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Primary biliary cholangitis (PBC) is considered a model autoimmune disease due to its signature anti-mitochondrial anti-

body (AMA) autoantibody, female predominance, and relatively specific portal infiltration and cholestasis. The identifica-

tion and cloning of the major mitochondrial autoantigens recognized by AMA have served as an immunologic platform to

identify the earliest events involved in loss of tolerance. Despite the relatively high concordance rate in identical twins,

genome-wide association studies have not proven clinically useful and have led to suggestions of epigenetic events. To

understand the natural history and etiology of PBC, several murine models have been developed, including spontaneous

models, models induced by chemical xenobiotic immunization, and by “designer” mice with altered interferon metabolism.

Herein, we describe five such models, including 1) NOD.c3c4 mice, 2) dominant negative form of transforming growth

factor receptor type II mice, 3) interleukin-2R a2/2 mice, 4) adenylate-uridylate-rich element Del2/2 mice, and 5) 2-

octynoic acid-conjugated bovine serum albumin immunized mice. Individually there is no perfect murine model, but col-

lectively the models point to loss of tolerance to PDC-E2, the major mitochondrial autoantigen, as the earliest event that

occurs before clinical disease is manifest. Although there is no direct association of AMA titer and PBC disease progres-

sion, it is noteworthy that the triad of PBC monocytes, biliary apotopes, and AMA leads to an intense proinflammatory

cytokine burst. Further, the recurrence of PBC after liver transplantation indicates that, due to major histocompatibility

complex restriction, disease activity must include not only adaptive immunity but also innate immune mechanisms. We

postulate that successful treatment of PBC may require a personalized approach with therapies designed for different

stages of disease. (Hepatology Communications 2017;1:275-287)

Introduction

P
rimary biliary cholangitis (PBC) is a chronic
cholestatic liver disease characterized by
immune-mediated destruction of small and

medium-sized intrahepatic bile ducts.(1,2) PBC pre-
dominantly affects women in their fifth and sixth
decades of life, with a female to male ratio of 10:1.
The serologic diagnostic hallmark of PBC is detec-
tion of anti-mitochondrial antibodies (AMAs) tar-
geting the 2-oxo acid dehydrogenase complex
(2-OADC) enzymes located in the inner lipoyl

domain of the mitochondria.(3,4) Typical histologic
findings of PBC include dense infiltration of mono-
nuclear cells in the vicinity of small or medium-
sized intrahepatic bile ducts, known as chronic non-
suppurative destructive cholangitis.(5,6) Numerous
previous studies have suggested that immunologic
activity against small biliary epithelial cells (BECs)
leads to clinical disease.(7-10) In PBC, as with
other autoimmune diseases, both genetic and envi-
ronmental factors contribute to the development of
pathology(11-14); however, the precise etiology of
this disease remains unclear.(15,16)
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While the introduction of ursodeoxycholic acid
(UDCA) for the treatment of PBC greatly improved
the outcome,(17) nearly 30% of patients treated with
UDCA show an incomplete response and disease pro-
gression.(18-20) Recently, obeticholic acid, a selective
ligand of the farnesoid X receptor, was approved for
patients who are refractory to UDCA.(21) However,
the efficacy of obeticholic acid is still suboptimal, and
additional therapeutic approaches are urgently
needed.(7,22-26)

Our laboratory identified mitochondrial autoanti-
gens recognized by AMAs as 2-OADC in 1987.(27)

Since then, we have intensively investigated the etiol-
ogy of PBC, a prototype organ-specific autoimmune
disease (Fig. 1). In this review, we assess our results
regarding the etiology of PBC.

Definition of AMA
Epitopes
AMAs are the most disease-specific autoantibodies

in human immunopathology and are detected in 90%-
95% of patients with PBC.(28,29) A high titer of auto-
antibody in the sera of patients with PBC was observed
by Mackay more than 60 years ago,(30) and AMA was
found to be an effective serologic tool for the diagnosis
of PBC.(31) However, the immunodominant epitopes
of AMA were not determined until the identification
of pyruvate dehydrogenase complex E2 subunit
(PDC-E2) as the mitochondrial autoantigen of PBC
by complementary DNA cloning.(27) 2-OADC, a
family of mitochondrial enzymes located in the inner
membrane of mitochondria, are targets of AMA and
include PDC-E2, branched chain 2-oxo-acid dehy-
drogenase complex E2, 2-oxo-glutarate dehydrogenase
complex E2, and dihydrolipoamide dehydrogenase
binding protein.(32) All these E2 enzymes have a

