(n
2
)
weights while a

(COP) instance has only n weights.

1.2. The Linear Ordering Problem (LOP)

Ordering problems associate to each ordering (or permutation) of the set [n] a profit and the goal is
to find an ordering of maximum profit. In the simplest case of the Linear Ordering Problem (LOP) ,
this profit is determined by those pairs (u, v) ∈ [n] × [n], where u comes before v in the ordering.
Thus in its matrix version the (LOP) can be defined as follows. Given an n × nmatrix A = (aij) of
integers, find a simultaneous permutation π of the rows and columns of A such that

∑
i,j∈[n]
i<j

aπ(i),π(j),

is maximized. Equivalently, we can interpret aij as weights of a complete directed graphG with vertex
setV = [n]. A tournament consists of a subset of the arcs ofG containing for every pair of nodes i and
j either arc (i, j) or arc (j, i), but not both. Then the (LOP) consists of finding an acyclic tournament,
i.e. a tournament without directed cycles, of G of maximum total edge weight.

Although the (LOP) and the (COP)have apparently a similar structure, it is harder to directly
relate these two problems.Wewill show in Section 2 that the(COP)with left-aligned or right-aligned
checkpoint is in fact a (LOP)with some additional structure and can be solved efficiently by a greedy
algorithm.

1.3. Scheduling on identical parallel machines

Furthermore we can relate the (COP) to the NP-hard [5] scheduling on identical parallel machines
with the objective of minimizing the total weighted completion time that is defined as follows: We
are given a set of jobs J that have to be scheduled on m identical parallel machines. Each job j ∈ J
is specified by its processing time pj ≥ 0 and by its weight wj ≥ 0.
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Every machine can processat most one job at a time, and every job has to be processed on one
machine in an uninterrupted fashion. The completion time of job j is denoted by Cj. The goal is to
minimize the total weighted completion time

∑
i∈J wiCi. In the standard classification scheme of

[6], this scheduling problem is denoted by P||∑wjCj for m part of the input, and by Pm||∑wjCj
for constantm.

For the special case of only one machine the problem can be solved in polynomial time by Smith’s
Rule [7] that suggests to process the jobs in the order of non-increasing ratios wj/pj. For a constant
numberm ≥ 2 of machines, the problem is weakly NP-hard as it can be solved in pseudopolynomial
time by dynamic programming approaches [8–10]. Form part of the input, the problem is NP-hard
in the strong sense by transformation from 3-PARTITION [11]. For further details on the complexity
of various related variants of this scheduling problem we refer to problem SS13 in [11]. For a more
general overview on machine scheduling we refer to the survey article by [12].

From a computational point of view P||∑wjCj has been tackled by various branch-and-bound
methods [13–17], for which determining the optimal solution of instances with 30 or more jobs and
two or more identical machines is typically difficult [18].

When comparing P||∑wjCj and the (COP), we observe that there two important differences
between the two problems:

(1) The checkpoint must not lie exactly at a splitting point of two departments but it can also
be covered by a department. I.e. the checkpoint does not necessarily define a partition of the
departments. When considering a scheduling set-up the (COP) can be described as follows:
It is allowed to split one arbitrary job into two parts at any point and then the two parts have
to be scheduled first on the two machines.

(2) For the (COP) the sum of the lengths of the departments that are placed to the left and to
the right of the checkpoint are predetermined through the position of the checkpoint. E.g. for
a centered checkpoint the sum of the lengths of the departments to the left and to the right
of the checkpoint has to be equal. For P||∑wjCj the identical machines typically have no
capacity restrictions.

Due to these differences it is not possible to directly carry over polyhedral results, dynamic pro-
gramming algorithms and (mixed) integer linear programming (ILP)models and their corresponding
approximation results [19] from scheduling on identical parallel machines to the (COP).

1.4. Toy examples

Now let us further clarify the similarities and differences of the (SRFLP) and the (COP)with the
help of a toy example: We consider 4 departments with lengths �1 = 1, �2 = 2, �3 = 3, �4 = 4.
Additionally we are given the pairwise weights w12 = w14 = w34 = 1, w13 = w24 = 2. For the
(COP)we assign department 1 to row 2 and all other departments to row 1 and hence disregard the
weights w24 = 2 and w34 = 1. Figure 1 illustrates the optimal layouts and the associated costs for
both problems.

