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Purpose: Gliomas are rapidly progressive, neurologically devastating, largely fatal brain tumors.
Magnetic resonance imaging (MRI) is a widely used technique employed in the diagnosis and man-
agement of gliomas in clinical practice. MRI is also the standard imaging modality used to delineate
the brain tumor target as part of treatment planning for the administration of radiation therapy.
Despite more than 20 yr of research and development, computational brain tumor segmentation in
MRI images remains a challenging task. We are presenting a novel method of automatic image seg-
mentation based on holistically nested neural networks that could be employed for brain tumor seg-
mentation of MRI images.
Methods: Two preprocessing techniques were applied to MRI images. The N4ITK method was
employed for correction of bias field distortion. A novel landmark-based intensity normalization
method was developed so that tissue types have a similar intensity scale in images of different sub-
jects for the same MRI protocol. The holistically nested neural networks (HNN), which extend from
the convolutional neural networks (CNN) with a deep supervision through an additional weighted-
fusion output layer, was trained to learn the multiscale and multilevel hierarchical appearance repre-
sentation of the brain tumor in MRI images and was subsequently applied to produce a prediction
map of the brain tumor on test images. Finally, the brain tumor was obtained through an optimum
thresholding on the prediction map.
Results: The proposed method was evaluated on both the Multimodal Brain Tumor Image Segmen-
tation (BRATS) Benchmark 2013 training datasets, and clinical data from our institute. A dice simi-
larity coefficient (DSC) and sensitivity of 0.78 and 0.81 were achieved on 20 BRATS 2013 training
datasets with high-grade gliomas (HGG), based on a two-fold cross-validation. The HNN model built
on the BRATS 2013 training data was applied to ten clinical datasets with HGG from a locally devel-
oped database. DSC and sensitivity of 0.83 and 0.85 were achieved. A quantitative comparison indi-
cated that the proposed method outperforms the popular fully convolutional network (FCN) method.
In terms of efficiency, the proposed method took around 10 h for training with 50,000 iterations, and
approximately 30 s for testing of a typical MRI image in the BRATS 2013 dataset with a size of
160 9 216 9 176, using a DELL PRECISION workstation T7400, with an NVIDIA Tesla K20c
GPU.
Conclusions: An effective brain tumor segmentation method for MRI images based on a HNN has
been developed. The high level of accuracy and efficiency make this method practical in brain tumor
segmentation. It may play a crucial role in both brain tumor diagnostic analysis and in the treatment
planning of radiation therapy. Published 2017. This article is a U.S. Government work and is in the
public domain in the USA. [https://doi.org/10.1002/mp.12481]
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1. INTRODUCTION

Gliomas are rapidly progressive, neurologically devastating,
largely fatal brain tumors.1,2 Standard therapy consists of
maximal surgical resection followed by observation for
younger patients with tumors having good pathologic fea-
tures and concurrent radiation therapy and temozolomide
(TMZ) chemotherapy followed by adjuvant TMZ in high-
grade gliomas with poor prognostic features. In glioblastoma
this approach results in an overall survival of 27.2% at 2 yr
and 9.8% at 5 yr.3 Magnetic resonance imaging (MRI) is a

widely used technique employed in the diagnosis, manage-
ment, and follow-up of gliomas in clinical practice. Radiation
therapy treatment planning employs MRI as the standard
imaging modality used to delineate the brain tumor target fol-
lowing co-registration with CT simulation images. Due to the
high variation in brain tumor shape, size, and location, and
particularly to the subtle intensity changes of tumor regions
relative to the surrounding normal tissue, computational brain
tumor segmentation in MRI is still a challenging task, in spite
of more than 20 yr of research and development.1,4 Com-
pounding this is the understanding of the infiltrative nature of
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gliomas that precludes the accurate identification of subclini-
cal disease.5,6 Currently, in most clinical radiotherapy treat-
ment planning systems, manual contouring is the de facto
standard for tumor delineation. It requires an operator with
considerable skill and expertise in both tumor diagnostics
and in the handling of the specific treatment planning soft-
ware. Consequently, manual contouring is both time consum-
ing, and subject to large inter and intraobserver variability.
Semi or fully automatic brain tumor segmentation methods
could circumvent this variability in radiotherapy treatment
planning and could allow for the inclusion of advanced imag-
ing techniques that are more challenging to human interpreta-
tion, e.g., diffusion-weighted imaging, attenuated diffusion
coefficient maps, magnetic resonance spectroscopy, etc.
Comprehensive reviews of existing brain tumor segmentation
methods are provided by Mentz et al.1 and Bauer et al.2

Mentz et al. classified brain tumor segmentation methods
into generative probabilistic based and discriminative
approaches. Instead, we divided most brain tumor segmenta-
tion methods into semi and fully automatic groups.

