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Abstract

Smoking-related biomarkers for lung cancer and other diseases are needed to enhance early 

detection strategies and to provide a science base for tobacco product regulation. An untargeted 

metabolomics approach by ultra-performance liquid chromatography-quadrupole-time of flight 

mass spectrometry (UHPLC-Q-TOF MS) totaling 957 assays was used in a novel experimental 

design where 105 current smokers smoked 2 cigarettes one hour apart. Blood was collected 

immediately before and after each cigarette allowing for within-subject replication. Dynamic 

changes of the metabolomic profiles from smokers’ four blood samples were observed and 

biomarkers affected by cigarette smoking were identified. Thirty-one metabolites were definitively 

shown to be affected by acute effect of cigarette smoking, uniquely including menthol-

glucuronide, the reduction of glutamate, oleamide, and 13 glycerophospholipids. This first time 

identification of a menthol metabolite in smokers’ blood serves as proof-of-principle for using 

metabolomics to identify new tobacco-exposure biomarkers, and also provides new opportunities 

in studying menthol-containing tobacco products in humans. Gender and race differences also 

were observed. Network analysis revealed 12 molecules involved in cancer, notably inhibition of 

cAMP. These novel tobacco-related biomarkers provide new insights to the effects of smoking 

which may be important in carcinogenesis but not previously linked with tobacco-related diseases.
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Introduction

Lung cancer early detection and prevention strategies are limited because there are no 

validated biomarkers of lung cancer risk for smokers. The Food and Drug Administration 

(FDA) now has the authority to regulate new tobacco products design and constituents, 

assess health claims by manufactures for some products purportedly that reduce risk 

compared to conventional tobacco products, and to enact performance standards. To do this, 

the FDA will rely on biomarkers and clinical trials to provide a science base for FDA 

decision-making (1). One way to identify new biomarkers for tobacco-related disease is to 

study the global metabolic impact on smokers from cigarette smoke, which is poorly 

understood for both the chemical metabolites of smoke (i.e., biomarkers of exposure) and 

the metabolites produced by cellular and organ reactions in response to smoke constituents 

(i.e., biomarkers of effect). By using untargeted metabolomic profiling, perturbations of 

many detectable metabolites (metabolome) in response to a treatment or disease can be 

quantitatively measured (2). The metabolome consists of peptides, oligonucleotides, sugars, 

organic acids, ketones, aldehydes, amino acids, lipids, steroids, alkaloids from cell reactions 

and foreign chemicals (e.g., medicines, cigarette smoke, and environmental toxins). Levels 

of these compounds may be affected by genetics, gender, age, hormones, metabolic rate, 

environment, lifestyle, disease, and other xenobiotic exposures. Metabolomic profiles, 

therefore, represent phenotypic responses for both endogenous processes and exogenous 

exposures. Previously, we have validated the use of untargeted metabolomics in smokers’ 

blood (3), and also have shown that this methodology is highly reproducible in a large scale 

study that identified diagnostic and prognostic markers in non–small cell lung cancer 

(NSCLC) patients (4).

In order to assess the complex outcome of cigarette smoking on smokers’ metabolomes, we 

used blood from a cross-sectional epidemiological study of well-characterized smokers, 

where blood was collected immediately before and after smoking, done twice for smoking 

two cigarettes one hour apart (Fig. 1a). Given the study design, the results are not 

confounded by other exposures, for example, subjects were not eating, exposed to car 

exhaust or did any activities during the one hour interval other than answering questions. 

The comparison of results before and after the cigarette, with replication, therefore 

establishes unambiguously that the metabolomic phenotype measured herein is solely 

related to smoking. Experiments were conducted under various quality control procedures 

including an assessment for the coefficient of variation (%CV) on features from pooled 

samples (Fig. 1b, see additional details in Fig. S1–S2).