common structure consisting of an N-terminal domain
with a single or multiple attachment sites to lysine
(173K in mammalian PDC-E2) of lipoic acid (LA).
The dominant epitope sites recognized by AMA are in
contiguity with the LA attachment site(s) as the lipoyl
domains of these target antigens.(33-35) The amino acid
residues critical to maintaining the structural integrity
of PDC-E2 lipoyl domain have been revealed by site-
directed mutagenesis.(36) Furthermore, while AMA is
typically not found in other liver diseases or autoim-
mune diseases, a positive AMA in otherwise healthy
individuals indicates a substantial risk of future PBC
development.(37-39) These findings suggest that AMAs
are not simply serologic markers for diagnosis but are
important in the immunopathology of PBC.

Overlapping of T-Cell
Epitopes
The histologic signature of PBC includes a dense

infiltration of mononuclear cells in the portal tracts
near small or medium-sized bile ducts. In the typical
pathology of PBC, infiltrated lymphocytes are found
adjacent to BECs in damaged bile ducts.(15) Immuno-
histochemical examination of these lymphocytes
reveals a predominance of CD41 and CD81 T cells
with B and natural killer cells.(40,41) BECs and hepato-
cytes in the liver of patients with PBC also express
large amounts of human leukocyte antigen (HLA)
class I and II molecules.(42,43) Therefore, both CD41

and CD81 autoreactive T cells play a crucial role in
the pathogenesis of PBC.
In the case of CD41 T cells, Shimoda et al.(44)

established HLA DRB4 0101-restricted PDC-E2-
specific T-cell clones from the peripheral blood of
patients with PBC and mapped immunodominant
T-cell epitopes as PDC-E2 peptide 163-176
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(GDLLAEIETDKATI), which overlapped with the
B-cell epitope of human PDC-E2 (Table 1). Impor-
tantly, the frequency of PDC-E2-specific CD41 T
cells was 100-fold to 150-fold higher in the liver and
hilar lymph nodes than in the peripheral blood.(45)

Our laboratory also characterized a major histocompat-
ibility complex class I (HLA-A2)-restricted epitope
for CD81 T cells as PDC-E2 peptide 159-167
(KLSEGDLLA), which again mapped to the same
region of the inner lipoyl domain as the autoantigen
PDC-E2 (Table 1).(46) The frequency of CD81 cyto-
toxic T lymphocytes specific for this epitope was 10-
fold higher in the liver than in the blood.(40) Interest-
ingly, cytotoxic T lymphocyte cell lines specific for
PDC-E2 can be efficiently generated from peripheral
blood mononuclear cells of patients with PBC by using
soluble PDC-E2 complexed with anti-PDC-E2 auto-
antibodies, which results from cross-presentation of
the PDC-E2 epitope by antigen-presenting cells
(APCs).(46) The finding that autoantigen-immune
complexes can cross-present the autoantigen with high
efficiency reveals a unique role for anti-PDC-E2 anti-
bodies in the pathogenesis of PBC.

Why Biliary Epithelial
Cells? The “ABC” of PBC
We determined that AMA and autoreactive helper

and cytotoxic T cells contain a shared peptide sequence
of the human PDC-E2 (Table 1). However, PDC-E2
is a ubiquitous protein located in nearly all nucleated
cells in the human body. Why do autoreactive T cells
specific for PDC-E2 elicit cytotoxicity against only bil-
iary epithelial cells? We should note that PBC recurs
even after liver transplantation, indicating that the
immunopathologic susceptibility of BECs in PBC is
not major histocompatibility complex-specific, but a
general feature shared with autologous BECs. To
answer this question, we demonstrated that only
human intrahepatic BECs could maintain PDC-E2

immunologically intact within apoptotic blebs (apo-
topes) during apoptosis but not control epithelial cells.
This supports data in which AMA-containing sera
reacted with PDC-E2 on apoptotic BECs without
permeabilization.(47) We then examined the ability of
BECs to induce cytokine secretion from mature
monocyte-derived macrophages, with and without
AMAs and observed intense inflammatory cytokine
production in the presence of a unique triad consisting
of BEC apotopes, macrophages from patients with
PBC, and AMAs.(8) Macrophages from healthy con-
trols did not produce inflammatory cytokines even
when cocultured with apoptotic bodies from human
intrahepatic BECs and AMAs (Fig. 2). Thus, we pro-
pose that A (AMA, apotope, and APC), B (blebs from
apoptotic BECs), and C (complex formation and cyto-
kine secretion) constitute the crucial triad in the
inflammatory cascade of PBC.