For semiautomatic brain tumor segmentation, Guo,
Schwartz, and Zhao presented a method using active con-
tours,7 where an approximate region of interest surrounding
the tumor mass is initially manually contoured, after which a
combination of global and local active contour models are
utilized to segment the hyperintense tumor. Raviv et al.
developed a latent atlas-based approach for image ensembles
segmentation.8,9 A manual segmentation is required to initial-
ize level-set propagation. Hamamci and Unal reported a
method called “tumor-cut,”10 which combines the cellular
automata-based segmentation with graph-oriented methods.
A maximum diameter of the tumor needs to be drawn by an
expert to initialize segmentation. The basic set operations are
utilized to combine the segmented volumes from different
modalities. Moonis et al. applied the fuzzy connectedness
approach for tumor volume estimation, where seed points for
brain tumors need to be specified by the user.11 Njeh et al.
presented a graph cut distribution matching approach for
glioma and edema segmentation in 3D multimodal MRI
images.12

MRI-based fully automatic brain tumor segmentation falls
into several categories, including Bayesian and Markov ran-
dom field (MRF),13,14 atlas-based registration and combina-
tion of segmentation with registration,15–17 statistical model
of deformation,18 and support vector machine,19,20 respec-
tively. Recently, random forests (RF)21,22 and convolutional
neural networks (CNN)23,24 have drawn more interest. Some
researchers have successfully applied these two groups of
algorithms to brain tumor segmentation for MRI
images.4,22,25–30 Random forests represent machine learning
algorithms that allow for the tumor classification. Many deci-
sion trees are constructed during training, and a class is
assigned that claims the most votes of the individual trees
during testing. The strength of the RF methods includes both
its capability to naturally handle multiple class of classifica-
tions and its characteristics utilizing large number of different
features as the input vector. Tustison et al.22 employed RF for

supervised tumor segmentation based on the feature sets of
intensity, geometry, and asymmetry in multiple modality
MRI images. The probability maps are initially generated
from random forest models and are then used as spatial priors
for a refining probabilistic segmentation based on Markov
random field regularization. That algorithmic framework out-
performed other methods in the Multimodal Brain Tumor
Segmentation (BRATS) Benchmark challenge in the confer-
ence of MICCAI 2013.1 Unlike RF approaches, which need
variable specific features for classification, CNN-based meth-
ods have shown the advantages with respect to learning the
hierarchy of complex features from in-domain data automati-
cally.31 They are usually used in image recognition systems,24

but also recently in medical image analysis. CNN-based
methods have shown effectiveness in mitosis detection in
breast histologic images,32 and automatic pancreas segmen-
tation in CT images,33,34 and CT-based lymph node
detection,35etc. For brain tumor segmentation, numerous
CNN-based methods have been presented in both the
MICCAI BRATS 2014 challenge28,36,37 and BRATS 2015
challenge.4,27,38 Pereira et al.4 investigated using small 3 9 3
kernels to obtain deeper CNN, with data augmentation for
brain tumor segmentation. Havaei et al.39 investigated several
different CNN architectures for brain tumor segmentation,
which employ the most recent advances in CNN design and
training techniques, like Dropout regularization and Maxout
hidden units, and also incorporate the local shape of tumors
as well as their context. Zhao and Jia26 designed multiscale
CNN for brain tumor segmentation and diagnosis, where
both local and global features are incorporated in the image
segmentation tasks.

