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Abstract

Purpose of review—The only currently approved treatment for primary sclerosing cholangitis 

(PSC) is liver transplantation, with a median time to transplant of 12–18 years after diagnosis. 

There are a number of emerging drugs that have the potential to meet this critically unmet need 

that will be summarized and discussed herein.

Recent findings—Although the cause of PSC is unknown, there are a number of novel 

therapeutics under development. These drugs target presumed pathogenic mechanisms largely 

extrapolated from ex-vivo and in-vivo preclinical models, as well as translational observations.

Summary—Future therapeutic strategies for PSC may include a multitude of complex 

pathogenic mechanisms encompassing pathways of immunomodulation, the microbiome and 

inflammation-related fibrosis.
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Introduction

Classic primary sclerosing cholangitis (PSC) is a progressive, cholestatic liver disease of 

unknown cause, characterized by an inflammatory, fibro-obliterative process that may affect 

both the extrahepatic and intrahepatic bile ducts. The epidemiology, pathophysiology and 

general management of adult and pediatric PSC was recently reviewed [1■,2■]. The only 

available curative therapy is liver transplantation; up to 12.7% of patients will die on the 

waitlist, whereas 15–25% of transplanted patients will develop recurrent disease [3■,4■]. 

The current review will consider the key publications relevant to the subject of emerging 

pharmacologic therapies in PSC.

Although the cause of PSC is unknown, there are several prevailing hypotheses that have 

driven the search for novel therapeutics. The current therapeutic pipelines for PSC are based 

on four categories: bile acid pool modification (‘toxic-bile’ hypothesis) (summarized in Fig. 

1 [5] and Table 1); intestinal microbiome modification (‘leaky gut’ hypothesis); 
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immunomodulation of receptors that potentiate recruitment of intestinally derived 

lymphocytes to the hepatobiliary milieu (‘aberrant gut lymphocyte homing’ hypothesis) 

(summarized in Fig. 2) and lastly, modification of pathways involved in liver fibrogenesis.

The challenge of primary sclerosing cholangitis trials

The discovery of effective therapies for PSC has been hampered by lack of knowledge 

regarding its pathogenesis. This impacts the rate of therapeutic development and limits the 

identification of key surrogate endpoints and the creation of animal models that can 

recapitulate the complex nature of PSC [6■■,7]. Robust surrogate endpoints for PSC are 

urgently needed as clinical endpoints such as transplant-free survival or decompensation 

require lengthy follow-up and large patient cohorts that are virtually impossible to achieve in 

clinical trials. In lieu of hard clinical endpoints, alkaline phosphatase (ALP) has often been 

used as a surrogate measure of outcome, but as discussed below, this is controversial [8]. 

Better biomarkers for cholestasis and/or biliary fibrosis are clearly needed for this disease. 

Also, we need the capability to identify patients with rapidly progressive disease and 

preferentially enroll these patients into clinical trials.

Lessons from ursodeoxycholic acid studies

Although originally, administration of exogenous bile acid therapy was postulated to replace 

toxic endogenous bile with a more nontoxic form [i.e. ursodeoxycholic acid (UDCA)], it 

was later discovered that bile acids are not simply passive bystanders, but are signaling 

molecules that participate in maintaining their own homeostasis [9]. In animal models, 

UDCA has been demonstrated to have effects on the secretion of bile acids through Ca2+, 

protein kinase C, mitogen-activated protein kinase- and integrin-dependent mechanisms, 

leading to an increase in bile salt export pump (BSEP) and multidrug resistance-associated 

protein 2 (MRP2) [10–14]. UDCA also stimulates HCO3
− secretion, potentiating the ‘biliary 

HCO3
− umbrella’, a constitutive mechanism that protects cholangiocytes from the injurious 

effects of hydrophobic bile [15,16]. It has negligible effects on the synthesis of bile acids 

[17].