Finally we also want to clarify the workings of the (LOP)with the help of a toy example. We
consider 4 objects and the weights w12 = w41 = w34 = 1, w31 = w24 = 2. Figure 2 illustrates the
optimal ordering of the objects and the corresponding benefit.

1.5. Outline

The main contributions of this paper are the following:

• We propose a new combinatorial optimization problem that is both of theoretical and practical
interest.

• We study the complexity of the (COP) and its special cases, pointing out several connections
to related problems.
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(a) (b)

Figure 1.We are given the following data: �1 = 1, �2 = 2, �3 = 3, �4 = 4, w12 = w14 = w34 = 1, w13 = w24 = 2. In (a) we
display the optimal layout for the (SRFLP)with corresponding costs of 3 · 2 + 2.5 · 1 + 2 · 2 + 5.5 · 1 + 4.5 · 1 = 22.5. And in
(b) we depict the optimal layout for the (COP)with department 1 assigned to row 2 and all other departments assigned to row 1,
disregarding the weights w24 = 2 and w34 = 1. Further we assume that the checkpoint lies at the center. Then the costs of the
optimal (COP) layout are 3.5 · 1 + 1 · 2 + 2.5 · 1 = 8.

Figure 2.We are given 4 objects and theweightsw12 = w41 = w34 = 1, w31 = w24 = 2.We display the optimal(LOP) solution
with the corresponding benefit of 1 + 1 + 2 + 2 = 6.

• We propose two exact approaches for the (COP), namely a dynamic programming algorithm
and an ILP approach.

• We demonstrate the practical difficulty of the (COP) in a computational study. In this context
let us also refer to our companion paper [20] for a comparison of the empirical difficulty
of several row facility layout problems (including the (COP) ) on a variety of well-known
benchmark instances.

The paper is structured as follows. In Section 2 we study the complexity of the (COP) and its
special cases. In Sections 3 and 4 we suggest a dynamic programming algorithm and an ILP approach
for the (COP) respectively. Finally in Section 5 we conduct computational experiments, indicating
the practical applicability and limitations of the approaches suggested. Section 6 concludes the paper.

2. Complexity of the Checkpoint Ordering Problem

Consider the decision variant of the (COP) : given some value M we ask whether there exists a
permutation of the departments such that the obtained costs are at mostM:
Decision Checkpoint Ordering (DCO):
Instance: n departments with given lengths �i ∈ N, i ∈ [n], and integer weights wi, i ∈ [n], and a
checkpoint on a fixed position.
Question: Is there an ordering π of the departments such that the total costs

∑
i∈[n] wizπ

i are ≤ M?
In the following proof we assume w.l.o.g. that the checkpoint is located at the center in order to

simplify the presentation.
Theorem 1: DCO is NP-complete.

Proof: It is clear that DCO ∈NP since a nondeterministic algorithm needs only to guess an ordering
π and then can check in polynomial time if the corresponding costs are ≤ M.
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To prove that DCO is NP-complete, we give an NP-complete problem and a polynomial-time
transformation to DCO. The following problem is NP-complete (see Section 3.1.5 of [11], originally
proven by [21]):
PARTITION:
Instance: A finite set A and a ‘size’ s(a) ∈ N for each a ∈ A such that

∑
a∈A s(a) = 2B is even.

Question: Is there a subset A′ ⊆ A such that
∑

a∈A′ s(a) = B?
Now we transform an instance of PARTITION to an instance of DCO as follows. We replace each

element a ∈ A with given size s(a) by a department a with length �a = s(a) and weight wa = s(a).
Additionally to this local replacement we use an enforcer by introducing a further department t with
length �t = 1 and weight wt = 2(B + 1)2. Clearly this DCO instance can be constructed from the
PARTITION instance in polynomial time.

If the ordering π is optimal then the center of department t is located exactly above the checkpoint
because of the large weight of department t. Due to the definition of the weights of the departments
a ∈ A, it does not change the objective value if we switch the positions of two departments both
located left or right of t. Hence the only way to influence the objective value is to decide whether the
departments should be located left or right of t. If we can find a subset A′ ⊆ A of the departments
such that

∑
a∈A′ �a = B and place them left of t and all other departments right of t, then the

corresponding ordering π is for sure optimal. If the sum of lengths of the departments left of t in the
optimal ordering π does not give B, then there exists no subset A′ ⊆ A such that

∑
a∈A′ s(a) = B.