Materials and Methods

Study Participants

Plasma samples were obtained from a study of 105 smokers at the National Institute of Drug 

Abuse (NIDA) and Georgetown University (GU). Eligible subjects were at least 18 years 

old, current smoking > 10 cigarettes/day for at least 5 years and had a stable smoking pattern 

for at least one year. Exclusion criteria included active respiratory tract or oral cavity 

disease, prior history of cancer, recent general anesthesia, recent smoking cessation therapy 

or antidepressants, psychiatric disorder or any other reason that precludes understanding the 
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informed consent, and pregnancy. Questionnaires included demographics, detailed smoking 

history, past medical history and behavior. This study was approved by the Institutional 

Review Boards of Georgetown University, The National Institute on Drug Abuse, and the 

Ohio State University.

Smoking Protocol and Biospecimen Collection

All participants smoked two cigarettes of their usual brand, one hour apart (Fig. 1a). The 

participants were asked to smoke one of their cigarettes naturally as the first cigarette and to 

smoke their second cigarette using the Clinical Research Support System Device (CReSS; 

Plowshare Technologies, Baltimore, MD) that measures puff topography. Carbon monoxide 

(CO) levels in the participant’s expired air were also determined before and five minutes 

after each cigarette by Vitalograph (Vitalograph Inc, Lenexa, KS). Blood was collected 

immediately before and two minutes after smoking each cigarette and heparin-containing 

green-top tubes were used in this study. All blood samples were processed immediately and 

stored in the −80°C. Nicotine, cotinine and trans-3′-hydroxycotinine levels in the blood 

samples were determined by gas chromatography and liquid chromatography–tandem mass 

spectrometry, as previously described (5, 6). During the 60 minutes between smoking, 

subjects completed in-person interviews. Cotinine levels, nicotine boosts (i.e., the level of 

increase before and after a cigarette) and CO boosts were determined to serve as an 

important validity check of exposure (Fig. S3a). Subjects with negative nicotine boost levels 

or with plasma cotinine levels less than 100 ng/ml were excluded to ensure subjects with 

active smoking history in the study (Fig. S3b).

UHPLC-QTOF-MS Analysis

Experiments were performed in positive and negative ion modes by Ultra-High Performance 

Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (UHPLC-Q-TOF 

MS) for the four time points from 105 smokers for a total of 957 assays, including 117 

controls (see QC section for more details). Sample aliquots were mixed with 195 μL of 66% 

acetonitrile (ACN) containing the internal standards debrisoquine and 4-nitrobenzoic acid 

(4-NBA). Following centrifugation, the supernatant was injected onto a reverse-phase 50 × 

2.1 mm ACQUITY 1.7-μm C18 column (Waters, Milford, MA) using an ACQUITY UPLC® 

system (Waters, Milford, MA) with a gradient mobile phase consisting of 2% ACN in water 

containing 0.1% formic acid (A) and 2% water in ACN containing 0.1% formic acid (B). 

Each sample was resolved for 10 min at a flow rate of 0.5 ml/min. The gradient consisted of 

100% A for 0.5 min and decreased to 40% A over 3.5 minutes, and then to 0% over the next 

4 min, and held at 100% B for one additional minute. The column eluent was introduced 

directly into the mass spectrometer by electrospray. Mass spectrometry was performed on a 

Q-TOF Premier (Waters, Milford, MA) operating in negative-ion (ESI−) and positive-ion 

(ESI+) electrospray ionization modes with a capillary voltage of 3200 V and a sampling 

cone voltage of 20 V in negative mode and 35 V in positive mode. The desolvation gas flow 

was set to 800 liters/h and the temperature was set to 350°C. The cone gas flow was 25 

liters/h, and the source temperature was 120°C. Data were acquired in centroid mode from 

50 to 850 m/z in MS scanning. Raw data were converted to Network Common Data Format 

(NetCDF) files using MassLynx (Waters, Milford, MA). They were then preprocessed by 

XCMS online, a cloud-based metabolomic data processing platform (7), for feature 
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detection, retention time correction, retention time alignment to obtain a list of features in 

which each feature is represented by its m/z value, retention time and intensities across 

samples.