Genetic and Environmental
Influences: Xenobiotic
Modification of PDC-E2
As with many other autoimmune diseases, genetic

factors are known to play a decisive role in conferring
susceptibility to PBC. The prevalence of PBC is
higher in families with an affected member.(48) High
concordance rates among monozygotic twins have also
been observed.(49,50) To identify the genetic back-
ground and immunologic pathways responsible for
PBC development, multiple genome-wide association
studies have been conducted in several populations.(51-
56) Although differences in several genes were reported,
their clinical implications and relevance remain elusive.
In fact, in PBC and all other autoimmune diseases, the
results of genome-wide association studies have been
disappointing, and recent efforts have been directed to
both deep sequencing and consideration of epigenetic
events.(57-64)

TABLE 1. OVERLAPPING EPITOPES OF HUMAN
PDC-E2 RECOGNIZED BY B CELLS, CD41 T CELLS,

AND CD81 T CELLS

155 160 165 170 175 180 185

B cell KVGEKLSEGDLLAEIETDK*ATIGFEVQEEGY
CD41 T cell KVGEKLSEGDLLAEIETDK*ATIGFEVQEEGY
CD81 T cell KVGEKLSEGDLLAEIETDK*ATIGFEVQEEGY

Bold characters define an epitope on the PDC-E2 recognized by
each cell type.
173K*, attachment site of lipoic acid.
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FIG. 1. Toward solving the etiological mystery.
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FIG. 2. Macrophages from patients with PBC and from healthy controls. (A) Macrophages from patients with PBC cocultured with
apoptotic bodies from HIBECs, and secreted proinflammatory cytokines in the presence of AMAs. (B) Macrophages from healthy
controls did not produce inflammatory cytokines, even when cocultured with apoptotic bodies from HIBECs in the presence of
AMAs. Abbreviations: GM-CSF, granulocyte-macrophage colony-stimulating factor; HIBECs, human intrahepatic BECs; IL-6,
interleukin 6; IL-10, interleukin -10; IL12p40; interleukin 12 p40 subunit; MIP-1b, MIP, macrophage inflammatory protein 1b;
TNF-a, tumor necrosis factor alpha. Error bar represents 6 standard error of the mean. Level of significance is denoted as
***P< 0.001; two tailed Mann-Whitney test with 95% CI. Reproduced with permission, Lleo et al., Hepatology 2010;52:987-998.(8)
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Despite the importance of genetics, environmental
influences should not be underestimated in their ability
to trigger or exacerbate PBC. We previously reported a
large-scale epidemiological study that evaluated risk
factors and comorbidities in PBC, including an
interview-based study of 1,032 patients and controls
matched for number, sex, age, race, and geographic
location. In families with a first-degree relative with
PBC, history of urinary tract infections, past cigarette
smoking, use of reproductive hormone replacement,
and to a minor degree, frequent use of nail polish were
associated with increased risk in PBC.(65) Other stud-
ies suggested significant clustering of patients with
PBC, particularly surrounding toxic sites.(66,67) These
epidemiological data, along with the crucial role of
AMA in the immunopathology of PBC, prompted us
to search for environmental mimotopes in the form of
xenobiotics.
We performed a detailed, quantitative, structure-

activity relationship analysis on xenobiotics. We found

107 potential xenobiotic mimics that coupled to the
lysine residue of the immunodominant 15-amino acid
peptide of the PDC-E2 inner lipoyl domain. PBC sera
were more reactive with a number of xenobiotic-
modified PDC-E2 peptides than with the native lipoy-
lated peptide. Among them, 2-octynamide, the conju-
gate derived from 2-octynoic acid (2-OA) present in
cosmetics, lipsticks, and some chewing gums, was
unique in both its quantitative structure-activity rela-
tionship analysis and reactivity.(68) We evaluated the
chemical structure that leads to enhanced AMA recog-
nition and found that 2-nonyamide provided an opti-
mal chemical structure of the xenobiotic-modified
epitope recognized by AMA-positive PBC sera (Fig.
3).(69) Indeed, significant molecular mimicry between
lipoamide and 2-nonynamide was demonstrated (Fig.
4). These findings illustrate that xenobiotic modifica-
tion of PDC-E2 with chemicals abundant in daily life
plays a role in generating immunogenic neoantigens
and breaking tolerance in PBC.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

