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Background: Deep learning methods for radiomics/computer-aided diagnosis (CADx) are often
prohibited by small datasets, long computation time, and the need for extensive image preprocessing.
Aims: We aim to develop a breast CADx methodology that addresses the aforementioned issues by
exploiting the efficiency of pre-trained convolutional neural networks (CNNs) and using pre-existing
handcrafted CADx features.
Materials & Methods: We present a methodology that extracts and pools low- to mid-level features
using a pretrained CNN and fuses them with handcrafted radiomic features computed using conven-
tional CADx methods. Our methodology is tested on three different clinical imaging modalities (dy-
namic contrast enhanced-MRI [690 cases], full-field digital mammography [245 cases], and
ultrasound [1125 cases]).
Results: From ROC analysis, our fusion-based method demonstrates, on all three imaging modalities,
statistically significant improvements in terms of AUC as compared to previous breast cancer CADx
methods in the task of distinguishing between malignant and benign lesions. (DCE-MRI [AUC = 0.89
(se = 0.01)], FFDM [AUC = 0.86 (se = 0.01)], and ultrasound [AUC = 0.90 (se = 0.01)]).
Discussion/Conclusion: We proposed a novel breast CADx methodology that can be used to more
effectively characterize breast lesions in comparison to existing methods. Furthermore, our proposed
methodology is computationally efficient and circumvents the need for image preprocessing. © 2017
American Association of Physicists in Medicine [https://doi.org/10.1002/mp.12453]
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1. INTRODUCTION

Diagnostic mammography, breast ultrasound, and dynamic
contrast-enhanced magnetic resonance imaging are different
imaging modalities used to assess suspicious breast abnor-
malities during clinical diagnostic workup. The interpretation
of these images by radiologists yields whether a lesion is
benign or malignant, potentially avoiding unnecessary biop-
sies. In order to assist radiologists in the interpretation of
diagnostic imaging, computer-aided diagnosis (CADx) tech-
niques continue to be developed to potentially improve the
accuracy of evaluating suspicious breast lesions.1

In the 1990s, early forms of convolutional neural networks
(CNNs) were introduced for CADx by learning imaging features
directly from regions of interest (ROIs) without explicit manual
intervention.2,3 Recent advances in technology have led to the
widespread use of deep learning methods that use deeper and
more advanced CNN architectures for general computer vision
tasks. Although CNNs typically rely on massive datasets for
training and are thus often intractable for CADx, it has been
shown that standard transfer learning techniques like fine-tuning
or feature extraction based on ImageNet-trained CNNs can be
used to reduce the need for larger datasets.4,5 As a result, deep
learning techniques have exhibited strong predictive perfor-
mances on CADx tasks without requiring massive datasets.6,7

However, challenges remain in developing deep learning
methods for characterizing medical images. Methods are still
reliant on extensive image preprocessing, are hindered by

heterogeneous data sources, and often suffer from long train-
ing times, leading to inefficient use of data for validation.

To that end, we present a methodology that extracts and
pools low- to mid-level features using a pretrained CNN and
integrates them with handcrafted radiomic features computed
using conventional CADx methods. Our methodology
demonstrates strong performances in the task of estimating
the probability of breast lesion malignancy across three sepa-
rate imaging modalities without the need for preprocessing or
long training times.

2. CLINICAL DATASETS

Benign and malignant breast lesion classification was per-
formed on three clinical datasets: full-field digital mammogra-
phy (FFDM), ultrasound, and dynamic contrast-enhanced
MRI (DCE-MRI). The three datasets were retrospectively col-
lected under HIPAA-compliant Institutional Review Board
protocols. Lesions were annotated as either benign or
malignant based on pathology or radiology reports. Table I
summarizes properties of the three datasets, including the
number of distinct lesions and the number of regions of
interest (ROIs).