In summary we have shown that there exists an ordering π of the departments such that the
total costs are ≤ M := B(B + 1) if and only if there exists a subset A′ ⊆ A of the corresponding
PARTITION instance such that

∑
a∈A′ s(a) = B.

In the layout context the above result can be interpreted as follows: The minimization of the
inter-row costs that occur in all multi-row layout problems is NP-hard, even in its simplest version.
This is not only an interesting theoretical insight on its own but also supports our definition of the
Single-Row bound in our companion paper [20]. Next let us consider somemore specialized versions
of the(COP) that turn out to be solvable by a greedy algorithm and hence in particular in polynomial
time.

First we assume that all departments have the same length. In this case the optimal permutation
of the departments can be obtained by a simple greedy selection. We choose the permutation π with
the following property: The higher the weight of a department the smaller is its distance from the
checkpoint. Next we give a short formal argument for the above claim and refer to Figure 3 for a toy
example of this variant of the (COP).
Fact 2: A permutation π is optimal for the (COP)with identical department lengths iff it ensures
the inequalities

(zi − zj)(wi − wj) ≤ 0, i, j ∈ [n], i < j, (3)

where zi, i ∈ [n], denotes the distance of the center of department i from the checkpoint.

Proof: The change of the objective function caused by swapping two departments i and j is −(zi −
zj)(wi − wj). Hence in particular the change in the objective function caused by this swap is
independent of the length and weights of all other departments k ∈ [n], k �= i, k �= j. Now
assume that there exists an optimal permutation that does not ensure one inequality in (3), i.e.
−(zi − zj)(wi −wj) < 0 for some departments i and j. Now swapping the two departments improves
the objective value. As all other departments are not affected by pairwise swaps, it is not possible to
improve the objective value by an arbitrary number of pairwise changes if (3) holds. Hence (3) is not
only a necessary condition but also a sufficient one.

Note that the special case of the (SRFLP)where all department lengths are equal and the weights
are binary is still NP-hard [22]. This problem is calledMinimum Linear Arrangement (LA), belongs
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to the class of graph layout problems and is NP-hard even if the underlying graph G is bipartite [11].
(LA)was originally proposed by Harper [23,24] to develop error-correcting codes with minimal
average absolute errors andwas since then applied to VLSI design [25], singlemachine job scheduling
[26,27] and computational biology [28,29]. There exist approximation algorithms for (LA)with
performance guaranteeO( log n) [30,31] andO(

√
log n log log n) [32,33]. For further details on graph

layout problems we refer to the survey paper of Díaz et al. [34].
Next we assume that the checkpoint is left-aligned or right-aligned. Also in this case the optimal

permutation of the departments can be obtained by a simple greedy selection. We choose the
permutation π with the following property: The higher the relative weight wi/�i of a department
i, the smaller is its distance from the checkpoint. Next we give a short formal argument for the
above claim and refer to Figure 3 for a toy example of this variant of the (COP) . To facilitate the
presentation of the proof, we assume w.l.o.g. that

(1) the checkpoint is left-aligned and
(2) the relative weights wi/�i, i ∈ [n], are all distinct.
The following result is in fact known as Smith’s Rule [7] in the scheduling context, where it

describes a greedy algorithm to solve single-machine scheduling with the objective of minimizing the
sum of completion times. For convenience we restate the proof in our notation.
Fact 3: [7] The permutation π is optimal for the (COP)with a left-aligned checkpoint iff it satisfies
the conditions

wi

�i
>
wj

�j
, i, j ∈ [n], π(i) < π(j). (4)

Proof: Assume that there exists an optimal permutation that does not satisfy condition (4) for two
departments i and j: wi

�i
< wj

�j
and π(i) < π(j). Then there are also two neighboring departments

k and l (π(i) ≤ π(k) < π(k) + 1 = π(l) ≤ π(j)) that do not satisfy condition (4): wk
�k

< wl
�l

and
π(k) + 1 = π(l). Now if we swap k and l, the value of the objective function changes by the term
wk�l −wl�k. But this term is negative as wk

�k
< wl

�l
holds which yields a contradiction to the assumption

that the permutationwas optimal. Finally note that condition (4) defines a unique permutation, hence
it is not only necessary but also sufficient.