FIG. 3. Reactivity of 2-alkynamide-modified PDC-E2 peptide with (A,C) PBC sera and (B,D) healthy control sera were analyzed
by microarray for IgG (A,B) and IgM (C,D) reactivity against PDC-E2 peptide modified with 2-alkynoic acids. Reproduced with
permission, Rieger et al., J Autoimmun 2006;27:7-16.(69) Abbreviation: Ig, immunoglobulin. Level of significance is denoted as
***P< 0.05 (unpaired t-test); horizontal bar indicates mean of pixel intensity.
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Efforts to Establish Mouse
Models of PBC
In addition to in vitro studies, mouse models are

important for understanding the etiology and natural
history of PBC. Patients newly diagnosed with PBC
have often past their initial phase. Animal models that
reflect many important aspects of the disease are there-
fore needed to explore the initiating events and inter-
actions between genetic and environmental factors.
The animal model should have the same physiological
mechanisms observed in human PBC, such as female
predominance; chronic cholestasis; AMA production;
histologic features, including lymphocyte infiltration
into the liver; and bile duct involvement.
In particular, recognition of a strong gender (female)

is essential to understand PBC. Sex hormones, X-
linked genes, and sex-specific microbiota may contrib-
ute to the immune difference between male and female
individuals.(70-73) However, the physiological mecha-
nisms accounting for the strong female predominance
in PBC remain unclear.(74) PBC risk factors may func-
tion synergistically in accelerating the loss of tolerance.
One theory proposes that haploinsufficiency for spe-
cific X-linked genes leads to female susceptibility to
PBC and that enhanced monosomy X in the periph-
eral lymphocytes of affected women induce PBC.(75,76)

Data from another study suggest a potential association
of PBC and the loss of the Y chromosome.(77)

Epigenetic analysis revealed a significant difference in
the X chromosome DNA methylation profile of
CD41 T, CD81 T, and CD141 cells in patients
with PBC, in particular with an aberrant demethyla-
tion on the CXCR3 promoter.(78) However, how these
genetic and environmental factors interact with the
immune system to elicit autoimmunity in PBC remains
enigmatic.
To date, we have established several murine models

that develop autoimmune cholangitis resembling PBC
in a spontaneous or xenobiotically induced manner
(Table 2). These mice share some of the important
clinical phenotypes of PBC.(79) There are three mice
models that spontaneously develop autoimmune chol-
angitis: nonobese diabetic (NOD).c3c4 mice, domi-
nant negative form of transforming growth factor
(TGF)-b receptor type II (dnTGFbRII) mice, and
interleukin (IL)-2R a2/2 mice. The NOD.c3c4 mice
have multiple B6- and B10-derived insulin-dependent
diabetes-resistant alleles on chromosomes 3 and 4,
respectively. These mice are protected from autoim-
mune diabetes but spontaneously develop lymphocytic
peribiliary infiltrates and AMA positivity.(80,81) Nota-
bly, AMAs were detected in female mice, indicating
female predominance as in human PBC. However,
pathologic examination of the liver revealed biliary
polycystic diseases in both the intrahepatic and extra-
hepatic biliary ducts and little evidence of chronic non-
suppurative destructive cholangitis. The dnTGFbRII
mice also mimicked phenotypes of human PBC.(82)
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FIG. 4. Molecular mimicry between lipoamide and 2-nonynamide. Superimposed models of lipoamide (dotted) and 2-nonynamide in
space-filled and bond representations with 2-nonynamide in either (A) “corkscrew” or (B) straight chain conformation. Reproduced
with permission, Rieger et al., J Autoimmun 2006; 27:7-16.(69)
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These mice are transgenic for the expression of a dom-
inantly negative form of TGF-b receptor type II
directed by the CD4 promoter. DnTGFbRII mice
spontaneously produce AMAs directed to the same
mitochondrial autoantigens as human PBC. Lympho-
cytic liver infiltration with periportal inflammation is
analogous to the histologic profile of human PBC.
The complexity of the IL-12/IL-23 cytokine milieu in
autoimmunity in dnTGFbRII mice was examined by
generating a series of cytokine knockouts: interferon
(IFN)c2/2, IL-12p352/2, IL-12/IL-23p402/2, IL-
23p192/2, and IL-17A2/2 dnTGFbRII mice. Collec-
tively, our data indicated that the IL-12/T helper type
1 (Th1) pathway is essential for biliary disease patho-
genesis, and IFN-c production is significant for trig-
gering Th1 cell responses in this model.(83-86)

