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Abstract

A wide range of health benefits have been ascribed to soya intake including a lowered risk of 

osteoporosis, heart disease, breast cancer, and menopausal symptoms. Because it is a hormonally 

active diet, however, soya can also be endocrine disrupting, suggesting that intake has the potential 

to cause adverse health effects in certain circumstances, particularly when exposure occurs during 

development. Consequently, the question of whether or not soya phyto-oestrogens are beneficial or 

harmful to human health is neither straightforward nor universally applicable to all groups. 

Possible benefits and risks depend on age, health status, and even the presence or absence of 

specific gut microflora. As global consumption increases, greater awareness and consideration of 

the endocrine-disrupting properties of soya by nutrition specialists and other health practitioners is 

needed. Consumption by infants and small children is of particular concern because their 

hormone-sensitive organs, including the brain and reproductive system, are still undergoing sexual 

differentiation and maturation. Thus, their susceptibility to the endocrine-disrupting activities of 

soya phyto-oestrogens may be especially high. As oestrogen receptor partial agonists with 

molecular and cellular properties similar to anthropogenic endocrine disruptors such as bisphenol 

A, the soya phyto-oestrogens provide an interesting model for how attitudes about what is 

‘synthetic’ v. what is ‘natural,’ shapes understanding and perception of what it means for a 

compound to be endocrine disrupting and/or potentially harmful. This review describes the 

endocrine-disrupting properties of soya phyto-oestrogens with a focus on neuroendocrine 

development and behaviour.
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A plant-based diet has many undeniable ecological and health benefits. As a food or food 

additive, soya is appealing because it is a complete protein that is cholesterol-free, lactose-

free, high in fibre and rich in complex carbohydrates, antioxidants and unsaturated fats. Soya 
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is also replete with phyto-oestrogens, which makes it a hormonally active food. For many, 

the consequences of this activity will be minimal, oreven potentially beneficial, but for 

others the endocrine-disrupting properties of soya should not be discounted and health 

practitioners should be more broadly aware of this phenomenon and potential outcomes. The 

pros and cons of a phyto-oestrogen-rich diet on many aspects of human health, including 

breast and prostate cancer, reproductive maturation and function, cardiovascular health, bone 

health and menopausal symptoms have been reviewed previously by myself and others(1–6). 

The present review specifically focuses on the endocrine-disrupting properties of soya 

isoflavones, particularly within the neuroendocrine system, and highlights our most recent 

findings along those lines.

Phyto-oestrogens are naturally occurring plant compounds that are structurally and/or 

functionally similar to mammalian oestrogens and their active metabolites(7). There are 

several phyto-oestrogen classes, but the most hormonally active are the phenolic compounds 

of which the isoflavones and coumestans are the most widely studied groups. Isoflavones are 

most abundant in soyabeans and other legumes but also found in berries, wine, grains, nuts 

and soya-fortified foods(8). Although present as inactive glycoside conjugates (containing 

glucose or carbohydrate moieties) and unconjugated (aglycone) forms in food, only the latter 

are bioactive. Fermented soya, such as tem-peh or miso, typically contains higher aglycone 

levels than other soya-based foods. Once consumed, isoflavones are rapidly metabolised and 

absorbed, entering systemic circulation predominantly as conjugates with limited 

bioavailability and bioactivity, leaving only a tiny fraction of the ‘free’ bioactive form in 

systemic circulation. Typically, metabolites are less bioactive than the parent compounds but 

equol, a metabolite of daidzein, is a notable exception(9). At best, only 30–50 % of 

individuals are capable of bioconverting daidzein to its more oestrogenic metabolite equol 

with vegetarians and individuals of Asian origin being most likely(10,11). Age and health 

status, particularly the use of antibiotics, can significantly impact the production and 

absorption of bioactive isoflavones, including equol.

Although they are structurally similar to anthropogenic endocrine-disrupting compounds 

(EDC) and behave similarly on numerous molecular and cellular targets, intake of soya 

phyto-oestrogens is broadly encouraged and regarded as healthy, while their synthetic 

counterparts are increasingly viewed with caution and met with repeated calls to ban or 

restrict their use (Fig. 1). This attitudinal discordance is almost entirely based on the source 

of the compounds (soya is ‘natural’, while synthetic chemicals are not) rather than the 

scientific evidence regarding their hormone-disrupting activities. While it is clear that for 

many people soya diets are a healthful option, particularly when meat and saturated fat 

intake is concomitantly reduced, a growing chorus of scepticism is cautioning that the health 

benefits popularly ascribed to soya may be overstated and minimally supported by robustly 

conducted, statistically sound scientific studies(12–14). It has also been recognised for nearly 

a century that phyto-oestrogens have endocrine-disrupting properties in vertebrates, 

including human subjects, and that exposure to these compounds may pose a risk to some 

groups, particularly infants and the unborn(15–19).
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Endocrine-disrupting activities of phyto-oestrogens in vertebrates and 

human subjects

An EDC is defined by the Endocrine Society as a compound that interferes with any aspect 

of hormone action(20). The word ‘interferes’ is important because many things can have 

hormone action as part of maintaining homeostasis and interacting with the environment, 

such as the simple act of eating or standing in sunlight. An EDC is a compound that 

interferes with the way in which the pancreas responds to a meal, or disrupts the vitamin-D-

producing capacity of sunbathed skin. In the case of isoflavones, the target of this 