We can interpret the (COP)with left-aligned checkpoint also as a (LOP)with special structure.
We collect the lengths of the departments in a column vector � and the weights of the departments
in a column vector c. Now we aim to find a simultaneous permutation π of the rows and columns of
A = �c� such that ∑

i,j∈[n]
i<j

aπ(i),π(j),

is minimized. Contrary to the general (LOP), which is NP-hard [22], the matrix entries of W are
not independent but determined by an outer product of two vectors. We have just seen in Fact 3
that the (COP)with left-aligned checkpoint can be solved by a simple greedy heuristic. Hence this
special structure of the (LOP) cost matrix W as an outer product of two vectors is the reason why
this (LOP) version can be solved in polynomial time.

We summarize the above results as follows: The (COP) is NP-hard and its ‘hard’ part is to
determine where the centers of the departments are located with respect to the checkpoint in the
optimal solution. In the following sectionwe show that the(COP)with one checkpoint that is neither
left- nor right-aligned can be solved by a dynamic programming algorithm and hence is NP-hard in
the weak sense. If the number of checkpoints is not part of the input, then the (COP) is NP-hard in
the strong sense.
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(a) (b)

Figure 3. In (a) we display the optimal layout for the (COP)with identical department lengths equal to 1 and weights w1 =
1, w2 = 2, w3 = 3, w4 = 4, w5 = 5. The corresponding layout costs are 0.5 · 5 + 0.5 · 4 + 1.5 · 3 + 1.5 · 2 + 2.5 · 1 = 14.5.
In (b) we show the optimal layout for the (COP)with left-aligned checkpoint on the following instance with 3 departments:
�1 = 1, �2 = 2, �3 = 3, w1 = 1, w2 = 3, w3 = 2. The associated layout costs are 1 · 3 + 2.5 · 1 + 4.5 · 2 = 14.5.

3. A Dynamic Programming Algorithm for the (COP)

We exploit the following two simple properties of (COP) layouts for designing a dynamic program-
ming algorithm:

• In every (COP) layout there is at most one department covering the checkpoint. All other
departments lie completely to the left or to the right of the checkpoint.

• In anoptimal(COP) layout all departments, except for the department covering the checkpoint,
have to be arranged in non-increasing order from the checkpoint to the border of the layout
with respect to their relative weights wi/�i, i ∈ [n]. This structural characteristic is denoted as
V-shaped property [35,36].

In order to simplify the description of our dynamic programming algorithm we assume w.l.o.g. that
the checkpoint is centered and hence that the sum of the lengths of the departments to the left and to
right of the checkpoints has to be equal. Now let us outline theworkings of our dynamic programming
algorithm in detail.

The input for our algorithm is a (COP) instance, where the list of departments is given in non-
decreasing order with respect to their relative weights wi/�i, i ∈ [n]. First we choose one of the given
departments as center department that covers the checkpoint, where �c is the length of the center
department, �1c is the length of the part of the center department left to the checkpoint and �2c is
the length of the part of the center department right to the checkpoint. Hence �c = �1c + �2c and
additionally due to symmetry we can always assume w.l.o.g. that �1c ≥ �2c holds.

Next we choose an alignment of the center department above the checkpoint: We start with the
right end of the center department above the checkpoint and then shift the center department 0.5
to the right in each iteration until the center of the center department is placed directly above the
checkpoint. Clearly it suffices to consider 0.5 shifts of the center department as the checkpoint is
centered and �i ∈ N, i ∈ [n]. In the inner loops we determine with the help of the following recursive
relation whether to place the remaining departments to the left or to the right of the checkpoint

Fj(s) = �jwj

2
+ min

{
Fj−1(s + �j) + (

s + �1c
)
wj ; Fj−1(s) + (

M − s + �2c
)
wj

}
, (5)

where s indicates the remaining free space to the left of the checkpoint and M gives the overall
remaining free space either to the left or to the right of the checkpoint, which is equal to the sum of
the lengths of the departments not yet assigned. As we arrange the departments in non-increasing
order with respect to their relative weights wi/�i, i ∈ [n], from the checkpoint to the border, the
V-shaped property of the resulting layout is ensured.

We refer to Algorithm 1 for a detailed description of our dynamic programming algorithm that we
implemented in C. In Section 5 we computationally compare the dynamic programming algorithm
to an ILP approach for the (COP) that we suggest in the following section. In summary our dynamic
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programming algorithm for solving the (COP) runs in pseudo-polynomial time, to be precise in
O(n2 · S · maxi∈[n]{�i}) with

S =
n∑

i=1

�i. (6)

Hence the (COP)with one checkpoint is NP-hard in the weak sense. If the number of checkpoints
is not part of the input, then the (COP) is NP-hard in the strong sense, which can be proven by a
deduction from 3-PARTITION.