Despite numerous studies on the utility of the synthetic bile acid UDCA in PSC, its use 

remains highly controversial [18,19]. Clearly, high-dose UDCA (28–30 mg/kg/day) worsens 

outcomes with greater progression to liver transplantation and the development of varices 

despite biochemical improvement in serum ALP, highlighting the uncertainty of ALP as a 

surrogate marker [20]. Furthermore, despite studies demonstrating that lower doses of 

UDCA (13–25 mg/kg/day) are associated with significant improvement in serum ALP – 

these studies failed to demonstrate improvements in transplant-free survival [21,22]. 

Significantly, stratification of patients into those with or without improvement in ALP (i.e. 

normalization or a drop in ALP to <1.5 times the upper limit of normal) demonstrate that 

patients have improved survival regardless of whether this biochemical change occurs 

spontaneously or following treatment with UDCA [23–24,25■,26]. Due to the uncertainty 

around the true effect of UDCA, and the lack of a biomarker that may identify those who are 

more likely to have a biochemical response to UDCA, the use of UDCA in PSC remains 

controversial [18,19,27,28]. In children, the association between ALP and outcomes is even 

less clear as ALP levels vary with both age and sex due to fluctuations in the bone-derived 
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isoenzyme [29]. The experience with UDCA highlights the difficulty in designing PSC trials 

and the vulnerability of relying on a surrogate biomarker such as ALP.

Emerging therapies and trials

The following sections will outline the novel therapies currently under investigation for PSC, 

starting with those that modulate bile acids, followed by those that modulate the 

microbiome, immunomodulatory processes and finally fibrogenesis.

norUrsodeoxycholic acid

24-norUrsodeoxycholic acid (norUDCA, Dr Falk Pharma GmbH, Freiburg, Baden-

Württemberg, Germany) is a derivative of UDCA that lacks a methylene group, providing 

resistance to conjugation with taurine or glycine [30]. As a weak acid, unconjugated 

norUDCA can be passively absorbed by cholangiocytes and secreted by hepatocytes, unlike 

UDCA, which in its unconjugated form can only be absorbed through the apical sodium bile 

acid transporter (ASBT) [31]. This allows norUDCA to efficiently avoid full enterohepatic 

circulation, instead undergoing a process called ‘cholehepatic shunting’, in which bile acids 

are reabsorbed by cholangiocytes and returned to hepatocytes rather than undergoing active 

transport across the terminal ileum [32,33]. This leads to significantly greater choleresis than 

with UDCA [32]. In addition, nor-UDCA causes choleresis of more hydrophobic bile, with a 

significant increase in biliary glutathioine and bicarbonate secretion in mouse models [34]. 

Unlike UDCA, norUDCA can also increase the expression of basolateral efflux pumps (i.e. 

Mrp4 and Mrp3) and upregulate phase I and II detoxification enzymes (Sult2a1, Ugt1a1, 

Cyp2b10 and Cyp3a11), the latter leading to a significant decrease in serum bile acids [34].

In a 12-week phase II dose finding study, 159 patients were randomized to placebo or a daily 

dose of norUDCA of 500, 1000 or 1500mg (NCT01755507) [35]. Intention-to-treat analysis 

demonstrated a significant reduction (12.3–26.0%) in serum ALP, compared with the 

placebo group. Similar changes in aspartate aminotransferase (AST) and alanine 

aminotransferase (ALT) were noted. Thus, norUDCA may be a promising treatment for PSC 

due to its apparent lack of toxicity and greater choleretic effects when compared with 

UDCA; a phase III study is necessary to examine the effectiveness of this drug in PSC.