2.A. Mammography dataset

The FFDM dataset contained 245 unique breast lesions
(patients) presented through 739 ROIs, on images
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acquired using a General Electric Senographe 2000D.8

There existed multiple images per lesion, and thus multi-
ple ROIs of each lesion, yielding a database with 328
benign and 411 malignant ROIs. The ROI dimensions
were uniformly 512 9 512 with a pixel size of 0.1 mm
(Table I).

2.B. Ultrasound dataset

The breast ultrasound dataset contained 1125 unique breast
lesions (patients) presented through 2393 regions of interest
(ROIs), selected from the images acquired using a Philips
HDI5000 scanner.9,10 The ultrasound ROIs were characterized

TABLE I. Properties of FFDM, ultrasound, and DCE-MRI datasets. The table includes the total number and malignant and benign number of distinct lesions and
ROIs. ROI and average pixel sizes for each dataset are also provided. FFDM dataset contained constant-size ROIs, while ultrasound and DCE-MRI datasets con-
tained ROIs of different sizes. Their range is shown in the table.

Imaging
modality

Total # of
lesions

# of benign
lesions

# of malignant
lesions

Total # of
ROIs

# of benign
ROIs

# of malignant
ROIs ROI size range

Average pixel
Size

FFDM 245 113 132 739 328 411 512 9 512 0.10 mm

Ultrasound 1125 967 158 2393 1978 415 100 9 100-300 9 400 0.10 mm

DCE-MRI 690 212 478 690 212 478 48 9 48 – 126 9 126 0.69 mm

FIG. 1. Lesion classification pipeline based on diagnostic images. Two types of features are extracted from a medical image: (a) CNN features with pretrained
CNN and (b) handcrafted features with conventional CADx. High and low-level features extracted by pretrained CNN are evaluated in terms of their classification
performance and preprocessing requirements. Furthermore, the classifier outputs from the pooled CNN features and the handcrafted features are fused in the eval-
uation of a combination of the two types of features.
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as benign solid, benign cystic, or malignant. There existed
multiple ROIs of each lesion. Of these ROIs, 880 were benign
solid, 1098 were benign cystic, and 415 were malignant; the
ROIs had varying dimensions and resolutions, with the aver-
age pixel size being approximately 0.1 mm (Table I).

2.C. DCE-MRI dataset

The breast DCE-MRI dataset consisted of 690 breast mass
lesions with 690 ROIs. The DCE-MR images were acquired over
the span of ten years, from 2006 to 2016, with either 1.5 Tor 3 T
Philips scanners with T1-weighted spoiled gradient sequence.

Gadodiamide was used as a contrast agent. Each lesion was repre-
sented by a single ROI, resulting in 212 ROIs containing a benign
lesion and 478 ROIs containing a malignant lesion (Table I).

DCE-MRIs are unique compared to ultrasound and FFDM
scans. DCE-MRIs are 4D data that include volumetric and
temporal components. Since the pretrained CNNs require a
2D ROIs input into three channels, a decision on what slice
of the entire volume and what time point to use for ROI selec-
tion. For our dataset, ROIs were selected around each lesion
on a transverse slice in the area of the lesion center (some
center slices had a biopsy clip and were avoided) at the pre-
contrast time-point (t0) and the first two postcontrast time-

FIG. 2. Architecture of VGG19 model. It takes in an image ROI as an input. The model comprises five blocks, each of which contains two or four convolutional
layers and a max-pooling layer. The five blocks are followed by three fully connected layers. Features are extracted from the five max-pooling layers, average-
pooled across the channel (third) dimension, and normalized with L2 norm. The normalized features are concatenated to form the CNN feature vector. [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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points (t1, t2). The ROI size was chosen based on the maxi-
mum dimension of each lesion and held constant across DCE
time-points. The smallest ROI size was set to 48 9 48 pix-
els, to match pretrained CNN requirements on the minimal
input ROI size.

The three databases were individually utilized to extract
CNN and handcrafted features for the task of classifying
lesions as benign or malignant. Figure 1 schematically
shows the classification and evaluation process of our
methodology.