To further clarify the workings of our dynamic programming algorithm let us consider a toy
example with centered checkpoint and the following input data: �1 = �2 = 2, �3 = �4 = 1, w1 =
1, w2 = w3 = 2, w4 = 4. The optimal objective value is 9 and the optimal layouts are (1, 3, 4, 2),
(1, 4, 3, 2), (2, 3, 4, 1) and (2, 4, 3, 1). All Fj(·, ·)-values for j ∈ [n − 1] that were determined by our
algorithm for this example are stated in Figure 4.

Algorithm 1 Dynamic Programming Algorithm for the (COP)

1: Input: A (COP) instance I , i.e. a list of departments D̃ = {d̃i}, i ∈ [n], with corresponding lengths L̃ = {�̃i}, i ∈ [n],
and weights W̃ = {w̃i}, i ∈ [n], where the departments are given in non-decreasing order regarding their relative weights
w̃i/�̃i , i ∈ [n].

2: Output: Optimal solution for the given (COP) instance.

3: Determine the gcd t of the elements in L̃ and divide all elements in L̃ by t : �̃i = �̃i/t, i ∈ [n].
4: Set S = ∑

i∈[n] �̃i and z∗ = ∞.
5: for h ∈ [n] do
6: Set dc = d̃h , �c = �̃h ,wc = w̃h, D = D̃ \ dc = {di}, L = L̃ \ �c = {�i},W = W̃ \ wc = {wi}, i ∈ [n − 1].
7: � Choose a center department and remove it from the list of departments.
8: for i ∈ [�c + 1] do
9: Set �1c = 2�c−i+1

2 , �2c = �c − �1c .
10: if

(
S/2 − �1c

) ∈ N then
11: SetM = S − �c , s = S/2 − �1c .
12: Initialize F0

(
s
) = (�1c − �2c )wc/2 and F0

(
a
) = ∞ for all a ∈ [M] ∪ {0}.

13: for j ∈ [n − 1] do
14: SetM = M − �j .
15: for s from 0 toM do
16: Fj(s) = �jwj/2 + min

{
Fj−1(s + �j) + (

s + �1c
)
wj ; Fj−1(s) + (

M − s + �2c
)
wj

}
.

� For a given placement of the departments �c and [j − 1], decide with the help of the recursive dynamic
programming relation whether Department j should be placed left or right of the checkpoint.

17: end for
18: end for
19: if Fn−1(0) < z∗ then
20: Set z∗ = Fn−1(0) and update the corresponding best layout found.
21: end if
22: else there exists no (COP) solution for this alignment of dc .
23: end if
24: end for
25: end for
26: return the objective value t · z∗ (and the associated layout) of the optimal solution for the instance I .

4. An ILP Formulation for the (COP)

In the section we propose an ILP approach for solving the (COP) . To simplify the notation, we
consider the (COP) on n − 1 departments. First we introduce binary ordering variables xij, i, j ∈
[n], i < j, with the interpretation
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Figure 4. All Fj(·, ·)-values for j ∈ [n − 1] that were determined by our dynamic programming algorithm for a toy example with
centered checkpoint and input data �1 = �2 = 2, �3 = �4 = 1, w1 = 1, w2 = w3 = 2, w4 = 4. The optimal objective value is 9
and the optimal layouts are (1, 3, 4, 2), (1, 4, 3, 2), (2, 3, 4, 1) and (2, 4, 3, 1).

xij =
{
1, if department i lies to the left of department j,
0, otherwise,

(7)

in order to relate the positions of the n − 1 departments to each other and to the checkpoint n that
is again w.l.o.g. assumed to be centered. To ensure transitivity on the ordering variables we use the
3-cycle inequalities

0 ≤ xij + xjk − xik ≤ 1, i, j, k ∈ [n], i < j < k, (8)

that rule out the existence of directed 3-cycles and are sufficient for guaranteeing that there is no
directed cycle.