Obeticholic acid

In 2016, obeticholic acid (OCA, Intercept Pharmaceuticals, New York City, New York, 

United States) was approved for use in primary biliary cholangitis, a cholestatic liver disease 

of presumed autoimmune origin that afflicts the interlobular and septal bile ducts; it is 

currently undergoing investigation in PSC (NCT02177136) [36]. OCA, a ligand for the 

farnesoid X receptor (FXR), has over 100 times greater potency for FXR than its 

endogenous analog, chenodeoxycholic acid [37]. OCA is postulated to reduce toxic bile 

production and induce secretion through FXR-mediated pathways. FXR is expressed in the 

liver and the small intestine (highest levels in the terminal ileum) [5]. Activation of FXR 

inhibits CYP7A1 (the rate limiting step of bile acid production) both directly, through 

translational activation of the short heterodimer protein (SHP), as well as indirectly, through 

the release of fibroblast growth factor (FGF)-19, which binds to FGF-4 on hepatocytes and 

leads to additional CYP7A1 inhibition [5,38,39]. OCA also decreases exposure to toxic bile 
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by upregulating BSEP, MDR2/3, MRP2 and OSTα/β, which leads to increased canalicular 

bile secretion [40–42]. And finally, OCA also induces the expression of SULT2A1 and 

UGT1A1 [43,44■]. These processes combined should limit hepatocyte accumulation of 

toxic bile acids, thereby reducing liver injury and potentially ameliorating the pathogenesis 

of PSC.

Fibrates

Fibrates are peroxisome proliferator-activated receptor (PPAR) agonists that were originally 

designed for treatment of hyperlipidemia and have recently been reviewed as potential 

therapies in cholestatic liver disease [45]. Each fibrate has a different affinity for individual 

PPAR receptors, of which there are three isoforms (α, β/δ and γ), with bezafibrate having 

equal activity with all three isoforms and fenofibrate having 10-fold higher selectivity for 

PPAR-α than PPAR-γ [46]. PPARs act as ligand-activated transcription factors, and once 

activated, they form a heterodimer with the retinoid X receptor and bind distinct DNA-

response elements [45]. Similar to OCA, fibrates can downregulate bile acid synthesis (by 

suppressing CYP7A1 and CYP27A1) and stimulate cannalicular secretion (by increasing 

expression of MDR2/3, MRP2) [45]. Fibrates may also act similarly to norUDCA by 

upregulating bile acid detoxification enzymes such as UGT1A1 and SULT2A1 [45].

Two pilot studies evaluating the efficacy of fibrates in PSC have been published [47,48]. 

Together, these include 21 patients treated over 6–12 months. Patients demonstrated 

significant decreases in ALP, with adverse events that included myalgias, nausea and 

worsening of psoriasis. Larger, placebo-controlled studies are warranted.

Apical sodium bile acid transporter inhibitors

Bile acids undergo enterohepatic circulation, with reabsorption of more than 95% of bile 

acids occurring at the terminal ileum via ASBT in the brush border membrane [49]. Two 

animal studies involving Mdr2−/− mice have demonstrated that ASBT inhibitors reduce 

serum bile acid levels and profibrogenic gene expression, while improving hepatic 

biochemical profiles (i.e. ALP and ALT) [50■,51■]. A phase 2 study of an ASBT inhibitor 

(SHP625/Lum001; Lumena Pharmaceuticals, San Diego, California, United States) in PSC 

demonstrated significant reductions in bile acids from baseline, but no significant change in 

ALP and other liver biochemistries (NCT02061540) [52■].

Antimicrobial therapy and modulation of the microbiome: the ‘leaky gut’ hypothesis

Failure of the intestinal barrier is posited to lead to bacterial translocation into the classically 

sterile portal and biliary system via the gut-liver axis, thereby exposing biliary epithelium to 

foreign microbial antigens [53]. Supportive evidence for this hypothesis includes studies 

demonstrating the presence of bacteria in the bile of explanted livers, as well as the presence 

of Helicobacter pylori in hilar hepatic ducts and antibodies against Chlamydia species 

lipopolysaccharide in the sera of PSC patients [54–57].