Even though CNN-based methods demonstrate a promis-
ing performance in brain tumor segmentation, there is still
room for improvement. Traditional standard CNN-based
methods are typically patch-based for both training and test-
ing. They predict the class of a pixel by processing an
M 9 M (e.g., 32 9 32) square patch centered on that pixel
and mainly focus on local features. In addition, to achieve a
satisfactory class prediction, CNN methods typically require
data augmentation to generate the large number of patches as
additional training sets. In this paper, we investigate the use
of holistically nested neural networks (HNN)40 for brain
tumor segmentation. The HNN was initially developed for
edge detection using deep CNNs. However, it has also been
shown to be effective in image object segmentation33,35. The
HNN method has two advantages over traditional CNN: (a)
holistic image training and prediction in an image-to-image
fashion, rather than patch-based, where each pixel has a cost
function; (b) multiscale and multilevel image feature learning
based on fully convolutional neural networks and deeply
supervised nets. Hence, it is not necessary for the HNN to
have a significant number of training datasets. Note that cur-
rently, the HNN is used for single object segmentation, in this
paper we focus on enhanced brain tumor segmentation only.

The other contribution included in this paper is landmark-
based image intensity normalization for MRI images. As
mentioned in the Refs. [1,4,41], MRI image intensity
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normalization plays a critical role in MRI image segmenta-
tion. In the patch-based CNN method for brain tumor seg-
mentation, Unlike CT images, where pixel intensity is
correlated with electron density, MRI image intensity does
not have a tissue-specific physical meaning and can vary, for
different image sets obtained with the same MRI protocol,
from same/different scanners, and from same/different imag-
ing centers. Most methods in the MICCAI BRATS chal-
lenges in 2013, 2014, and 2015 employed the histogram
matching method42 for MRI image intensity normalization.
Histogram matching strongly depends on the histogram
shape. In some cases, this method may not work well, due to
the large variability in the brain tumor in size as well as in
pixel intensities that may cause a different shape of the his-
togram. In this paper, a novel method for image intensity nor-
malization was developed that is simple and effective. The
white matter corresponding to the highest histogram bin was
chosen as the landmark. Segment linear transformation was
then performed to map this landmark to the standard intensity
normalization scale.

2. MATERIALS AND METHODS

2.A. Data

Twenty high-grade glioma (HGG) datasets from the
BRATS 2013 training data were utilized for training and test-
ing. These data were generated on a variety of scanners with
different field strengths. Testing data also include ten clinical
datasets with HGG from a locally developed database. Each
dataset was comprised of four MRI modalities: T1-weighted
(T1), contrast-enhanced T1-weighted (T1c), T2-weighted,
and T2-FLAIR images to provide complimentary biological
information. All images were co-registered to the same
anatomical reference using a rigid transform with a mutual
information similarity metric implemented in ITK.43 All
images were skull-stripped and interpolated to
1 9 1 9 1 mm3 voxel resolution.

2.B. Image preprocessing

In MRI image analysis, there are two common artifacts
that can affect the performance of image processing algo-
rithms. These are (a) the bias field distortion and (b) the non-
physical meaning of the MRI image intensities. The first
shows a slowly varying, inhomogeneous background in an
MRI image. This correction of bias field distortion has been
addressed extensively and many effective methods have been
developed.44,45 The latter artifact implies the lack of a tissue-
specific numeric meaning of the MRI pixel intensities. The
importance of handling such MRI intensity normalization
has been emphasized the literature.4,41,42 In the first step of
our image preprocessing, the bias field distortion in MRI
images were corrected using the well-known N4ITK
method.45 Then, the intensity of each MRI image was nor-
malized using a novel, landmark-based method we have
developed, to make the histogram of MRI images of each

modality more similar across different subjects. In this paper,
the landmark is chosen as the intensity value associated with
the highest histogram bin of each image (ignoring the black
background), which typically corresponds to the white matter
tissue since it occupies the largest volume of the brain. The
MRI image and the corresponding histogram of each MRI
protocol are shown in Fig. 1.