3. DEEP NEURAL NETWORK FEATURES

CNN features were extracted from the three datasets with
the publicly available VGG19 model,11 pretrained on Ima-
geNet.12 The CNN features were further used to train classi-
fiers evaluated as described in Section 5. The architecture of
the VGG19 model includes five stacks – with each stack con-
taining two or four convolutional layers and a max-pooling
layer – followed by three fully connected layers. The VGG19
architecture and CNN feature-extraction pipeline is illustrated
in Fig. 2. VGG19 takes in an input to three RGB chan-
nels (Fig. 3). For the FFDM and ultrasound datasets, the
ROIs were simply duplicated across the three channels since
they were grayscale. For the DCE-MRI dataset, ROIs
extracted at the precontrast (t0) and first (t1) and second (t2)
postcontrast DCE time-points were input to the three
channels.

3.A. Pooled features

CNN features were extracted from each of five max-pool
layers. Using a method similar to the one proposed by Zheng
et al.,13 they were then average-pooled14 along spatial dimen-
sions, resulting in five feature vectors. Each of the five vec-
tors were individually normalized with the Euclidean norm15

and concatenated to form a final CNN feature vector, which
was then normalized again.

It should be noted that the DCE-MRI and ultrasound data-
sets contained image ROIs of varying sizes. Typically, when
extracting features from images of varying sizes, some form of
preprocessing or resizing is necessary in order to ensure the
extracted features correspond to the same spatial information
across all images. However, by average pooling across the lay-
ers, the dimensionality of the features is reduced while pre-
serving the spatial structure of the extracted feature maps.
Pooling thus removes the need for preprocessing by producing
feature vectors of identical length regardless of original input
dimensions. Consequently, the original ROIs of varying sizes
were directly input into VGG19 without any preprocessing.

3.B. Fully connected features

For comparison, CNN features were also extracted from
the first fully connected layer. Due to the sparsity of fully
connected features, all zero-variance features were removed
prior to analysis. Since the ultrasound and DCE-MRI datasets

FIG. 3. (a) Examples of DCE-MRI transverse center slices with the corresponding ROIs extracted. On the left is a benign case and on the right is a malignant
case. (b) ROIs, extracted from the precontrast time-point (t0) and the first two postcontrast time-points (t1, t2), input into the three color channels of VGG19.
[Color figure can be viewed at wileyonlinelibrary.com]
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had images of varying sizes, the effects of preprocessing were
investigated to determine if fully connected features required
resized input ROIs. First, fully connected features were
extracted from the ROIs of original sizes with no preprocess-
ing performed. Then for comparison, ROIs were prepro-
cessed to have constant size prior to feature extraction. To
form constant-size ROIs, DCE-MRI ROIs were enclosed in a
frame with pixel values set to the average value of the sur-
rounded ROI. Mirror-padding was utilized to preprocess
ultrasound ROIs to achieve the same input ROI sizes.

4. CONVENTIONAL CADx FEATURES

As another baseline comparison, handcrafted (i.e., conven-
tional CADx) features were automatically extracted from
each dataset and were further used to train classifiers and
evaluated as described in Section 5. The following subsec-
tions describe the conventional CADx features for each imag-
ing modality dataset.

4.A. Conventional CADx mammography features

For the conventional CADx method, the center of each
lesion had already been manually indicated, after which
each lesion was automatically segmented and handcrafted
lesion features were computer-extracted from the image
data. The segmentation for FFDM was a multiple-transition
point, gray-level, region-growing technique extensively
described by the works of Huo et al. and Li et al.8,16 The
resulting FFDM features described quantitative physical
properties of the segmented lesion, such as size, shape,
texture, and morphology.