Quality Control (QC)

Experimental reproducibility of the instrument was assessed over multiple days for 

replicates and quality control samples (Fig. S1 & S2), as previously reported (3). In order to 

ensure the quality and reproducibility of the data, pooled samples from seven nonsmoker 

subjects were placed as every tenth sample totaling 62 analyzes (3). Also, 10% of the 

subjects plasma (n=55) was repeated at the end of the experiment. A list of features was 

used to assess the variability among the pooled QC samples by comparing coefficient of 

variation (%CV) along with m/z values and retention times to detect the measurement error 

of the LC-MS system, if any (Fig. 1b). A total of 389 out of 4809 features with a greater 

than 15% CV were excluded for later analysis.

Data Analysis

Preprocessed data sets were analyzed using SIMCA (Umetrics Inc, Kinnelon, NJ), Matlab 

(MathWorks, Natick, MA), JMP (SAS, Cary, NC), Partek Genomics Suite (Partek Inc, St 

Louis, MO) and Metaboanalyst (www.metaboanalyst.ca). Significant features were searched 

against METLIN Metabolomics Database, Human Metabolome Database (HMDB), and 

LIPID MAPS Structure Database (LMSD) with the mass accuracy of ten parts per million to 

identify putative metabolite identifications.

To ensure that the data followed the assumptions of normality, data was log2 transformed. 

Since blood cotinine level is a more precise measure of nicotine consumption than self-

reported usage (cigarette per day) (8), plasma cotinine levels were used in the analysis to 

represent smokers’ cigarette exposure. Paired t tests and linear mixed-effects models were 

performed on the relative intensity of the features based on a four-way analysis of 

covariance (ANCOVA) adjusted for gender, race and cotinine levels by using a residual 

maximum likelihood (REML) technique. In addition, Fisher’s Least Significant Difference 

(LSD) contrast method was used to determine pairwise differences in metabolite levels 

between post- to pre- cigarettes, gender and race for each cigarette. The results of specific 

comparisons were obtained using false discovery rate by the Benjamini-Hochberg procedure 

(FDR < 0.05) controlling procedures to correct for multiple testing. To identify the 

correlation between metabolites of interest, and the correlation of metabolites to known 

covariates including plasma cotinine levels, Pearson correlation or Spearman’s rank 

correlation were performed accordingly. The construction, interaction, and pathway analysis 

of potential biomarkers was performed by Ingenuity Pathways Analysis (IPA, Ingenuity 

Systems) tool in order to identify the biological functions, mechanisms, and pathways that 

are most relevant to the metabolites of interest.

Validation of Metabolites

HPLC with MS/MS was used to confirm the identity of detected metabolites (Phenomenex 

Luna NH2 column on a Dionex Ultimate 3000 HPLC system, coupled to a Bruker maXis 4G 

ESI Q-TOF), operated in positive and negative modes. The instrument was calibrated with 
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Agilent Low-Concentration Tuning Mix (Agilent, Santa Clara, CA) before sample analysis, 

and the capillary voltage was set at 4500 V for positive mode and 4000 V for negative mode. 

The metabolite identifications were confirmed by matching the retention time, mass error 

and isotopic pattern of the parent ion, and tandem mass spectrum of the parent ion under the 

same collision energy from the biological sample to that of the commercially available 

standard metabolites.

Reagents and chemicals

All reagents and solvents were of HPLC grade. 4-NBA, debrisoquine sulfate, and oleamide 

were purchased from Sigma-Aldrich (St. Louis, MO); ACN and water were purchased from 

Fisher Optima grade (Fisher Scientific, Waltham, MA); L-glutamate was purchased from 

ChromaDex (Irvine, CA); lysoPC(14:0), lysoPC(15:0), lysoPC(16:0), lysoPC(18:0), 

lysoPE(18:0), lysoPC(18:1), lysoPC(19:0), and lysoPC(20:0) were purchased from Avanti 

(Alabaster, Alabama); menthol-glucuronide was purchased from Toronto Research 

Chemicals (North York, ON, Canada).

Results

Characteristics of smokers in the study

Participants in this study (n=105) were predominantly male (63.8%) and African-American 

(60%). Mean age of study participants was 43.0 (range 18–69, SD=9.8) years, with an 

average smoking history of 22.9 (range 5–50, SD=9.9) years. Participants reported smoking 

19.9 (SD=8.4) cigarettes per day on a typical day, and 17.8 (SD=9.6) cigarettes in the 

previous 24 hours.