‘interference’ is primarily thyroid hormone and oestrogen. Although a formal definition has 

not yet been established, the term neuroendocrine disruption has been used to broadly 

describe chemical impacts on endocrine-related brain development and function(21,22). In the 

case of phyto-oestrogens, the vast majority of research effort has concentrated on the 

reproductive neuroendocrine system, which includes the hypothalamic–pituitary–gonadal 

(HPG) axis. Importantly, neuroendocrine disruption isdistinct from, and should not be 

conflated with, neurotoxicity, which characterises processes contributing to neuronal cell 

death and related downstream consequences (e.g. dopaminergic cell death and Parkinson’s 

like symptoms) and peripheral neuropathies. Isoflavones are not neurotoxic.

That phyto-oestrogens are endocrine disrupting has been known since at least the 1940s 

when ewes grazing on clover rich pastures in Australia were observed to have abnormally 

high rates of infertility, abortion and reproductive abnormalities in their offspring(23–25). 

Consequently, management of phyto-oestrogen levels has been the subject of grazing/

feeding practices within the agricultural community for decades, including, most recently, in 

aquaculture(26,27). Phyto-oestrogens have proven to be potently endocrine disrupting for a 

wide range of vertebrates, including rodents(1,28), birds(29), cheetahs(30), multiple species of 

fish(31,32), and grazing mammals such as cattle, sheep and even the southern white 

rhinoceros(23,25,33).

Evidence of endocrine disruption by soya in human subjects also dates back decades. Soya 

has been known to be goitrogenic for nearly a century(34,35) necessitating the addition of 

iodine to soya infant formula and other soya-rich foods. Both genistein and daidzein potently 

block thyroxine synthesis by serving as alternate substrates and blocking thyroid peroxidase 

catalysed tyrosine iodination. Soya also decreases absorption of synthetic thyroid 

hormone(36) potentially necessitating higher doses in hypothyroid patients. Thus, for these 

and other patients at risk for clinical or subclinical hypothyroid, compensatory iodine intake 

is advisable if soya is part of the regular diet. Additionally, although research regarding the 

relationship between soya intake and thyroid levels during pregnancy is extremely 

limited(37), because thyroid hormone is essential for normal brain development, pregnant 

women regularly consuming soya should be particularly mindful of this endocrine-

disrupting property of soya.

Soya can also impact reproductive function in women. Suppression of circulating steroid 

hormone levels and attenuation of the preovulatory gonadotropin surge have been repeatedly 

observed and a 2009 meta-analysis concluded that isoflavone intake moderately increases 

cycle length and suppresses luteinising hormone and follicle-stimulating hormone levels(38). 
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A 2008 clinical case report described three women (aged 35–56 years) experiencing a suite 

of symptoms related to excessive soya intake (estimated to exceed 40 g/d), including 

abnormal uterine bleeding, endometrial pathology and dysmenorrhea, all of which resolved 

when soya intake was discontinued or reduced(39). Importantly, as for all EDC, timing of 

exposure is important when considering the potential for long-term effects. The youngest of 

the three patients had been on a soya-rich diet since age 14 years and was experiencing 

secondary infertility, a condition that resolved and resulted in a pregnancy once she cut back 

on her soya consumption. Of even greater concern is what might happen in infant girls who 

consume high levels of soya, while their reproductive systems are still developing. Exposure 

earlier in life may have more lasting effects because disruption of the organisational actions 

of hormones may produce permanent structural and/or functional changes(40).

The earliest evidence for developmental reproductive health effects came from two studies, 

conducted in the mid-1980s, which associated neonatal phyto-oestrogen exposure with 

thelarche before age 2 years in a population of Puerto Rican girls. A number of confounding 

factors, however, including the consumption of meat that had been fattened with potent 

oestrogens, including the notorious endocrine disruptor diethylstilbestrol, make the data 

problematic and difficult to interpret(41,42). A highly cited retrospective cohort study of 952 

women found that young women reared on soya-based infant formula (248 women) as part 

of a controlled, University of Iowa feeding study, reported longer menstrual bleeding and 

menstrual discomfort than those who were fed a non-soya based formula (563 women)(43). 

At the time the study was conducted, the women were too young to comprehensively 

examine pregnancy or fertility outcomes, but, now that nearly a decade has past, this area is 

ripe for reevaluation. Soya formula consumption has also been linked to a greater risk of 

developing uterine fibroids(44). A prospective study reported oestrogenised vaginal 

epithelium in female soya formula-fed infants, an important finding confirming soya infant 

formula is oestrogenic in human subjects(45). Other studies, however, have found no link 

between soya infant formula and developmental reproductive parameters, including breast, 

ovarian or testes volume(45,46), and impacts of soya formula intake and on age at menarche 

are mixed(47,48). That soya is hormonally active is irrefutable. Whether or not soya intake, 

particularly during infancy, can have long-term health effects remains the subject of debate, 

but parents should be made aware of possible oestrogenic effects if they choose to feed their 

infants a soya-based formula.