4.B. Conventional CADx ultrasound features

Ultrasound lesions were segmented using automatic
contour optimization based on the average radial deriva-
tive, as described by Horsch et al.17 Like the FFDM fea-
tures, the ultrasound features described lesion properties
such as size, shape, texture, and morphology. Further
details of the image features and how they are obtained
can be found in the literature of Giger et al.18 as well as
other, more recent works.9,10

FIG. 4. Fitted binormal ROC curves comparing the predictive performance of
different CNN-based classifiers. Note that since FFDM ROIs were presented
in uniform dimensions, there was no preprocessing done for that dataset.
[Color figure can be viewed at wileyonlinelibrary.com]

TABLE II. Classification performance of CNN features obtained from five
max-pooling layers and from the first fully connected layer. Classification
performance is assessed by ROC analysis in terms of AUC values.

Fully connected
features (no

preprocessing)

Fully connected
features (with
preprocessing)

Max-pool
features

FFDM 0.78 (se = 0.01) N/A 0.81 (se = 0.01)

Ultrasound 0.77 (se = 0.01) 0.85 (se = 0.01) 0.87 (se = 0.01)

DCE-MRI 0.79 0.82 0.87 (se = 0.01)
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4.C. Conventional CADx DCE-MRI features

Using radiologist-indicated lesion locations, the DCE-
MRI lesions were automatically segmented using a fuzzy c-
means approach,19 followed by the computer extraction of 38
handcrafted features. These features were designed based on
the biological phenotypes of a lesion and characterize lesions
in terms of their size, shape, morphology, enhancement tex-
ture, kinetics, and kinetics variance.20–23

5. CLASSIFICATION AND EVALUATION METHODS

A nonlinear support vector machine (SVM)24 with
Gaussian radial basis function (RBF) kernel was utilized
for classification using the CNN features and conventional
CADx features (Python Version 2.7.12, Python Software
Foundation). We refer to the classifiers based on CNN
features and conventional CADx features as CNN-based
classifiers and conventional CADx classifiers, respectively.
The SVM was chosen over other classification methods
due to its ability to handle sparse high-dimensional data,
which is an attribute of the CNN features. SVM hyperpa-
rameters were optimized by an internal grid search with
five-fold cross-validation.

The performances of the classifiers were evaluated by
patient using receiver operating characteristic (ROC) anal-
ysis.25,26 Area under the ROC curve (AUC), a metric that
is independent of cancer prevalence, served as the figure
of merit and was evaluated with five-fold cross-validation.
Within the cross-validation, training folds were standard-
ized to zero mean and unit variance. The test folds were
standardized with the statistics of the corresponding train-
ing folds.

In addition to performance evaluation of CNN-based and
conventional CADx classifiers, we assessed the performance
of fusion classifiers that integrated both CNN-based classifier

outputs and conventional CADx classifier outputs. For this
task, the outputs were fused by averaging them together.

Diagnostic discrimination performance of the CNN-based
and conventional CADx classifiers was compared to their
performance in combination. In order to assess statistical sig-
nificance, DeLong tests were performed.27 Bonferroni-Holm
corrections were used to account for multiple comparisons.28

6. RESULTS

6.A. Pooled features vs. fully connected features

Within the CNN-based methods, the classification perfor-
mance of pooled features extracted from the original size ROIs
was moderately stronger than that of fully connected features
extracted from preprocessed ROIs (Table II, Fig. 4). Fully con-
nected features extracted from the original ROIs with varying
sizes resulted in much poorer classification performance. This
is likely because the fully connected features do not map to
the same spatial location in the ROIs of varying sizes. Fig-
ure 4 shows the ROC curves for the CNN-based classifiers.

6.B. Fusion of CNN-based classifiers and
conventional CADx classifiers

Since the CNN-based classifiers trained on pooled features
performed the best in malignancy assessment, they were cho-
sen as the final CNN-based classifiers to be fused with the
conventional CADx classifiers. Fusion of the two types of
classifiers outperformed any single type of classifier in the
task of distinguishing benign and malignant lesions for each
dataset. Figures 5 and 6 demonstrate the classification perfor-
mances of CNN-based and conventional CADx classifiers
individually and in combination. Figures 7 and 8 show the
classifier agreement levels for the two individual types of
classifiers, as well as the potential decision boundaries for the

