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Abstract

Objective—To provide a new approach to spectral quantification for magnetic resonance 

spectroscopic imaging (MRSI), incorporating both spatial and spectral priors.

Methods—A novel signal model is proposed, which represents the spectral distributions of each 

molecule as a subspace and the entire spectrum as a union-of-subspaces. Based on this model, the 

spectral quantification can be solved in two steps: a) subspace estimation based on the empirical 

distributions of the spectral parameters estimated using spectral priors, and b) parameter 

estimation for the union-of-subspaces model incorporating spatial priors.

Results—The proposed method has been evaluated using both simulated and experimental data, 

producing impressive results.

Conclusions—The proposed union-of-subspaces representation of spatiospectral functions 

provides an effective computational framework for solving the MRSI spectral quantification 

problem with spatiospectral constraints.

Significance—The proposed approach transforms how the MRSI spectral quantification 

problem is solved and enables efficient and effective use of spatiospectral priors to improve 

parameter estimation. The resulting algorithm is expected to be useful for a wide range of 

quantitative metabolic imaging studies using MRSI.
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I. Introduction

Magnetic resonance spectroscopic imaging (MRSI) is a unique tool for non-invasive, label-

free molecular imaging [1], and spectral quantification is a critical step in deriving 

quantitative molecular information from the measured MRSI data. However, obtaining 

accurate spectral estimates is rather challenging due to the low signal-to-noise ratio (SNR) 

of the measured data and nonlinearity of the underlying parameter estimation problem.

While many computational solutions have been proposed to address the spectral 

quantification problem, model-based methods using spectral priors in the form of spectral 

basis functions have become the most popular [2–4]. The spectral basis functions obtained 

from either quantum mechanical simulations [5, 6] or in vitro experiments provide much 

stronger spectral constraints than earlier linear prediction based methods [7, 8], thereby 

resulting in significantly improved spectral estimates. However, these methods process 

MRSI data for each spatial location independently, and the uncertainty of the resulting 

spectral estimates from noisy MRSI data are often too big to be practically useful. To 

address this problem, spatial priors in the form of smoothness constraints were introduced 

[9–11]. However, such a formulation requires the solution of a large-scale constrained 

nonlinear optimization problem, especially for high-resolution MRSI. In this paper, we 

introduce a new subspace framework characterized by the use of a union-of-subspaces 

model to represent the desired spatiospectral function. The use of this model is motivated by 

its success in our previous ultrahigh-resolution MRSI work [12]. But the proposed method 

takes one step further to represent individual molecules using their own subspaces and allow 

different spatial constraints for individual spectral components. This model enables efficient 

and effective use of both spectral and spatial priors to improve spectral quantification of 

high-resolution MRSI data. A preliminary version of this work was reported in [13].

II. Proposed Method

A. Subspace Spectral Model

The current spectral model represents the noiseless spectroscopic signal with L spectral (or 

molecular) components as

(1)

where the cℓ denotes molecular concentration for the ℓth molecule and ϕℓ(β, t) is the 

corresponding spectral basis function. In MRSI, both cℓ and ϕℓ(β, t) are spatially dependent 

and Eq. (1) can be written explicitly as
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(2)

The functional form of ϕℓ(β, t) can be obtained using quantum mechanical simulations or in 
vitro experiments, in which the spectral parameters β are used to accommodate spectral 

variations under specific experimental conditions. Determining β often entails solving a 

nonlinear optimization problem. The conventional approaches determine cℓ(x) and β(x) 

point-by-point for each spatial location and the resulting estimates often have large 

uncertainties especially for MRSI data of low SNR. Determining cℓ(x) and β(x) jointly for all 

the spatial locations incorporating spatial constraints can reduce the estimation uncertainty 

but leads to a challenging optimization problem [11]. In this paper, we propose to use a 

subspace model to represent ϕℓ(β, t). More specifically, assuming that ϕℓ(β, t) resides in the 

Qℓ-dimensional subspace spanned by , we can express ϕℓ(β, t) as

(3)

The model in Eq. (3) is motivated by the fact that ϕℓ(β, t), viewed as a family of functions, 

resides in a low-dimensional subspace when β varies over a small range as is often the case 

in practice. To demonstrate this property, we use the spectral basis functions of N-

acetylaspartate (NAA), myo-inositol (mI) and glutamate (Glu) as examples. We generated 

the basis functions using quantum mechanical simulations with β consisting of the 

relaxation time constant T2 and the overall frequency shift Δf. We further assume that T2 of 

NAA, mI and Glu are uniformly distributed over [150, 350] ms, [100, 300] ms and [75, 275] 

ms respectively based on the literature values [14] while Δf is uniformly distributed over 

[−5, 5] Hz. The set of functions  for M = 5000 with βm chosen based on the 

specified distribution are highly linearly dependent for a particular molecule. To see this 

more clearly, we form the following Casorati matrix using  for each molecule:

(4)

As can bee seen in Fig. 1, the Casorati matrices have rapidly decaying singular values for all 

three metabolites (rank < 16 in contrast to M = 5000).