Now the distances of the departments from the checkpoint can be expressed as quadratic terms
in ordering variables: For department i ∈ [n − 1], we sum up the lengths of the departments left of i
plus �i/2 and denote it by di. Furthermore we compute the position of the checkpoint dc as S/2, i.e.
the total length of the departments divided by 2. Then we subtract di from dc . This difference gives
the distance of the center of department i from the checkpoint, if department i is located to the left
of the checkpoint. If department i is located to the right of the checkpoint, this difference is minus
the distance of the center of department i from the checkpoint. Therefore we multiply this difference
by the term (2xin − 1) that is 1, if the center of department i lies to the left of the checkpoint and −1
if the center of department i lies to the right of the checkpoint:

zin = (2xin − 1)
(
dc − di

)
, i ∈ [n − 1], (9)
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with

dc = S
2
, di = �i

2
+

∑
j∈[n−1]

j<i

�jxji +
∑

j∈[n−1]
j>i

�j(1 − xij), i ∈ [n − 1].

The additional multiplication with (2xin − 1) ensures a correct calculation of all distances through
the following constraints:

zin ≥ 0, i ∈ [n − 1]. (10)

Expanding and simplifying (9) yields

zin = (2xin − 1)

⎛
⎜⎜⎝S − �i

2
−

∑
j∈[n−1]

j<i

�jxji −
∑

j∈[n−1]
j>i

�j(1 − xij)

⎞
⎟⎟⎠ , i ∈ [n − 1]. (11)

To model the (COP) as an ILP we apply standard linearization and introduce new variables for
all products of ordering variables in (11):

yinji = xinxji, i, j ∈ [n − 1], j < i, yinji = xin(1 − xij), i, j ∈ [n − 1], j > i. (12)

Note that we have to introduce yinji for all i �= j as the variable i appears twice in the indices. Now
(11) can be further rewritten as:

zin = (2xin − 1)
S − �i

2
+

∑
j∈[n−1]

j<i

�jxji +
∑

j∈[n−1]
j>i

�j(1 − xij) − 2
∑

j∈[n−1]
j �=i

�jyinji, i ∈ [n − 1]. (13)

Moreover we use the following standard constraints to relate the orderings variables and their
products:

yinji ≤ xin, i ∈ [n], yinji ≤ 1 − xij, i, j ∈ [n], j > i, yinji ≤ xji, i, j ∈ [n], j < i,
yinji ≥ xin − xij, i, j ∈ [n], j > i, yinji ≥ xin + xji − 1, i, j ∈ [n], j < i.

(14)

In summary we obtain the following ILP model for the (COP) :

min
∑
i∈[n]

wizin

s.t. (6), (8), (13), (14),
xij ∈ {0, 1}, i, j ∈ [n], i < j,
yinji ∈ {0, 1}, i, j ∈ [n], i �= j.

In the following section we computationally compare an ILP approach based on this model with our
dynamic programming algorithm introduced in the previous section.

5. Computational experiments

We report the results of computational experiments with our dynamic programming algorithm and
ILP approach respectively. All computations were conducted on an Intel Xeon E5160 (Dual-Core)
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Table 1. Results obtained by our ILP approach on instances with regular department lengths using Gurobi 6.5 [37] restricted to one
thread on our machine with a time limit of 24 h. The running times are given in sec or in h:min:sec respectively.

Instance Lower bound Upper bound Gap in % Time B&B nodes

P15 189 189 0.0 30 15360
P17 675.5 675.5 0.0 1:59:00 2368737
P18 679.5 679.5 0.0 3:05:00 3241655
H_20 710 710 0.0 5:30:00 4767725
N25_05 368 368 0.0 17:00:00 3885648
H_30 645 1441 55.2 24:00:00 1593134
N30_05 973.5 3224.5 68.8 24:00:00 1514491
Am33_03 600.5 1898.5 86.4 24:00:00 106547
Am35_03 185.5 2132.5 91.3 24:00:00 210111
ste36.5 1444 1444 0.0 1:24:00 38781
N40_5 81 2772 97.1 24:00:00 42135
sko42-5 84 4059 97.9 24:00:00 27352

Table 2. Results obtained by our ILP approach on instances with large department lengths using Gurobi 6.5 [37] restricted to one
thread on our machine with a time limit of 24 h. The running times are given in min:sec or in h:min:sec respectively.