Exposure to bacterial products triggers pattern recognition receptors such as Toll-like 

receptors, causing cholangiocytes to assume an activated phenotype, leading to the release of 

cytokines and chemokines like TNF-α, IL-6 and IL-8, as well as growth factors and other 
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signaling molecules [58]. This proinflammatory state may precipitate cholestasis and 

periductular fibrosis [58].

In turn, bacteria that comprise the intestinal microbiome may be influenced by bile 

composition. Recently, it has been demonstrated that increases in taurocholic acid secretion 

induced by a diet high in milk-fat may potentiate an abundance of Bilophila wadsworthia, a 

sulphate-reducing bacteria associated with ulcerative colitis [59]. This suggests that changes 

in bile acid composition may alter the intestinal microbiota and lead to dysbiosis, an aberrant 

microbial ecology that may cause disease through alterations in immune homeostasis [60].

In addition to their antimicrobial effects, antibiotics such as minocycline have been shown to 

have anti-inflammatory properties that may provide additional therapeutic actions in PSC. 

The clinical efficacy of vancomycin with metronidazole (NCT01085760) or without 

metronidazole (NCT01802073, NCT02605213 and NCT02137668), minocycline and 

rifaximin (Salix Pharmaceuticals, Raleigh, North Carolina, United States) have all been 

under recent or current investigation.

Vancomycin has been evaluated in three studies (total patients: 14 pediatric, 17 adult) in 

doses ranging from 50 mg/kg/day (pediatric, treatment for mean 54±43 months) to 150mg 

three to four times daily (adult, treatment for 12 weeks) [61,62]. The latter study also 

investigated metronidazole 250 or 500 mg three times daily. In children, vancomycin was 

associated with a reduction in ALT and gamma-glutamyl transferase (GGT). In adults, both 

doses were associated with decreased ALP. Counter-intuitively, only low-dose vancomyin 

and metronidazole led to decreased bilirubin and Mayo PSC risk scores.

In an open-label study evaluating rifaximin (550-g bid) in 16 patients over 12 weeks, there 

were no significant improvements in serum ALP, bilirubin, GGT or Mayo PSC risk score 

[63■]. Conversely, an open-label study of minocycline (100-mg bid) over 1 year 

demonstrated a significant improvement in serum ALP and Mayo PSC risk score, with no 

changes in bilirubin or albumin [64]. Minocycline's therapeutic effects may be in part 

because of its antiinflammatory and antiapoptotic properties [65]. It can also decrease 

inducible nitric oxide synthase, which is overexpressed in PSC and deleterious to 

cholangiocytes, and it also upregulates IL-10, a potent anti-inflammatory cytokine that limits 

auto-reactivity [66–69].

Fecal microbiota transplantation, probiotics and beyond

If modulation of the microbiome becomes a key component in the therapeutic arsenal for 

PSC, it is likely paramount that it is targeted toward the development of distinct intestinal 

microbial profiles, rather than a broad-spectrum destruction of the resident flora. This is 

exemplified by a recent study demonstrating that germ-free Mdr2−/− mice have worsening 

fibrosis, ductular reaction and ductopenia, with higher ALP, AST and bilirubin compared 

with conventionally caged mice [70■■]. Senescence, which has been implicated in the 

pathogenesis of PSC, was also worse in germ-free models and was abrogated by the addition 

of UDCA, a metabolite of commensal flora. This demonstrates that microbial metabolites 

may play a vital protective role in preventing injury to the biliary epithelium, suggesting that 
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an alternative route to novel PSC therapeutics may involve targeted modification of 

metabolomics profiles which in healthy hosts are normally microbially derived.

Another major concern regarding antibiotic therapy is the evolution of antibiotic resistance, 

such as vancomycin-resistant enterococcus [71,72]. Ideally, future clinical trials will include 

studies to elucidate specific microbial metabolic pathways that could be targeted, thus 

eliminating the need for chronic antimicrobial treatment.