FIG. 5. AUC values for the benign vs. malignant lesion discrimination tasks for the CNN-based, CADx-bases, and fusion classifiers. P-values were corrected for
multiple comparisons with Bonferroni-Holm corrections.
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FIG. 6. Fitted binormal ROC curves comparing the performances of
CNN-based classifiers, CADx-based classifiers, and fusion classifiers. The
solid line represents the fusion classifier. The dotted line represents the
CNN-based classifier using pooled features. The dashed line represents
the conventional CADx classifier using handcrafted features. [Color figure
can be viewed at wileyonlinelibrary.com]

FIG. 7. Bland-Altman plots for each of the imaging modalities. The figures
illustrate classifier agreement between the CNN-based classifier and the CADx-
based classifier. The y-axis shows the difference between the SVM outputs of
the two classifiers; the x-axis shows the averaged output of the two classifiers.
Since the averaged output is also the output of the fusion classifier, these plots
also help visualize potential decision boundaries between benign and malignant
classifications. [Color figure can be viewed at wileyonlinelibrary.com]
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fusion classifiers. Notably, there appears to be moderate dis-
agreement between the CNN-based classifiers and the
CADx-based classifiers across all imaging modalities, likely
explaining why fusion improves predictive performance.

7. DISCUSSION

We have shown that classifiers trained on deep features
and existing conventional CADx features can be fused to

significantly improve predictive performance in the task of
breast lesion diagnosis across three separate imaging modali-
ties. Furthermore, we demonstrated that our multilayer fea-
ture extraction methodology outperforms the commonly used
approaches to deep feature extraction in addition to not
requiring image preprocessing. We found that when extract-
ing fully connected deep features from images, different ad
hoc preprocessing techniques were required to maximize per-
formance: ultrasound images worked best with mirror

FIG. 8. A diagonal classifier agreement plot between the CNN-based classifier and the conventional CADx classifier for FFDM. The x-axis denotes the output
from the CNN-based classifier, and the y-axis denotes the output from the conventional CADx classifier. Each point represents an ROI for which predictions were
made. Points near or along the diagonal from bottom left to top right indicate high classifier agreement; points far from the diagonal indicate low agreement. ROI
pictures of extreme examples of agreement/disagreement are included. [Color figure can be viewed at wileyonlinelibrary.com]
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padding, but DCE-MR images worked best with average
pixel padding. By circumventing the need to resize images,
our methodology is more generalizable across different data-
sets, while also commanding stronger predictive perfor-
mance, less sparsity, and lower dimensionality.

We believe that this is the first development of a hybrid
technique involving hierarchical deep feature extraction and
conventional CADx methods. A previous paper from our lab-
oratory7 investigated the feasibility of using pretrained CNNs
and how they compare with conventional CADx methods,
but only on a FFDM dataset. The FFDM dataset used for this
study was larger with 26 extra lesions and 132 extra ROIs.
These ROIs had been removed prior to analysis in our previ-
ous paper due to visual artifacts occluding areas of the lesion.
We chose to include them for this study to see how CNN
methods would handle cases with such artifacts. Additionally,
we used a novel method of feature extraction inspired by the
work of Zheng et al.,13 involving average pooling of extracted
features from multiple CNN layers in order to considerably
reduce dimensionality while preserving spatial structure and
occlusion invariance. Our method avoided using higher-level
layers as Zheng et al. did, since higher-level layers are more
specific to the original ImageNet task of general object recog-
nition. For CADx and medical images, lower-level layers
appear to be of greater importance, and our moderately sized
datasets restricted us from freely including extra layers and
parameters. Numerous other papers have used CNNs for
computer-aided diagnosis with success,6,7,29–31 but did not
provide baseline comparisons with conventional CADx
methods.