Instance Lower bound Upper bound Gap in % Time B&B nodes

P15L 148059.5 148059.5 0.0 1:08 24589
P17L 438935.5 438935.5 0.0 28:25 504935
P18L 589182.5 589182.5 0.0 24:51 225180
H_20L 245666 245666 0.0 2:43:41 1109189
N25_05L 401212.5 555504.5 27.7 24:00:00 3050435
H_30L 389374 754755 48.4 24:00:00 4860433
N30_05L 239436 935762.5 74.4 24:00:00 483913
Am33_03L 138929.5 1094984.5 87.3 24:00:00 322711
Am35_03L 24.5 1645539.5 100 24:00:00 44175
ste36.5L 813222.5 814001.5 0.1 24:00:00 662589
N40_5L 192379 2518555 92.4 24:00:00 535358
sko42-5L 67631 2363015 97.1 24:00:00 411416

with 2GBRAM, runningDebian 5.0 in 64-bitmode. The algorithmswere implemented inC (dynamic
programming algorithm) and Gurobi 6.5 (ILP) respectively. To generate (COP) instances we use
layout benchmark instances from the literature by simply choosing one department i as checkpoint
and deducing the (COP)weights from the pairwise weights as follows: wj = wij, j ∈ [n], j �= i. In
order to test the effect of varying department lengths on our approaches, we generated additional
instances using the same weights but substituting the original department lengths lying in the range
of 1–20 with random department lengths between 1 and 10,000. We add an L to the instance name
for indicating the instances with the new random department lengths. All instances considered can
be downloaded from http://tinyurl.com/layoutlib.

In Tables 1 and 2 we state the results of our ILP approach. For instances with up to 25 departments
the ILP succeeds in determining the optimal solution. For instances with a higher number of
departments (except from ‘ste36.5’) we observe quite large gaps even after 24h. The performance
of the ILP approach is hardly influenced by the department lengths as can be seen by comparing the
results in Tables 1 and 2.

In Tables 3 and 4 we state the results of our dynamic programming algorithm that determines the
optimal solution for all benchmark instances with short department lengths within seconds. As our
dynamic programming algorithm runs inO(n2 ·S ·maxi∈[n]{�i}), it is much slower on the benchmark
instances with large department lengths, where it is able to solve instances with up to 33 departments.
If the dynamic programming algorithm does not finish within the time limit, then it does not provide
a lower bound and hence also no global gap for the optimal solution.

http://tinyurl.com/layoutlib
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Table 3. Results obtained by our dynamic programming algorithm on instances with regular department lenghts. The running
times are given in sec.

Instance Optimum Time

P15 189 0.01
P17 675.5 0.02
P18 679.5 0.02
H_20 710 0.15
N25_05 368 0.03
H_30 1439 0.46
N30_05 3191.5 3.70
Am33_03 1879.5 0.55
Am35_03 2116.5 0.32
ste36.5 1444 1.73
N40_5 2747 0.64
sko42-5 3694 6.42

Table 4. Results obtained by our dynamic programming algorithm on instances with large department lengths. The running times
are given in min:sec or in h:min:sec respectively. The entries * indicate that the algorithm did not finish within the time limit of 24 h.

Instance Optimum Time

P15L 148059.5 47:45
P17L 438935.5 1:54:44
P18L 589182.5 3:58:42
H_20L 245666 1:32:45
N25_05L 554740.5 10:31:00
H_30L 752966 9:58:20
N30_05L 920622.5 16:10:33
Am33_03L 1078710.5 20:51:16
Am35_03L * *
ste36.5L * *
N40_5L * *
sko42-5L * *

Comparing our two approaches we observe that the dynamic programming algorithm is clearly
superior for all benchmark instances from the facility layout literature that only contain departments
with short lengths � ≤ 100. For instances with department lengths up to 10000 the dynamic
programming algorithm is still preferable although there already exist instances (see e.g. ‘ste36.5’) on
which the ILP yields clearly better results. Finally for instances with even larger department lengths
the ILP gradually outperforms the dynamic programming algorithm.

6. Conclusion

In this paper we proposed a new variant of a row facility layout problem and two exact algorithms for
solving it. The Checkpoint Ordering Problem (COP) is weakly NP-hard. It is both of theoretical and
practical interest andhas several important relations to otherwell-studied combinatorial optimization
problems. In our computational study we showed that the (COP) is hard to solve in practice for both
dynamic programming and ILP approaches.

It would be interesting to examine if the models, results and algorithms for scheduling on two
parallelmachines, which is a verywell-studied problem, can be used to obtain stronger approximation
results and/or to design stronger exact approaches for the (COP) in particular and layout problems
in general.
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