Mechanisms of endocrine disruption by isoflavones

EDC can act via a myriad of mechanisms but the most fundamental include: (1) mimicking 

the effects of natural hormones by acting as a ligand at their binding sites; (2) antagonising 

the effect of these hormones by blocking their interaction with their physiological binding 

sites; (3) reacting directly and indirectly with the hormone in question; (4) altering the 

natural pattern of synthesis/degredation of hormones; or (5) altering cellular hormone 

receptor levels(40,49,50). Isoflavones have been shown to interfere with oestrogen action via 

all of these. They also have other biological activities, which is not atypical as one of the 

hallmarks of EDC is that they simultaneously affect multiple hormonal systems, and act by 

multiple mechanisms. Genistein is thought to slow tumourigenesis, for example, via 

inhibition of protein tyrosine kinases and inhibition of DNA topoisomerases I and II, along 
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with other chemoprotective mechanisms(1,6,51). Phyto-oestrogens are also good anti-oxidants 

and anti-inflammatory agents.

The primary mode of isoflavone endocrine disruption is interference with oestrogen. At 

almost the same instant that a second subform of the nuclear oestrogen receptor (ER) was 

discovered (termed ERβ) it was recognised that isoflavones bind and activate transcription 

via both forms (ERα and ERβ), but generally have a higher relative binding affinity for 

ERβ(52–55). Potency estimates vary by assay, but most isoflavones bind nuclear ER far more 

readily than their synthetic endocrine-disrupting counterparts including bisphenol a(52). 

Exposure is also consistently higher, often orders of magnitude higher, making them one of 

the most significant EDC in the human landscape(1,56). Once bound, isoflavones act as 

partial agonists, with activity varying across tissue types and local levels of endogenous 

oestrogen. ER subtype distribution varies across tissues and cell types, particularly in the 

brain, changes over the lifespan, and is sexually dimorphic(57–59). Because ERα and ERβ 
are differentially distributed throughout the body and the brain, including neuroendocrine 

pathways, which coordinate reproductive function, that isoflavones are more bio-active via 

ERβ is functionally significant(60–64). ERα and ERβ regulate different aspects of 

reproduction, behaviour and neuroendocrine function across the lifespan, although their 

relative roles are more clearly elucidated in animal models than in human subjects, in some 

tissues than others and, in some cases, one sex than another(65–68). For example, ERβ in the 

paraventricular nucleus of the hypothalamus (PVN), a region important for the coordination 

of reproductive, social and stress-related behaviours, suppresses anxiety-related behaviours 

and enhances production of the neuropeptide oxytocin (OT)(69–71). ERβ is also expressed at 

higher levels than ERα in the basal forebrain, hippocampus, dorsal raphe and cerebral cortex 

in the adult(60,72,73), all brain regions critical to neuroendocrine function and mood-related 

behaviours. ERβ is particularly abundant in the prenatal brain and plays a key role in brain 

morphogenesis by affecting cortical layering and interneuron migration(73).

Once bound to ER, phyto-oestrogens can initiate transcription classically through 

interactions with the oestrogen response element or by binding early immediate genes, such 

as Jun and Fos(74). Steroid hormones, particularly oestrogens, can also initiate rapid, non-

genomic actions at the cell surface via a range of mechanisms, including the binding of 

specialised steroid membrane receptors or ion channel subunits(75–78). The vast majority of 

rapid actions are thought to originate at oestrogen-binding sites at the extracellular surface of 

the cell membrane, meaning that a potential EDC does not have to enter the cell to be active. 

Binding then activates second messenger pathways leading to cellular responses such as 

increased intracellular calcium or cAMP levels, or promoting nitric oxide release resulting in 

the stimulation of signal transduction pathways important for neuronal signalling, 

differentiation and other cellular processes(79). The best-known transmembrane ER, the G-

protein-coupled oestrogen receptor, was cloned as the orphan receptor GPR30 two decades 

ago and is now known to be capable of binding a wide range of EDC, including 

genistein(80). The functional significance of this pathway, or its disruption, has yet to be 

fully described but G-protein-coupled oestrogen receptor plays an important role in rapid 

vascular oestrogen signalling along with ERα and ERβ(81). Emerging data reveals that 

phyto-oestrogens have epigenetic activity and can alter activities of DNA and histone 
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methyltransferases, NAD-dependent histone deacetylases and other modifiers of chromatin 

structure(82–84).

Phyto-oestrogens have also been shown to interfere with the enzymes needed for steroid 

biosynthesis and/or degradation. Coumestrol, for example, attenuates the conversion of 

[3H]-estrone to [3H]-estradiol in vitro by inhibiting the enzyme 17β-hydroxysteroid 

oxidoreductase Type 1 in a dose-dependent fashion(85). Genistein, though weaker, has a 

similar dose-dependent inhibitory effect. In rats, genistein can alter folliculogenesis, an 

outcome postulated to result, at least in part, from dysregulation of steroidogenic 

enzymes(86). In porcine granulosa cells, genistein decreases the activity of cholesterol side-

chain cleavage enzyme (P450scc) and 3β-hydroxysteroid dehydrogenase(87). Genistein has 

also been characterised as a non-competitive inhibitor of 11β-hydroxysteroid dehydrogenase 

type 1, which produces bioactive glucocorticoids, such as cortisol, from inactive 

precursors(88). Disruption of aromatase and 5α-reductase by a number of phyto-oestrogens 

has also been demonstrated in vitro but this potential activity in mammalian tissues remains 

controversial(2). Disruption of biosynthetic/degradative enzymes could significantly alter 

local endogenous hormone levels but not manifest as a change in circulating hormone levels. 