The third spontaneous mouse model is the IL-2R
a2/2 mice, which lack the IL-2R cytokine crucial for
differentiation of regulatory T cells and their eventual
reduction.(87) These mice develop portal inflammation,
biliary ductular damage, and a Th1 cytokine bias,
resembling human PBC. In addition, AMAs are
targeted to the inner lipoyl domain of PDC-E2.
However, female predominance was not observed.
We have also examined possible environmental trig-

gers of autoimmune cholangitis in mice, particularly
chemical xenobiotics. We immunized C57BL/6 mice
with 2-OA, which was suggested as a candidate xenobi-
otic present in the environment in our previous study,(68)

coupled to bovine serum albumin. We found that anti-
PDC-E2 antibodies were present in the serum as early as
4 weeks after immunization (Fig. 5), indicating loss of
tolerance to PDC-E2 with xenobiotic immunization. In
addition, these mice demonstrated portal infiltration of
CD41 and CD81 T cells, granulomas, and elevated
tumor necrosis factor-a and IFN-c expression levels.(88)

Using several unique gene-deleted mice immunized with
2-OA-bovine serum albumin,(89) we also found that

both IL-12/Th1 and IL-23/Th17 were involved in auto-
immune cholangitis. The IL-12/Th1 signaling pathway
elicited the pathology, while deletion of IFN-c prevented
autoimmune cholangitis (Fig. 6).

Adenylate-Uridylate-Rich
Element Del2/2 Mice as a
Novel PBC Model
We are currently focusing on IFN-c using a “designer”

mouse with dysregulation of IFN-c, in which the
adenylate-uridylate-rich element (ARE) of the IFN-c
30-untranslated region is deleted and IFN-c is constitu-
tively produced.(90) Through various assays, we found
that IFN-c is crucial to the pathogenesis of autoimmune
cholangitis in this model.(89,91) We should note that acti-
vation of na€ıve CD4 T cells from healthy women produ-
ces higher levels of IFN-c and lower levels of IL-17 than
in healthy men.(92) Increased IFN-c levels have also been
observed in patients with autoimmune diseases.(70,93)

ARE Del2/2 mice spontaneously developed many
manifestations similar to human PBC, including nonsup-
purative destructive cholangitis, AMA production, and
elevated serum total bile acid levels.(94) These features
were also found predominantly in female mice. In male
ARE Del2/2 mice, portal inflammation was rarely
observed and serum titers of AMA were elevated but not
significantly compared to wild-type mice (Fig. 7). Total
bile acid levels were comparable. In addition, gene expres-
sion analysis revealed that up-regulated genes in female
ARE Del2/2 mice specifically overlapped with the gene
expression signature of BECs in human PBC. Therefore,
female AREDel2/2 mice closely mimic human PBC.(95)

Female predominance occurs in ARE Del2/2 mice
likely because female hormones and genetics cause
immune cells in female mice to favor production of

TABLE 2. CHARACTERISTICS OF PBC MOUSE MODELS

Spontaneous Model
Induced Model

NOD.c3c4 DnTGFbRII IL-2Ra2/2 ARE Del2/2 2-OA-BSA Immunized

Female dominance Yes No No Yes No
Cholestasis - 1 - 1 1

AMA seropositivity 50-60% 100% 100% 100% 100%
Portal inflammation 111 111 111 Yes 1

Granulomas 1 2 2 1 1

Other features Biliary polycystic
lesions

Moderate
colitis

Severe anemia,
inflammatory bowel

diseases, and
short life span

Peritonitis

Abbreviations: BSA, bovine serum albumin; 2, not detected; 1, present; 111, strongly present.
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additional IFN-c-producing cells. In contrast, male mice
may be protected by androgens, which favor up-
regulation of regulatory cells and down-regulation of

IFN-c-producing cells. Female hormones activate T
lymphocytes to express higher levels of IFN-c in female
mice in this mouse model. Although numerous murine
spontaneous and induced models have been reported as
PBC mouse models,(79,85) no single model exhibits
female dominance as observed in ARE Del2/2 mice.
ARE Del2/2 mice also provide clues regarding the

immunopathology of PBC. IFN-c may play a patho-
genic role in BECs during the initiation stage of PBC,
and changes in expression levels of IFN-c are critical
to the development of PBC in susceptible individuals.
Furthermore, we demonstrated that transfer of CD4 T
cells from ARE Del2/2 mice to B5/Rag12/2 mice (an
immune-deficient strain producing no mature T or B
cells) induced moderate portal and parenchymal
inflammation, indicating that CD41 T cells contrib-
ute to the induction of cholangitis.
Using ARE Del2/2 mice, we learned the following:

First, this is a female-predominant model for PBC that
allows for intensive investigation of the female predom-
inance of the disease. We comprehensively analyzed
sexual dimorphic physiological systems, including hor-
mones, immune differences, and the microbiome. We
can manipulate estrogen and estrogen receptors on cells
to determine their effect on the pathology. We also
examined the female microbiome and found that it was
similar to the male microbiome; we can raise these
mice in a germ-free environment, followed by the
introduction of a selected set of bacteria. Second, this
model will help determine which gene pathways help
or hinder the progress of PBC in both sexes. Third,
this model allows us to study the interaction of multiple
cellular messengers and their relationships with cellular
immune transformation to the autoimmune state.
Finally, this model has implications for clinical
research. The heterogeneity and the natural history of
PBC can be examined from an early asymptomatic
stage to a late stage with full liver involvement, and
new biomarkers at different stages may be identified.
This mouse is an effective tool for assessing the effect
of drugs currently used and those under development
and for the design and screening of novel more-
effective compounds for curing PBC.

Where We Are and Future
Directions
Since the cloning and identification of PDC-E2 as the

major mitochondrial autoantigen of PBC in 1987, our
understanding of the immunologic mechanisms,

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

FIG. 5. Detection and quantification of anti-PDC-E2 antibody in
sera of 2-OA-BSA-immunized mice by using enzyme-linked
immunosorbent assay at 2-week intervals after immunization. A
significant increase in OD was observed after immunization with
xenobiotic modification compared to control. Reproduced with per-
mission, Wakabayashi et al., Hepatology 48:531-540.(88) Abbrevia-
tion: BSA, bovine serum albumin; Ig, immunoglobulin; OD,
optical density. Level of significance denoted as *P< 0.05,
**P< 0.01, ***P< 0.001. Error bar represents6 standard deviation.
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pathologic process, genetics, etiology, and natural history
of PBC has significantly increased.(4,7,8,15,16,65,79,91,96-100)

The vast amount of information gained from these
studies points to the thesis that the loss of
tolerance to the PDC-E2 lipoyl domain is a linch-
pin in the development of the biliary pathology of
PBC.
To help understand these events, Fig. 8 illustrates
illustrates a hypothetical pathway from tolerance

breakdown to biliary pathology in PBC. BECs
express PDC-E2 on apotopes in an immunologi-
cally intact form during apoptosis. Notably, the
capability to do this is observed only in BECs and
not in other epithelial cells, possibly explaining the
tissue specificity of PBC. Intact lipoylated PDC-
E2, presumably after modification with xenobiotics,
such as 2-octynamide or 2-nonyamide, from the
environment are endocytosed by APCs and pre-
sented to CD41 or CD81 T cells. Immune
complexes with PDC-E2 and anti-PDC-E2 auto-
antibody cross-present autoantigens in a more effi-
cient manner. Finally, orchestrated immunologic
responses against BECs with activated CD41 and
CD81 T cells, AMA, and immunoglobulin A
transcytosis result in subsequent pathology. We

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

FIG. 6. IFN-c knockout completely
abolished autoimmune cholangitis. Portal
inflammatory changes and interlobular
bile duct damage (red arrows) were
observed in wild-type mice (B6 mice) and
normal bile ducts in IFN-c2/2 mice (blue
arrows). Reproduced with permission
Kawata et al., PLoS One 2013;
8:e74225.(89)
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FIG. 7. AMA levels in ARE Del2/2 (A) female and (B) male
mice at 20 weeks. Abbreviations: BCOADC-E2, E2 component
of branched chain 2-oxo-acid dehydrogenase complex; n.s., not
significant; OGDC-E2, E2 component of 2-oxo-acid dehydroge-
nase complex; WT, wild-type. Error bar represents6 standard
deviation. All data are representative of at least three independent
experiments. Level of significance is denoted as *P< 0.05;
**P< 0.01; ***P< 0.001 (unpaired student t-test). Reproduced
with permission, Bae et al., Hepatology 2016;64:1189-1201.(94)
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currently have ARE Del2/2 model mice that mimic
human PBC, including female dominance, and will
use this model to elucidate the immunopathology of
PBC. Expanding our knowledge regarding this
pathology from a very early stage of disease will pro-
vide a foundation for “curing” PBC.
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