Future therapies may also include fecal microbiota transplantation (FMT) (NCT02424175) 

or the use of probiotics (NCT00161148). Fecal transplantation has been shown to be 

effective for diarrhea due to recurrent Clostridium difficile, but the long-term consequences 

of this approach are unclear [73]. Similarly, pooled data from two randomized controlled 

studies involving patients with ulcerative colitis suggest that FMT may be of benefit; 

however, randomized, placebo-controlled studies are needed to further validate its 

effectiveness in inflammatory bowel disease (IBD) [74■].

Immunomodulatory agents: the ‘aberrant gut lymphocyte’ hypothesis

The hypothesis postulates that intestinally derived lymphocytes aberrantly express receptors 

that allow for recruitment to the hepatobiliary system in which they incite a proinflammatory 

cascade [75]. Mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1), an 

endothelial cell adhesion molecule expressed on mesenteric lymph nodes and in vessels of 

the lamina propria of the intestinal milieu, may be integral to this aberrant signaling process 

[76]. MAdCAM-1 permits the recruitment of lymphocytes into the intestinal mucosa by 

binding to the α4β7 integrin and has been implicated in IBD pathogenesis [77]. 

MAdCAM-1 is not constitutively expressed in the liver, but it appears to be inappropriately 

expressed on liver endothelium in PSC [76]. This allows gut-derived lymphocytes traveling 

through the enterohepatic circulation to bind to cholangiocytes, then infiltrate and incite 

local inflammation [75]. The adhesion of lymphocytes is further potentiated by vascular 

adhesion protein-1 (VAP-1), which is constitutively expressed on hepatic endothelial cells 

and upregulated in individuals with IBD [76,78].

There have been a number of molecules developed for IBD that may have a therapeutic 

effect in PSC. One of the first was natalizumab (Biogen, Cambridge, Massachusetts, United 

States), which targets the α4 integrin and can associate with either β1, which can bind to 

vascular cell adhesion molecule 1, or β7, which can bind to MAdCAM-1 [79]. 

Unfortunately, natalizumab caused reactivation of the John Cunningham virus leading to 

progressive multifocal leukoencephalopathy (attributed to the inhibition of α4β1) and has 

since been discontinued [80,81]. Studies evaluating vercirnon, a CCR9 inhibitor 

(ChemoCentryx, Mountain View, California, United States), failed to consistently reach 

primary endpoints in Crohn's disease, and so further drug development has ceased [82]. 

Therapies currently under investigation for IBD, which may gain relevance in PSC, are 

etrolizumab (a monoclonal antibody against β7) (NCT01461317 and NCT02394028) 

(Roche Holding AG, Basel, Switzerland) and PF-00547659 (a selective inhibitor of 

MAdCAM-1; Shire Pharmaceuticals, St. Helier, Jersey) [83–85]. Vedolizumab (a mAb 

against the α4β7 integrin; Takeda Pharmaceutical Company Limited, Chuo-ku, Osaka, 

Japan) was approved by the Federal Drug Administration for ulcerative colitis and Crohn's 
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disease in 2014 and is currently under investigation for PSC (EudraCT2014-003942-28) 

[86–88]. BTT1023 (Biotie Therapies, Turku, Finland), an inhibitor against VAP-1, is also 

currently under investigation (NCT02239211).

Antifibrogenic therapies

The evolving interest in antifibrogenic therapies in noncholestatic liver disease has naturally 

given rise to investigations into their utility in cholestatic liver disease.

Chemokine receptor 2/chemokine receptor 5 inhibitors

Chemokine receptor 2 (CCR2) and chemokine receptor 5 (CCR5) are instrumental to liver 

fibrogenesis [89]. Located on monocytes/macrophages, Kupffer cells and hepatic stellate 

cells (HSC), they bind chemokine ligand type 2 and 5, leading to release of TNF-β, which 

then stimulates collagen production by activated HSCs [90■]. Cenicriviroc, a dual CCR2/

CCR5 antagonist (Takeda Pharmaceutical Company Limited, Chuo-ku, Osaka, Japan and 

Tobira Therapeutics, San Francisco, California, United States), is currently under 

investigation for PSC (NCT02653625).