This may be particularly important for brain and hormone-sensitive subregions such as the 

hypothalamus as growing evidence strongly suggests that neural cells have the capacity to 

synthesise steroid hormones de novo(89–91).

Another mechanism by which phyto-oestrogens can perturb steroid bioavailability and 

transport is by altering sex hormone-binding globulin synthesis and availability. Isoflavones 

have long been known to appreciably stimulate sex hormone-binding globulin production, 

particularly in individuals who have levels on the low range of normal(92). Heightened sex 

hormone-binding globulin levels are thought to be one mechanism by which soya may lower 

breast cancer risk because bioavailable levels of circulating oestrogens are concomitantly 

reduced(93). Similarly, suppression of circulating androgens, particularly dihydrotestosterone 

by equol, is hypothesised to be one way in which soya might protect against prostate 

cancer(51,94). Notably, a subset of studies have found no impact of isoflavones on circulating 

sex hormone-binding globulin or steroid hormone levels in human subjects (e.g.(95)). One 

found suppressed luteal oestrogen levels following increased soya intake, but only in women 

of Asian descent(96), indicating ethnicity and/or the capacity to produce equol could be an 

underappreciated factor-mediating interindividual variability in responsiveness(97,98).

Endocrine-disrupting effects of soya isoflavones on the adult 

neuroendocrine system

Impacts on the mature reproductive axis in human subjects and other vertebrates have 

already been summarised and include altered serum hormone levels and suppression of 

ovulation. Elevated urine levels of genistein and daidzein have been associated with 

idopathic infertility and lower semen quality in Chinese men(99), and a slightly lower 

percentage of normal sperm in US men whose partners were attempting pregnancy(100), but 

supporting evidence in other populations or species for effects on spermatogenesis is limited. 
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In contrast, the animal literature has explored a wider age range and a more diverse array of 

endocrine-disrupting effects.

Work in our laboratory focuses on neuroendocrine pathways underlying sexually dimorphic 

behaviours and, using a variety of animal models, we and others have shown that isoflavone 

intake interferes with oestrogen-mediated behaviours, including female sexual motivation. 

For example, consumption of a commercially prepared isoflavone supplement to adult 

female rats, at a dose that results in serum levels between those seen in Western and Asian 

(human) adults, attenuated lordosis (a reflexive posture indicating sexual receptivity) to the 

same degree as tamoxifen(101,102). The supplement also suppressed proceptive behaviours 

even more profoundly than tamoxifen suggesting that soya isoflavones can suppress female 

sexual motivation and solicitation (Fig. 2). Administration of genistein alone did not 

recapitulate these effects(103). Whether or not libido is altered in human subjects appears to 

be completely unknown. Remarkably, a Pubmed search with the keywords ‘soya’ and 

‘libido’ produced only nine published papers, not all of which were relevant. One was a case 

report describing a case of bilateral gynecomastia, erectile dysfunction and loss of libido in a 

60-year-old man, which resolved when he discontinued drinking three quarts of soya milk 

daily(104). Another reported a beneficial effect of soya protein dietary supplements on libido 

in post-menopausal women but there was an equally beneficial placebo effect suggesting 

that the soya effect was spurious(105). Further inquiry revealed no studies, which have 

tackled this question in younger populations, or with a large-enough sample size to achieve 

reasonably robust statistical power. Given that soya appears to have a consistently 

suppressive effect on circulating steroid hormone levels it is not implausible that libido may 

also be suppressed but this appears to be, by and large, an unanswered question.

Mood and anxiety-related behaviours may also be impacted by adult soya intake(106). In 

human subjects, nearly all studies along these lines have focused on post-menopausal 

women and evidence for improvement of mood is minimal and sporadic(107). Results across 

animal studies are mixed and sex dependent with females generally showing decreased 

anxiety and males showing heightened(108,109). This pattern tends to abrogate or reverse 

expected sex differences in assessments of anxiety-related behaviours(110) and appears to 

involve the neuropeptides OT and vasopressin (AVP). For example, male cynomolgus 

monkeys fed soya protein isolate containing 1·88 mg isoflavones/g protein over 18 months 

demonstrated higher frequencies of intense aggressive (67 % higher) and submissive (203 % 

higher) behaviours as well as a decreased proportion of time (68 % reduction) spent in 

physical contact with other monkeys(111). Male rats maintained on a diet containing 150 

μg/g genistein and daidzein displayed increased anxiety and elevated stress-induced plasma 

AVP and corticosterone levels(112). Increased hypothalamic AVP has also been reported in 