Once the landmark is generated for each MRI image, a
piecewise linear transform is performed by mapping the land-
mark intensity to the normalized intensity scale, as illustrated
in Fig. 2. Here, the segment linear transformation is chosen
due to its simplicity and effectiveness in producing similar
histograms of MRI images across different subjects. As men-
tioned in the original intensity normalization paper,42 other
transformation like using polynomial functions or split fitting
techniques to stretch histogram segments may also be used,
but it is out of the scope of the paper. The abscissa represents
the intensities in a test image where the landmark has inten-
sity value Im, and the ordinate denotes the normalized refer-
ence intensities. In addition, I1 is taken to be the smallest
intensity over the test image and I2 to be the intensity at the
99.9th percentile within the test image. Beyond 99.9 percent,
the intensities represent mostly outlier values. The landmarks
of Im obtained from the histogram of each image of a subset
of images are mapped to the normalized reference intensity
scale by linearly mapping the intensities from [I1, I2] to [r1,
r2] [e.g., (0,4095)], in such a way, the map I’m of Im on [r1, r2]
can be obtained. The landmark intensity rm on the reference
scale is then determined and fixed as the rounded mean of the
I’ms. For any test image, once parameters of I1, I2, and Im are
obtained, two corresponding slopes of the piecewise linear
transformation are calculated since parameters of r1, r2, and
rm on the reference scale are fixed.

2.C. Holistically nested neural networks (HNN)

Unlike traditional CNNs, which perform a pixel classifica-
tion prediction using patch-based approaches, as shown in
Fig. 3(a), and make use of the local correlation between the
intensities of that pixel and adjacent pixels, the HNN-based
method performs learning and prediction in an image-to-
image fashion, by combining multiscale and multilevel hierar-
chical intensity representations of the image. HNN is an
extension of traditional CNNs and is able to produce predic-
tions from multiple scales. The HNN architecture comprises
a single-stream deep network with multiple side outputs, as
shown in Fig. 3(b), and each corresponds to one image scale.
Each side output is associated with one side-output layer,
which has a separate classifier. An additional weighted-
fusion layer is added to the HNN architecture to unify the
multiple side outputs. The fusion weight parameters are
learned simultaneously in the training step. In this paper, a
holistic image segmentation method employing the holisti-
cally nested neural networks40 was present for brain tumor
segmentation in MRI images, wherein both training and test-
ing take 2D MRI image slices as input. The HNN was ini-
tially developed for edge detection using deep CNNs. It has
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also been demonstrated that it is also effective in image object
segmentation.33–35 The paper follows the same notation as
utilized in the HNN reference paper.34,40

The HNN formulation: The training data are denoted as
S ¼ Xn; Ynð Þ; n ¼ 1; � � � ;Nf g; where Xn denotes the input
MRI image consisting of four MRI protocols, as previously
mentioned in Section 2.A., and Yn ¼ y nð Þ

j ; j ¼ 1; � � � ; Xnj j
n o

;
y nð Þ
j 2 0; 1f g denotes the corresponding ground truth of the
brain tumor for image Xn. In the training data, positive sam-
ples represent pixels of brain tumor and negative samples
represent nontumor pixels. Suppose the collection of all stan-
dard CNNs network layer parameters is denoted as W, and we
have K side-output layers with the corresponding weights
denoted by w ¼ w 1ð Þ; � � � ;w Kð Þ� �

. We then define the objec-
tive function asFIG. 2. Illustration of the landmark-based MRI intensity normalization.

(a) (b)

(e) (f)

(g) (h)

(c) (d)

FIG. 1. One slice of MRI images with different sequences from the BRATS 2013 one HGG patient data. (a) T1 contrast enhanced image, (b) T1-weighted image,
(c) T2 Flair image, (d) T2-weighted image; Corresponding histograms (e) obtained from T1c, (f) from T1, (g) from T2 Flair, and (h) from T2.
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Lside W ;wð Þ ¼
XK
k¼1

akl
kð Þ
side W ;w kð Þ

� �
;

where l kð Þ
side denotes the image-level loss function for the kth

side-output. In the image-to-image fashion training, the loss
function is computed over all pixels in a training image Xn

and corresponding ground truth Yn. There is a heavy bias
toward nontumor pixels in a typical MRI image with brain
tumor. Therefore, to balance the loss between object and
nonobject classes, an additional trade-off parameter b is
introduced by Xie and Tu.40 Thus, a class-balanced cross-
entropy loss function can be used in the above objective
function:

l kð Þ
side W ;w kð Þ

� �
¼ �b

X
j2Yþ

log Pr yj ¼ 1jX;W ;w kð Þ
� �

�

1� bð Þ
X
j2Y�

log Prðyj ¼ 0jX;W ;w kð ÞÞ

where b ¼ Y�j j= Yj j and 1� b ¼ Yþj j= Yj j. Y�j j and Yþj j
denote the ground truth set of negative and positive samples,
respectively. Pr yj ¼ 1jX;W ;w kð Þ� � ¼ r a kð Þ

j

� �
2 0; 1½ � is

computed on the activation value at each pixel j using the sig-
moid function r �ð Þ: At each side-output layer, a single object
prediction map ŶðkÞ

side ¼ r ÂðkÞ
side

� �
is produced, where

ÂðkÞ
side � aðkÞj ; j ¼ 1; � � � ; jY j

n o
are activations of the side-out-

put of layer k. An additional weighted-fusion layer is then
added to the network architecture to combine side-output pre-
dictions. The fusion weights are learned simultaneously dur-
ing the training step. The final loss function at the fusion
layer is defined as

Lfuse W ;w; hð Þ ¼ Dist Y ; Ŷ fuse
� �

;

where Ŷfuse � r
PK

k¼1 hkÂ
ðkÞ
side

� �
with h ¼ h1; � � � ; hKð Þ being

the fusion weights. DistðY ; ŶfuseÞ represents the distance

between the fused predictions Ŷfuse and the ground truth label
map Y, which is set to be a cross-entropy loss. Finally, the
overall objective function can be minimized using the
stochastic gradient descent approach:

W ;w; hð Þ� ¼ argmin Lside W ;wð Þ þ Lfuse W ;w; hð Þ� �

In testing, for any given image X, tumor map predictions
from both the weighted-fusion layer and the side-output lay-
ers are obtained:

ðŶfuse; Ŷð1Þ
side; � � � Ŷ ðKÞ

sideÞ ¼ HNNðX; ðW ;w; hÞ�Þ, where HNN
(�) denotes the object maps produced by the network. The
final unified output is then produced by a further weighted
averaging of all these generated prediction maps. ŶHED ¼
AverageðŶfuse; Ŷ ð1Þ

side; � � � Ŷ ðKÞ
side). In this work, we take the Ŷfuse

as the final prediction map. An example is shown in Fig. 4.

2.D. Post-processing

To produce binary segmentation results from the predic-
tion map, a simple thresholding technique is applied. The
optimal threshold value is set to maximize the mean DSC
between the binary segmentation and the ground truth of the
two training folds. Small connected components that are
below a certain volume are discarded.

FIG. 3. Illustration of neural network architectures: (a) Traditional CNN architecture; (b) HNN architecture.
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3. RESULTS

In this section, the performance of the proposed HNNs-
based approach for brain tumor segmentation in MRI images
was evaluated. As we mentioned earlier, the focused was on
the enhanced tumor segmentation in this work, since the
HNN is currently developed for single object segmentation,
and is not able to classify the whole-tumor region into four
classes: necrosis, edema, nonenhancing tumor, and enhanc-
ing tumor. The evaluation was performed on the 20 data from
the BRATS 2013 training datasets using twofold cross-valida-
tion. These 20 HGG data are divided into two folds, each one
contains ten cases. Segmentation results are produced on one
fold by the HNN which was then trained on the other fold.
Manual-enhanced tumor delineations by anonymous human
experts were taken as ground truths.1 Metrics of dice similar-
ity coefficient (DSC)46 and sensitivity were then calculated.
DSC is commonly utilized to measure the similarity between
results from manual and automatic segmentation methods,
and is defined as

DSC A;Bð Þ ¼ 2 A \ Bj jð Þ
Aj j þ Bj jð Þ ;

where A represents the result from automatic segmentation
method and B represents the result from manual segmenta-
tion, and Aj j denotes the number of voxels in image A with
value 1.

The DSC value is 1 when the two segmentation results are
identical and 0 when they are completely disjoint.