Simtuzumab

Simtuzumab (Gilead Sciences, Foster City, California, United States) is a mAb against 

LOXL2, an enzyme that promotes the formation of cross-linkages between collagen fibers as 

well as the activation and recruitment of fibroblasts [91]. It is increased in hepatitis B, 

hepatitis C, NASH and animal models of liver fibrosis [92,93■]. A randomized, placebo-

controlled trial was recently completed, and published results are pending (NCT01672853), 

but given preliminary results, further drug development is on hold [94■].

Conclusion

There are a number of pharmacologic therapies under development or in clinical trials for 

PSC, which target the different proposed pathogenic pathways. The future of PSC treatment 

is highly promising, though it is important that future studies integrate biomarker discovery 

into their design, given the lack of clarity around the ideal surrogate endpoint in PSC, as 

well as tools to improve risk stratification.
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Key Points

• PSC is an incurable, fibro-obliterative disease that affects the large bile ducts 

in the liver, the only treatment of which is currently liver transplant.

• Novel therapeutics under development target four proposed pathways of PSC 

pathogenesis: bile acid pool modulation, intestinal microbiome modification, 

immunomodulation of receptors that potentiate hepatic infiltration of gut-

derived lymphocytes, and inhibition of fibrogenesis.

• The lack of a strong surrogate marker continues to hamper therapeutic 

development in PSC, as traditional clinical endpoints (i.e. decompensation, 

death and liver transplant) require infeasible follow-up times and cohort sizes.

• It is critical that future therapeutic studies include discovery and validation 

pathways for novel biomarkers and tools to stratify disease severity.
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Figure 1. 
Current and emerging therapies for primary sclerosing cholangitis that modulate bile acid 

synthesis, detoxification, secretion and reabsorption. AE2, Cl−/HCO3
− anion exchanger 2; 

ASBT, apical sodium-bile acid transporter; ASBT–, apical sodium-bile acid transporter 

inhibitor; BA, bile acids; BSEP, bile salt export pump; CaCl, Ca2+-dependent chloride 

channel; CB, conjugated bilirubin; CFTR, cystic fibrosis transmembrane conductance 

regulator; FGF19, fibroblast growth factor 19; FGFR4, fibroblast growth factor receptor 4; 

FXR, farsenoid X receptor; MDR2/3, multidrug resistance 2/3; MRP2, multidrug resistance-

associated protein 2; MRP3, multidrug resistance-associated protein 3; MRP4, multidrug 

resistance-associated protein 4; NTCP, sodium/taurocholate cotransporting polypeptide; 

norUDCA, 24-norUrsodeoxycholic acid; OCA, obetichoic acid; OSTα/β, organic solute 

transporter α/β; PC, phosphatidylcholine; PSC, primary sclerosing cholangitis; RXR, 

retinoid X receptor; SULT2A1, sulfotransferase family 2A member 1; UDCA, 

ursodeoxycholic acid; UGT1A1, uridine diphosphate-glucoronosyltransferase family 1 

member A1. Modified from [5].
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Figure 2. 
Therapies that are proposed to inhibit the transmigration of gut-derived lymphocytes into the 

hepatic environment in primary sclerosing cholangitis. In primary sclerosing cholangitis, 

mucosal vascular address in cell adhesion molecule 1 is aberrantly expressed. This allows 

aberrant binding and transmigration of gut-derived lymphocytes via α4β7 integrin. Binding 

and transmigration is further enhanced by vascular adhesion protein-1, which is 

constitutively present on hepatic endothelial cells and allows lymphocyte recruitment. 

CCR9–, chemokine receptor 9 inhibitor; MAdCAM-1, mucosal vascular addressin cell 

adhesion molecule 1; PSC, primary sclerosing cholangitis; VAP-1, vascular adhesion 

protein-1.
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