Sprague–Dawley rats fed a diet containing 1250 ppm genistein across the lifespan in a study 

run at a US Food and Drug Association research center(113). We found that the same 

isoflavone supplement found to suppress reproductive behavior and motivation in female 

rats (described earlier) abrogated the oestrogen-dependent up-regulation of OT receptors in 

the ventromedial nucleus of the hypothalamus and heightened ERβ expression levels in the 

PVN, an effect opposite to that of estradiol(102).
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Involvement of the PVN is consistent with both the oestrogen and thyroid-disrupting 

properties of soya, and the high potency of isoflavones at ERβ. The PVN, which contains 

little to no ERα but high levels of ERβ(114), is a primary site of OT and AVP production, 

peptide hormones important for social behaviour and the facilitation of sexual 

behaviour(115), as well as thyroid hormone releasing hormone and corticotropin-releasing 

hormone. Oestrogen-dependent stimulation of PVN OT and AVP production requires 

ERβ(116,117). OT then binds to its receptor throughout the brain, including the ventromedial 

nucleus, a nucleus critical for mediating the lordosis response in females(118). Isoflavone-

related effects on these and other oestrogen dependent systems in the adult rodent brain have 

previously been reviewed(109,119–121) but a concerted focus on OT/AVP systems in human 

subjects remains lacking.

Evidence for developmental neuroendocrine disruption in animals and 

human subjects

Neuroendocrine disruption by soya isoflavones in mature neuroendocrine systems is by and 

large reversible with dietary modification and thus, with the exception of some 

hypersensitive groups such as hypothyroid and oncology patients, soya likely poses no long 

term health risk and may even confer modest benefits. Of greater concern is that phyto-

oestrogens may interfere with the organisational role of oestrogen in the developing brain 

and reproductive system. Data from a diversity of animal models have repeatedly shown that 

manipulation of oestrogen during specific critical windows of development throughout 

gestation and early infancy leads to a myriad of adverse outcomes in the HPG axis including 

malformations in the ovary, uterus, mammary gland and prostate, early puberty, reduced 

fertility, disrupted brain organisation, and reproductive tract cancers(66,122–126). The 

disruptor diethylstilbestrol story also starkly illustrates the broad spectrum of sex-specific 

consequences on neuroendocrine systems following fetal oestrogen exposure(127,128). 

Although isoflavones and other EDC are far less potent than disruptor diethylstilbestrol, 

human exposure is ubiquitous and there is growing acceptance that EDC are contributing to 

adverse reproductive health trends in Western nations including median age at menarche, 

first breast development, and sexual precocity(40,129–131). Advanced pubertal onset in girls 

adopted from developing countries by Western parents supports a role for environmental 

factors(129). Emerging but controversial data suggest that EDC may also be shifting age at 

puberal onset in boys(132). Among men, sperm counts in the USA and Europe appear to have 

declined by approximately half over the past 50 years(133,134) with upwards of 30 % in the 

subfertile range in places like Denmark where exposure to persistent environmental 

pollutants is particularly high(135). A provocative but limited study associated increased 

incidence of hypospadias (malformation of the male external genitalia) with maternal 

vegetarianism(136) but this effect has not been replicated. Synthetic EDC which interfere 

with androgen biosynthesis or activity are also associated with disorders of male genital 

development(137,138) thus it is not implausible that equol may be endocrine disrupting in this 

regard. Increased prevalence of reproductive health disorders is likely not attributable to a 

single factor, not even a single environmental factor, but EDC are causal to some degree and 

isoflavones are hypothesised to play a contributing role(5,40,139–141).
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Disruption of reproductive tract development

The vast majority of studies exploring the impact of early life isoflavone exposure on HPG 

differentiation and function have used rodent models, with the compounds administered 

either prenatally to the pregnant dam or postnatally to the pups. This aspect of the literature 

has been extensively reviewed and will thus not be recapitulated in detail here but adverse 

outcomes in female rodents include disrupted timing of vaginal opening (pubertal onset), 

altered ovarian development, impaired oestrous cyclicity and ovulation, and disrupted HPG 

steroid feedback(1,2,5,142). We have recently shown, for example, that female rats reared on a 

soya-rich diet across the lifespan (gestation through adulthood) have earlier pubertal onset 

(defined as the day of vaginal opening in the rat), and a greater number of corpera lutea post-

puberty but took longer to establish regular oestrus cycles than their conspecifics on soya-

free diet. Cycle regularity then degraded with time and soya-reared animals had a greater 

number of cystic follicles in early adulthood(143). Notably, not all pathology is readily 

obvious. Emerging evidence suggests that the oviductal and uterine environments in mice 

developmentally exposed to human-relevant gensitein levels are not suitable to maintain 

pregnancy, which manifests as the incapacity of the uterus to support implantation and 

embryonic development(144). Moreover, embryo transfer experiments have shown that the 

uterus of genistein-treated mice is not capable of sustaining pregnancy even if the 

blastocysts arise from control mice(145). These data are consistent with effects seen in sheep 

and other species suggesting that developmental isoflavone exposure induces permanent 

changes in the function of the female reproductive tract that may be subtle but can result in 

complete infertility, particularly as the animal ages.