Combining the low-dimensional representation for each molecule, we obtain a union-of-

subspaces model for s(x, t) as
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(5)

where aℓ,q absorbs the cℓ in Eq. (1). This model converts a highly nonlinear model in Eq. (2) 

to a bilinear one, significantly simplifying the computational problem associated with joint 

spectral quantification with spatial constraints. This paper takes advantage of this important 

feature to improve spectral quantification from noisy MRSI data.

B. Subspace Estimation

Estimation of the subspace structure (i.e., ) for each spectral component (or 

molecule) is an important step in the proposed method. To address this, we first estimate the 

distribution of β from the noisy measured data. This is done by solving the following 

nonlinear optimization problem point-by-point for all the voxels (p = 1, 2, …, P):

(6)

where tn denotes the sampling time index and d(xp, tn) represents the measured data for s(xp, 
tn). This step is equivalent to what is done in conventional spectral quantification methods 

(e.g., QUEST [4]). However, instead of treating  and  as the final estimated spectral 

parameters as is done in the conventional methods, we use  to create a Casorati 

matrix as defined in Eq. (4) (replacing M with P and ϕ with ϕℓ). We then perform a singular 

value decomposition on the Casorati matrix and use the conjugate of its most dominant Qℓ 

right singular vectors as . In practice, Qℓ is selected such that the Qℓ+1th singular 

value decays below −50dB.

Note that for a large P as is the case in practice,  define an empirical distribution 

P(β) for β. Then  can be viewed as a set of sample values drawn from P(β). For a 

given P(β), different trials would give different sets of sample values but it can be justified 

that the Casorati matrices corresponding to different sets of sample values all share the 

“same” subspace. A detailed discussion of this issue is beyond the scope of this paper, and 

will be addressed in a future paper where the robustness of the proposed method for 

practical applications will be systematically analyzed. It is also worth noting that when the 

SNR of d(xp, t) is low as is often the case, the  as determined in Eq. (6) will lead to a 

biased distribution for P(β). To alleviate this problem, we determine  at a lower 

spatial resolution to ensure good SNR for d(xp, tn) used in Eq. (6). This strategy is 

acceptable because we use  only for subspace estimation not as the final spectral 

parameters, which is another desirable feature of the proposed method.
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C. Spectral Quantification

Once the basis functions  are determined, we can fit the subspace model in Eq. 

(5) to the measured data to determine aℓ,q(x). We solve this problem for all the spatial 

locations (or voxels) jointly, incorporating any spatial priors available (e.g., spatial 

smoothness constraints). Incorporation of spatial priors about the spectral parameters has 

been demonstrated to be useful for improving spectral quantification [10, 11] but at the 

expense of significantly increased computational complexity. The proposed subspace model 

in Eq. (5) is a linear model, which makes it much easier to impose any spatial constraints on 

aℓ,q(x). To simplify notation, let aℓ,q = [aℓ,q(x1), aℓ,q(x2), …, aℓ,q(xP)]T denote the linear 

coefficients for a particular basis and 

denote the collection of all the coefficients. Following [10, 11], we formulate the problem as 

a regularization problem:

(7)

where R(·) represents a regularization functional imposing any desired spatial constraints. 

Two types of regularizations have been used for spectral quantification [10, 11]: a) 

weighted-L2 regularization, and b) total variation regularization, both of which aim at 

imposing edge-preserving spatial smoothness on the linear coefficients. For weighted-L2 

regularization, R(·) can be expressed as

(8)

where the λℓ is a tunable regularization parameter and W is a weighting matrix derived from 

reference anatomical images [15]. For total variation regularization, R(·) is given by

(9)

where ∇ denotes the gradient operator. In this paper, we use the weighted-L2 regularization 

in Eq. (8) to demonstrate the power of the proposed subspace model. Extension to total 

variation regularization is relatively straightforward because the subspace model is linear. 

With weighted-L2 regularization, the optimization problem in Eq. (7) can be solved by many 

algorithms such as conjugate gradient [16]. The regularization parameters can be selected 

using the discrepancy principle. The final concentration cl(x) can be computed as 

.
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III. Results And DISCUSSION

A. Simulation Study

The performance of the proposed method has been evaluated and compared to QUEST using 

a 2-D MRSI simulation data set synthesized using Eq. (1) with the spectral structures for 

different molecules generated from NMR-SCOPE [6]. The temporal sampling rate was set 

as 2000 Hz and the matrix size was 128 × 128. Common NMR detectable metabolites in the 

human brain were included, namely, N-acetylaspartate (NAA), creatine (Cr), choline (Cho), 

myo-inositol (mI), glutamate (Glu) and glutamine (Gln). The corresponding concentrations 

were designed to be smooth within each tissue (e.g., gray matter, white matter and 

cerebrospinal fluid) but different across tissue types.