Sensitivity is usually used to measure fraction of positives
that are correctly identified by a certain segmentation
method. It is defined as

Sensitivity ¼ TP
TPþ FN

;

where TP represents the number of true positive and FN is
the number of false negative. Measurements from the pro-
posed method were compared with the popular fully convolu-
tional networks (FCN) method.47,48 The results of
comparison are shown in Table I. It is shown that the HNN-
based method outperformed the FCN method, on the BRATS
2013 training datasets. Note that the FCN implementation we
adopted is based on the FCN-8s network, which is publicly
available at http://fcn.berkeleyvision.org. The data fed into
the FCN method are those after two-step preprocessing as
described in Section 2.B.

In Fig. 5, an example of the segmentation of one HGG
patient from BRATS 2013 datasets is presented.

In addition, the proposed method was used to evaluate
clinical data where the HNN was trained using the same
BRATS 2013 training data. Ten patient datasets were ran-
domly chosen with HGG from a locally developed database.
Like BRATS datasets, each patient dataset consisted of four
modalities: T1c-, T1-, T2-, and Flair-weighted images.

(a)

(d) (e) (f)

(b) (c)

FIG. 4. Illustration of output prediction maps. (a) one slice of the T1c component of input MRI image; and corresponding prediction maps (b) from the first
side-output layer; (c) from the second side-output layer; (d) from the third side-output layer; (e) from the 4th side-output layer; (f) from the fusion layer.
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Figure 6 shows an example, and Table II lists the measure-
ments of DSC and sensitivity of the proposed HNN-based
method, and comparison with the FCN method. Note Ground
truths in the performance evaluation were manually contoured
by a clinical radiation oncologist.

According to the results shown in Table II, both DSC and
Sensitivity of the proposed HNN method and the FCN
method, on ten patient sets with HGG from a clinical data-
base were improved relative to those of the BRATS 2013
datasets. One reason might be the difference of image quality
between two datasets. The other reason could be the differ-
ence in the ground truth. Different observers have different
preferences in manually contouring ground truth and these
sometimes show significant variances, even on same datasets.
The proposed HNN method outperformed the FCN method
in terms of both the DSC and sensitivity.

The proposed HNN-based method is implemented based
on the HED system40 using the publicly available Caffe plat-
form,49 and is executed on a DELL WORKSTATION T7400
with a quad-core 2.66 GHZ Xeon CPU, with 32 GB memory
under the CentOS 6.6 Linux operating system. A GPU NVI-
DIA Tesla K20c with 5 GB device memory was used. The
program takes around 10 hr for training with 50000 itera-
tions, and takes only around 30 s for testing of a typical
image set with a size of 160 9 216 9 176. In efficiency, the
proposed HNN-based method outperforms most CNN-based
methods.1,4,36,37 Pereira reports an average running time of
8 min for one BRATS 2013 data,4 on an Intel Core i7
3.5 GHz machine, using a GPU NVIDIA GeForce GTX 980.
The difference in running times may be due to the processing
of substantial number of patches in their method. In addition,
their method adopted a different network architecture, which
has more deeper layers while the proposed method only has
five stages with a trimmed VGGNet network.

4. DISCUSSION

The entire network of the HNN method is fine-tuned from
initialization based on a pretrained model VGGNet on Ima-
geNet.50 In this manner, multiscale and multilevel image fea-
tures can be efficiently generated due to the deep architecture

TABLE I. Performance comparison of enhancing tumor segmentation
between the proposed HNN-based method, and the FCN method, on the
high-grade training data from the BRATS 2013.

Method DSC Sensitivity

FCN 0.61 0.65

Proposed HNN-based 0.78 0.81

(a) (b)

(e) (f) (g)

(c) (d)

FIG. 5. Illustration of the enhanced tumor segmentation using our proposed HNN method on one HGG patient from BRATS 2013 datasets. The four images in
the first row shows the MRI modalities. (a) T1c, (b) T1, (c) T2, (d) Flair. Images in the bottom row from left to right are (e) prediction map, (f) final binary seg-
mentation after optimal thresholding on prediction map, and (g) ground truth where light blue color represents enhanced tumor. [Color figure can be viewed at
wileyonlinelibrary.com]
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derived from the VGGNet. Unlike the traditional CNN net-
works where data augmentation is a common procedure to
improve prediction accuracy,4,39 the HNN does not require a
large number of training datasets. In our experiments, the
HNN model was trained on ten data from the BRATS 2013
datasets and can be effectively applied to segmentation on
clinical datasets.