There is a surprising paucity of data on the impact of developmental isoflavone exposure on 

male neuroendocrine physiology (reviewed in(146)). There is some sporadic evidence in 

animal models that developmental isoflavone exposure affects testicular function, but many 

studies find no effects, which makes it challenging to draw definitive conclusions(4). A 

transformative pair of high-impact studies, which greatly contributed to health advisories in 

Europe, was conducted in marmosets. Twins were fed either soya or milk formula. Males on 

the soya diet had lower serum testosterone concentrations and higher numbers of Leydig 

cells then their milk-fed twins. As adults, the soya fed marmosets had larger testes and lower 

serum testosterone levels, demonstrating that the impacts were persistent(147,148), but 

fertility was not compromised. Two rat studies conducted using classical toxicological 

testing parameters and long-term multi-generational oral exposure protocols spanning 

gestation through adulthood linked genistein with abnormalities in spermatogenesis(149,150). 

One also found genistein-related alterations in sperm motility and a reduction in litter size 

accompanied by evidence of post-implantation embryo loss when the adult rats underwent 

fertility testing(149). Chronically exposed males have also been shown to develop mammary 

gland hypertrophy at doses at or above 11 mg/kg, and mammary gland hyperplasia at doses 

at or above 29 mg/kg (ductal/alveolar hyperplasia was observed in females as well)(151). 

This effect was confirmed in a subsequent study by a different research group even though 

exposure was restricted to the peri-natal period, suggesting that the sensitive period of 

exposure is pre-pubertal(152). The male mammary gland may be one of the most sensitive 

targets for endocrine disruption but is rarely examined in EDC studies, leading some to 

advocate for its inclusion in chemical test guideline studies and risk assessment(153,154).
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Disruption of brain sexual differentiation and neuroendocrine organisation

Work in our laboratory focuses on sexually dimorphic, oestrogen-sensitive hypothalamic 

systems and we have repeatedly shown that the sex-specific ontogeny of these systems is 

vulnerable to synthetic and naturally occurring EDC including soya isoflavones(1,121,155). In 

rodents, hormone mediated morphological and functional organisation within the 

neuroendocrine system occur during a series of well-defined critical periods spanning 

gestation through puberty(66,124,156). Although most sex differences are established during 

prenatal and neonatal development, in the rat new cells (neurons and glia) are added to 

sexually dimorphic nuclei during adolescence in response to steroid hormone 

treatments(157,158), demonstrating the long-term sensitivity of sexually dimorphic brain 

regions to steroid hormone-mediated signalling. Interference with the hormone-sensitive 

organisation of neuroendocrine pathways could result in irreversible developmental defects 

and disruption of sex-typical behaviours, emphasising that development is likely the most 

susceptible periods for EDC exposure over the lifespan. Although it does not readily transfer 

lactationally, genistein efficiently crosses the rat placenta and the bioactive aglycone form of 

genistein is present in the fetal brain at levels comparable to circulating levels in the 

dam(159,160). Moreover, the transfer of genistein to the brain from systemic circulation 

appears to be more efficient in prenatal animals than adults(161) demonstrating that it and 

other isoflavone phyto-oestrogens are capable of directly interfering with the organisation of 

neuroendocrine signalling pathways in the developing brain.

The sexually dimorphic brain region most frequently used as a biomarker of endocrine 

disruption in rats is the sexually dimorphic nucleus of the preoptic area (SDN-POA). The 

volume of the SDN-POA is enhanced by estradiol aromatised from perinatal, testicular 

androgen(124), is five to six times larger in males than females(162), and is thought to play a 

role in male reproductive behaviours and mate choice. Although both ERα and ERβ are 

expressed in the SDN-POA across the lifespan, ERα appears to play a dominant role in 

masculinising SDN-POA morphometrics(61,163,164), a process which has now been 

elucidated in detail and is largely complete by the second week of life(67,165). In rats, 

numerous studies have queried the extent to which soya isoflavones alter SDN-POA volume 

in both sexes and, while not always in complete accordance, the data are generally consistent 

with oestrogenic effects. For example, when administered prenatally through adulthood, 

genistein increases SDN-POA volume in males but not females(166). No enhancement, 

however, was observed in males exposed from birth through weaning(167) or in males 

exposed on only the first few days of life(168) suggesting that exposure must be ongoing to 

maintain the enlargement. Masculinising effects on female SDN-POA volume have only 

been observed following high-dose exposure(169) and some studies have not found genistein 

to be endocrine disrupting in the female rat SDN-POA, even at doses high enough to be 

uterotrophic(167,170).

An additional area of focus for our studies is the anterior ventral periventricular nucleus 

(AVPV), which, like the SDN-POA, is sexually differentiated by endogenous gonadal 

hormones during a series of pre- and peri-natal critical periods but is larger in females than 

males(171,172). The presence and density of the two ER subtypes varies across species but 

both are present in the rat(58). The AVPV is essential for coordinating the preovulatory 
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gonadatropin surge and plays a central role in female sexual behaviour(173–175). In human 

subjects, the neural machinery controlling gonadotropin pulsatility is functional by the end 

of the first trimester(176), while in rodents this system does not fully sexually differentiate 

until the first few days of the neonatal period(171). In male rodents, testicular androgen is 

aromatised to oestrogen in the brain, and it is this locally derived oestrogen, working 

primarily through ERα-dependent pathways, that is primarily responsible for defeminising/

masculinising the AVPV(67,177,178). At birth exogenous oestrogen administration can 

defeminise the female AVPV and surrounding structures thereby eliminating lordosis and 

the capacity for steroid-positive feedback. By extension, if endogenous oestrogen is blocked 

in males, either by castration, by aromatase inhibition, or antagonism of hypothalamic ER, 

the AVPV and surrounding structures fails to defeminise and the capacity to elicit lordosis 

and a gonadal surge remains. Therefore, interference with oestrogen at birth, in either sex, 

can result in the improper differentiation and function of the HPG axis across the lifespan.