It is important to note that we used CNNs as fixed feature
extractors instead of training them from scratch or fine-tuning
them.4 Our motivation for doing so is threefold: (a) Computa-
tional time: Using an NVIDIA GeForce GTX 970, feature
extraction for our ultrasound dataset of 2393 images took
approximately 3 min; fine-tuning a CNN on the dataset takes
between 8 and 24 h of training time. In an applied setting,
models need to be retrained upon receiving new data, so the
training time is nontrivial. (b) Validation: Our preliminary
results involving fine-tuning underperformed our feature
extraction methods, but we are aware that fine-tuning can
often outperform generic feature extraction given the proper
circumstances (e.g., ad hoc optimizations of hyperparame-
ters/architectures, augmentation techniques, sufficient sample
sizes). However, the slow training time of fine-tuning limits
the efficiency of data usage: standard validation procedures
when training CNNs typically only separate the data into a
single training set and a single test set. With feature extrac-
tion, we are able to use more rigorous validation procedures
like k-fold cross-validation or bootstrapping, resulting in a
more precise and reliable model. (c) Generalizability: Medi-
cal images vary dramatically based on institution and manu-
facturer. Consequently, it is important to have a method that
quickly generalizes across these differences without overfit-
ting to trivial nuances unique to single institutions or manu-
facturers. Our method only uses generic CNN features and
radiomic features, eliminating the need to retrain a new CNN

and use ad hoc hyperparameter optimizations for every new
dataset.

Shin et al.31 reported that fine-tuning substantially outper-
formed feature extraction in the task of computer-aided detec-
tion, but they only extracted features from the final layer of
AlexNet. Other works have shown that the final layer of
AlexNet is significantly inferior to earlier layers for the task
of medical image analysis.6,7 Our method employs a more
advanced feature extraction technique by hierarchically inte-
grating multiple layers from VGGNet in order to incorporate
both low- and high-level information from images. It there-
fore remains unclear how fine-tuning and feature extraction
perform in comparison with each other.

There were several limitations to our study. While we used
VGGNet, other networks, such as deep residual networks,32

have shown greater performances and promise for transfer
learning, but their depth (upwards of 1000 layers) and com-
plexity makes investigating their potential for CADx out of the
scope of this study, especially due to the moderate sizes of our
datasets. Furthermore, our datasets all came from one medical
center. Due to the heterogeneity resulting from different imag-
ing manufacturers and facility protocols, it is unknown
whether our classifiers would test well on images from another
institution. Additionally, the selection of contrast time-points
for the DCE-MRI was suboptimal. In some of our preliminary
experiments, we found that other combinations of contrast-
timepoints may perform better than the one we chose (t0, t1,
and t2), warranting further investigation.

We also note that within our study, we reported cross-vali-
dation performance scores instead of prediction scores on a
held-out test set. Although a typical model tuning procedure
would involve a training set, validation set, and held-out test
set (two splits), we chose only to use a training set and a test
set (one split) since we performed no prior feature selection
or parameter optimization. Hyperparameter optimization was
used for our SVMs during cross-validation, but hyperparame-
ter selections were held constant for each cross-validation
fold when reporting scores. Furthermore, using cross-valida-
tion as the reported evaluation technique allowed us to more
efficiently use the data – instead of reporting on one test set,
we report on a score averaged across five test sets. Given a
larger dataset, a standard training/validation/test split of the
data would have been optimal, but cross-validation on a sin-
gle split seemed to be the better choice in terms of providing
precise, robust model estimates given our smaller datasets
and lack of parameter optimization.

In summary, we demonstrated the feasibility of using deep
feature extraction techniques in CADx across three breast
imaging modalities – mammography, ultrasound, and DCE-
MRI. Moreover, we developed a system incorporating both
deep learning and conventional CADx methods that per-
formed statistically significantly better than either one sepa-
rately. Our methodology is computationally efficient, provides
precise error estimates, and does not require intensive image
preprocessing. Given the rapid progress of deep learning, our
intent is not that our exact methodology be incorporated in
clinical practices, but that our proposed solutions to the
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challenges of efficiency, precision, and preprocessing help
pave theway toward more effective CADx methods.
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