We followed the implementation of the original HED sys-
tem.40 The final network architecture has five stages, with
strides of 1, 2, 4, 8, and 16, respectively, all nested in the
trimmed VGGNet. In each stage, the final convolutional layer
is connected to one side-output layer with corresponding
receptive field size. In addition, the same hyperparameters as
the HED system are used, which include the learning rate of
1e-6, momentum of 0.9, the loss-weight ak of 1 for each side-
output layer. The final fusion layer weights after network
training convergence are h ¼ 0:19967; 0:20004; 0:20070;ð
0:20059; 0:20078Þ.

As for the image intensity normalization, in our imple-
mentation, we mapped the intensity scale of a given test MRI
image to intensity range from 0 to 4095 via a piecewise linear
transformation, in such a way there is less information loss
during intensity normalization. The slices of a three-dimen-
sional MRI image were saved as a series of JPEG files with
intensity scaled to range between 0 and 255. These JPEG
files were finally fed into the Caffe platform. Pereira et al.4

reported that the metrics of DSC and sensitivity from the
method (patch-based CNN) had obtained a mean gain of
4.6% by preprocessing using Nyul’s intensity normaliza-
tion.42 It is shown that in MRI application, CNN-based clas-
sifiers improved performance after intensity normalization.
The performance difference of the proposed HNN-based
method (image-to-image fashion, multiscale CNN) before
and after intensity normalization will be further investigated
in the future.

5. CONCLUSIONS

In this paper, a novel automatic brain tumor segmentation
method based on holistically nested neural networks (HNN)
has been described. Two preprocessing techniques, namely
Bias Field Inhomogeneity Correction and Intensity Normal-
ization, were first applied to MRI images. Multiscale and
multilevel hierarchical image features were learned through

(a) (b)

(e) (f) (g)

(c) (d)

FIG. 6. Illustration of the enhanced tumor segmentation using proposed HNN method on clinical data from a local database where the HNN is trained on BRATS
2013 datasets. (a) T1c, (b) T1, (c) T2, (d) Flair, (e) prediction map, (f) binary segmentation, and (g) ground truth. [Color figure can be viewed at wileyonlinelibrar-
y.com]

TABLE II. Performance evaluation of the proposed HNN-based method, and
comparison with the FCN method on ten clinical datasets with HGG from a
local database.

Method DSC Sensitivity

FCN 0.67 0.70

Proposed HNN-based 0.83 0.85
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the HNN training. Unlike the traditional CNN methods which
are patch-based and mainly focus local features, the HNN
method performed both training and prediction based on
holistic image-to-image fashion.

The performance of the proposed HNN method was evalu-
ated on 20 HGG BRATS 2013 training datasets and ten
patient datasets with HGG from a clinical database. A dice
similarity coefficient and sensitivity of 0.78 and 0.81 for the
BRATS 2013 data, 0.83 and 0.85 for clinical data have been
achieved, respectively. Thanks to the landmark-based inten-
sity normalization technique, the HNN training model can
also be effectively utilized for testing clinical HGG data. The
proposed method outperformed the FCN method based on a
quantitative comparison. Note that the dice coefficient and
sensitivity of the enhanced tumor segmentation produced by
the state-of-the-art CNN methods are 0.73 and 0.80,39 and
0.77 and 0.81,4 respectively, on the BRATS 2013 Challenge
data. Unfortunately, the HNN-based method focused only on
single object segmentation, and does not have access an
online evaluation system. We are extending the HNN-based
method from single object segmentation to simultaneous
multiple object segmentation. In the future, the application of
the HNN-based method on the Challenge data will be investi-
gated so that a comprehensive comparison with the state-of-
the-art CNN methods can be performed. Other applications
of the HNN-based method like organ-at-risk in head and neck
images will also be investigated. In efficiency, the HNN
method is built on top of the HED system,40 due to the effi-
cient implementations of both the Caffe platform49 and the
HED system,40 this method takes approximately 30 s to seg-
ment the enhanced brain tumor in a reference dataset. Both
increased accuracy and efficiency make the HNN a very prac-
tical segmentation method which may play an important role
in both diagnosis and radiation therapy treatment planning.
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