We have shown that subcutaneous administration of 10 mg/kg genistein, a dose that is 

approximately equivalent to the total amount of isoflavones ingested by infants fed soya 

formula, over the first 4 d of life, advances vaginal opening and compromises the ability to 

maintain a regular oestrous cycle in female rats(179). This outcome was accompanied by an 

impaired ability to stimulate gonadotropin releasing hormone activity (as measured by the 

co-immunoreactivity of gonadotropin releasing hormone and Fos) following ovariectomy 

and hormone priming. We have further shown that neonatal exposure to 10 mg/kg genistein 

significantly decreases the density of kisspeptin immunoreactive fibres in the AVPV of 

female rats(180,181). Exciting work over the past decade has identified kisspeptin neurons as 

the primary gatekeepers of gonadotropin releasing hormone release in many species, 

including human subjects(182,183). Therefore, our findings suggest that disrupted 

organisation of kisspeptin signalling pathways may be a novel mechanism by which 

isoflavones and other EDC may induce a suite of HPG-related abnormalities, including 

advanced pubertal onset, irregular oestrous cycles and premature anovulation(184).

How much is too much: human isoflavone intake, metabolism and excretion

Ultimately risk of harm comes down to two primary factors: dose and timing of exposure. 

Undoubtedly, development is the most sensitive period for the endocrine-disrupting 

consequences of soya isoflavone exposure, thus it is not surprising that concerns have been 

expressed regarding the safety of soya-based infant formula. Initially developed as an 

alternative to bovine milk formulas for babies with milk allergy, use of soya infant formula 

in the USA is a popular choice and constitutes an estimated 25 % of the formula 

market(185–187). The safety of soya formula has been rigorously discussed from several 

perspectives, and a litany of review articles and position papers have been published on the 

subject(188–195). Societies including the American Academy of Pediatrics and the European 

Society for Pediatric Gastroenterology Hepatology and Nutrition Committee on Nutrition 

have issued guidelines recommending against the exclusive use of soya formula except in 

the rare cases of true milk allergy or lactose intolerance. The US National Toxicology 

Programme completed its most recent safety assessment of soya infant formula in 2010 

(monograph available at http://ntp.niehs.nih.gov/pubhealth/hat/noms/formula/index.html) 

and concluded there is ‘minimal concern for adverse developmental effects.’ For 
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comparison, this is the same level of concern initially expressed for bisphenol a until the 

Food and Drug Association elevated that advisory to ‘some concern’ in January, 2010 based 

on new data (and then subsequently lowered it again). Notably, the National Toxicology 

Programme could not issue a conclusive recommendation regarding potential long-term 

reproductive effects of soya infant formula largely because of limited and poor-quality 

human data. An apparent lack of adverse effects is one reason why so many consumers, 

clinicians and public health agencies consider regular use of soya formula to be safe, even 

beneficial. However, the absence of evidence is not evidence of safety so this problematic 

data gap regarding the long-term impacts of soya formula use remains in serious need of 

attention.

When considering the potential safety of soya formula, it is frequently argued that Asian 

populations have been consuming soya for centuries, with no obvious consequences. This 

argument fails to recognise, however, that exposure patterns differ in key ways between 

Asians consuming a traditional soya-rich diet and Caucasians eating a typical Western 

diet(185). This timing of exposure is critical. In a traditional Asian diet, soya consumption is 

moderate across the entire lifespan, but because isoflavones do not effectively transfer via 

lactation, exposure in breastfeeding infants is extremely low. By contrast, Western babies on 

soya infant formula have their highest exposures in the first year of life then exposure 

rapidly plummets. In that regard the two populations are not comparable because their 

exposure patterns during a critical window of development are so dramatically different. 

Other diet and lifestyle differences may also be confounding when evaluating the potential 

health benefits and risks of soya. For example, Asian populations on traditional diets eat less 

processed foods, considerably higher levels of seafood and lower levels of animal fat than 

Western populations.

So how much is too much? There is no ‘typical’ level of isoflavone intake as consumption 

patterns vary widely across populations, and geographic regions. For Asians, vegetarians and 

other groups in which soya is foundational to the diet, isoflavone consumption can be as 

high as 100 mg/d (intake range is about 0·3–1·5 mg/kg body weight)(6,192,196–198). Western 

diet intake estimates range from 1 to 3 mg/d(198–201). For their weight, infants exclusively 

fed soya-based formula have the highest mean daily consumption of total isoflavones, 

ranging from 6 to 9 mg/kg body weight per d in 4-month-old infants, an amount that is up to 

seven times higher than Asians consuming a traditional soya-based diet.