To validate the proposed method, we performed a Monte-Carlo study to compare the 

quantification results from the proposed method and QUEST. Figure 2 shows the estimation 

standard deviations from the Monte-Carlo study and the concentration maps estimated from 

one of the 40 realizations. Figure 3 shows a set of representative spectral fitting results 

including both the spectra synthesized using the estimated parameters and the error spectra 

compared to the ground truth. As can be seen, the spectral estimates obtained using the 

proposed method show significantly reduced errors and estimation variances.

B. In Vivo Study

In vivo experiments were carried out to further evaluate the performance of the proposed 

method under practical conditions. One set of representative results is shown in Fig. 4, 

where the MRSI data were acquired from a healthy subject on a 3T MRI scanner using an 

echo-planar spectroscopic imaging (EPSI) sequence with outer-volume saturation [17] and 

water suppression [18]. The echo time was 30 ms, the echo spacing was 1.42 ms and the 

nominal in-plane resolution was 4.6 × 4.6 mm2. The residual water and lipid signals were 

removed using the method proposed in [19]. The B0 field inhomogeneity was corrected 

before quantification using the B0 maps obtained from an auxiliary scan. It can be seen from 

Fig. 4 that the concentration maps produced by the proposed method show significantly 

reduced estimation variations than those from QUEST. These estimation results from the 

experimental data are consistent with those from the simulation study shown in Figs. 2 and 

3.

The proposed method has also been applied to processing a high-resolution MRSI data set 

acquired using the recently developed ultrafast MRSI technique known as SPICE [12]. The 

data set has a nominal in-plane resolution of 2.5 × 2.5 mm2, and the estimation results from 

the proposed method are shown in Fig. 5. As can be seen, both the concentration maps and 

the spectral decomposition are of high quality, which is very encouraging especially for such 

a small voxel size.

IV. CONCLUSION

This paper introduces a new approach to spectral quantification from noisy MRSI data using 

a subspace spectral model. This model represents the spectral distribution of each molecule 

using a subspace and the entire spectrum as a union-of-subspaces, which enables efficient 
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incorporation of spectral and spatial priors to improve spectral quantification. The proposed 

approach has been evaluated using both simulated and experimental data, producing 

impressive results. The resulting algorithm is expected to be useful for a wide range of 

quantitative metabolic imaging studies using MRSI.
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Fig. 1. 
Singular value distributions of the Casorati matrices defined in Eq. (4) for the spectral 

functions of NAA, mI and Glu respectively. Note that the singular values decay rapidly, 

signifying the low-rank nature of C. Equivalently,  reside in a low-

dimensional subspace.
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Fig. 2. 
Simulation results: (a) true concentration maps for NAA, Cr, Cho and Glx, (b) concentration 

maps estimated using QUEST, (c) concentration maps estimated using the proposed method, 

(d) standard deviation (SD) maps (normalized by the true concentrations) for QUEST, and 

(e) SD maps for the proposed method. The average SDs for each molecule are also shown 

(in red texts). Note the significant improvement in the estimated concentrations by the 

proposed method over QUEST.
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Fig. 3. 
Simulation results showing the quality of spectral estimation. Spectra from two 

representative locations marked by red and blue dots are shown in rows (a) and (b), 

respectively. The added noise in the original data and the estimation errors are shown in red. 

As can be seen, the proposed method produced more accurate spectral variations than 

QUEST.
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Fig. 4. 
Experimental results from an MRSI data set acquired using the conventional EPSI method: 

(a) noisy spectra from the voxels marked by the color dots, (b) quantification results from 

QUEST including the estimated individual spectral components and the concentration maps 

(the mI map is scaled by a factor of 3), and (c) quantification results from the proposed 

method.
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Fig. 5. 
Experimental results from a high-resolution MRSI data set produced by the SPICE 

technique: (a) two spectra from the voxels marked by the color dots, and (b) quantification 

results from the proposed method including the estimated individual spectral components 

and the concentration maps.

Li et al. Page 12

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	I. Introduction
	II. Proposed Method
	A. Subspace Spectral Model
	B. Subspace Estimation
	C. Spectral Quantification

	III. Results And DISCUSSION
	A. Simulation Study
	B. In Vivo Study

	IV. CONCLUSION
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5