The isoflavone content of an array of foods and food products is now available via online 

databases (reviewed in:(202)) including one maintained by the USDA(203). Food isoflavone 

content varies widely, even in the same foods, because of local and/or seasonal differences in 

growing conditions so its difficulty to accurately estimate intake(198). Additionally, soya is 

found in upwards of 60 % of processed foods and ground meats(204). Textured soya protein 

(50–70 % soya protein) is used as a meat substitute or filler for hotdogs, hamburgers, 

sausages and other meat products(205,206), while soya protein isolate (90 % soya protein) is 

frequently used to enrich energy bars and sports drinks (particularly those advertising high 

protein levels), cereals, granola bars, infant formula, imitation dairy products, ice cream and 

cheese. Soya isoflavones and other phyto-oestrogens are also widely available as dietary 
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supplements(207,208), typically containing concentrations far higher than those found in 

food(209).

Not surprisingly, blood isoflavone levels also vary widely, and can be orders of magnitude 

different between individuals based on dietary preferences and individual differences in 

phyto-oestrogen absorption and metabolism(210–212). Blood genistein levels are generally in 

the range of 25 ng/ml for Asian women, slightly less for vegetarian women, and under 2 

μg/ml for US women(213). Isoflavones can pass from mother to fetus through the placenta, 

and have been found in human umbilical cord blood and amniotic fluid at levels comparable 

with concentrations seen in maternal plasma, demonstrating that fetal exposure can be 

significant(214). Infants on soya formula can have plasma levels exceeding 1000 ng/ml(209) 

which is 13 000–22 000 times higher than their own endogenous oestrogen levels, 50–100 

times higher than oestradiol levels in pregnant women, and 3000 times higher than 

oestradiol levels at ovulation(185,215,216). In contrast, infants fed cow’s milk formula or 

human breast milk have plasma isoflavone levels of 9·4 and 4·7 ng/ml, 

respectively(192,196,216). Notably, levels in infants and vegetarians easily far surpass, 

sometimes by several orders of magnitude, internal levels other endocrine disruptors of 

concern, including bisphenol a and phthalates(126).

Conclusions and recommendations

Soya isoflavones are clearly endocrine disrupting, but although they are similar to their 

synthetic brethren in terms of their cellular and molecular mechanisms of action on 

neuroendocrine structure and function, and the scope of adverse outcomes they can inflict, 

society embraces these compounds at the same time it rejects, often with vigour, exposure to 

their synthetic brethren. Thus, phyto-oestrogens both challenge our attitudes regarding EDC 

and highlight how profoundly the direction and interpretation of research and available data 

can be influenced by source. While some beneficial effects might be conferred by including 

moderate levels of dietary soya, particularly in adults eating a diet high in saturated fat and 

animal protein, the potentially adverse effects of these compounds for some groups are 

likely underappreciated. An abundance of animal data unequivocally demonstrates that soya 

isoflavone exposure, at doses and plasma concentrations attainable in human subjects, 

including soya-reared infants, can permanently alter the structure and function of 

neuroendocrine pathways in both sexes. Infants fed soya formula have the highest exposure 

to any non-pharmacological source of oestrogen-like compounds, and yet greater anxiety 

surrounds compounds like bisphenol a and the phthalates which have far lower potency on 

neuroendocrine targets and to which exposure is far lower. Although relatively few adverse 

effects have been reported, that is somewhat a consequence of lack of data rather than lack 

of measurable effects. Although unsatisfying, a parsimonious approach to soya intake is to 

follow the classic adage and consume in moderation. Development of dietary guidelines 

should consider the endocrine-disrupting properties of soya and other hormonally active 

foods, particularly for vulnerable groups such as pregnant women and hypothyroid 

individuals.
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Abbreviations

AVP vasopressin

AVPV anterior ventral periventricular nucleus

EDC endocrine-disrupting compounds

ER oestrogen receptor

HPG hypothalamic–pituitary–gonadal

OT oxytocin

PVN paraventricular nucleus

SDN-POA sexually dimorphic nucleus of the preoptic area
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Fig. 1. 
Structures of some well-known anthropogenic and naturally occurring endocrine-disrupting 

compounds. BPA, bisphenol A; DDT, dichlorodiphenyltrichloroethane; DEPH, di(2-

ethylhexyl)phthalate.
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Fig. 2. 
(Colour online) In ovariectomised, hormone replaced female rats, sexual behaviour is 

suppressed by a soya isoflavone supplement. (a) Lordosis is a hallmark receptive posture in 

the rat and the frequency of lordosis in response to male mounting, which can be induced in 

ovariectomised females with progesterone (P) and estradiol benzoate (E), but not P alone. 

(b) In the presence of E and P tamoxifen (E + T+) or a soya supplement (E + S+) 

significantly decrease lordosis in female rats. (c) Similarly, proceptive behaviour, including 

hopping and darting, is also suppressed in hormonally replaced female rats on tamoxifen (E 

+ T+) and, to an even greater degree, the soya isoflavone supplement (E + S+). *P ≤ 0·05; 

**P ≤ 0·01; means ± SEM. Figure adapted from Patisaul et al.(101)
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