Untargeted metabolomics profiling

Pair-wise comparison of pre– and post– cigarette samples showed 546 features from the 1st 

cigarette and 280 features from the 2nd cigarette that were significantly increased or 

decreased when smoking the cigarette (p < 0.05), before correcting for multiple comparisons 

(Fig. 2a–b). Among those features, 12 were consistently increased and 78 were decreased 

across both cigarettes (Fig. 2c). A 4-way analysis of covariance (ANCOVA) model was used 

controlling for gender, race, and cotinine levels for effect of metabolite expression due to 

cigarette smoking, because the study did not include equal numbers of race and gender, and 

blood cotinine is a more accurate measure of nicotine consumption than self-reported usage 

reflecting the actual intake (8). The mean F-ratio for each factor was computed to show the 

significance of different sources of variation in the entire data in the ANCOVA model (Fig. 

S4). If the F-ratio of a factor is higher than the error, that factor contributes significant 

variation to the data versus random error across all the variables. Based on the ANCOVA 

model, all factors including cotinine, gender, race, and pre– & post– cigarettes contributed 

significant variation to the data across all the variables.

Correcting for multiple comparisons, there were 31 features that differed between pre-1 to 

post-1 paired samples of the first cigarette (FDR < 0.05) that also were significantly different 

(and in the same direction) for the second cigarette with a p value < 0.05 (Fig. 3a), where 27 

decreased and 4 increased (Table S1). Table S2 provides the Spearman rank correlation 
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coefficients of significant metabolites in the baseline to plasma cotinine levels. The main 

chemical taxonomy classes of those metabolites were putatively identified as 

glycerophospholipids (13), sterol lipids (2), amino acids, peptides, and analogues (1), fatty 

acid esters (1), fatty amides (1), and prenol lipids (1). Twelve features could not be mapped 

to current databases and therefore their identities are unknown. Metabolite identifications 

were confirmed using commercially available standards, and the structures and MS/MS 

spectra of representative metabolites and their respective authentic standard compounds are 

shown in Fig. S6. The confirmed identities were menthol-glucuronide, lysoPC(19:0), 

lysoPC(18:0), lysoPC(16:0), lysoPC(14:0), lysoPE(18:0/0:0), lysoPC(15:0), lysoPC(18:1), 

glutamate, lysoPC(20:0) and oleamide (Table S1). Covariances among 31 significant 

features on the baseline (pre-1 time point) were evaluated using a heat map (Fig. 3b). All 

glycerophospholipids were clustered together with positive correlations, indicating a more 

global effect on glycerophospholipids by smoking. Other known metabolites positively 

correlated with the glycerophopholipids included 1α,25-dihydroxy-11-(4-

hydroxymethylphenyl)-9,11-didehydrovitamin D3, oleamide, and 2-octenoylcarnitine. 

Menthol-glucuronide, a menthol metabolite, increased the most robustly (p = 3.05E-09, FDR 

= 4.58E-08) among all metabolites of interests (Fig. S5). It was positively correlated with 

229.05–, 2-octenoylcarnitine and glutamate, and negatively correlated with oleamide, 

lysoPC(16:1) and 508.34+ (p < 0.05, Table S3).

The levels of menthol-glucuronide for all time points were statistically higher in the menthol 

smokers than in the non-menthol smokers, independent of race (Fig. 4a). Menthol levels 

increased with smoking for the menthol smokers, but not nonsmokers, and the level 

decreased between cigarettes (Fig. 4a), consistent with the known half-life of 56.2 minutes 

(9). Menthol-glucuronide was positively correlated with baseline cotinine level in all 

smokers (Table S2, r=0.2; p=0.04) and menthol smokers (Table S2, r=0.31; p=0.008), and 

was positively correlated to nicotine boost (Table S4, r=0.26; p=0.04) and CO boost (Table 

S4, r=0.23; p=0.04) in all smokers.

Race and menthol smoking effects

Random Forest analysis was used to perform supervised classifications for race differences 

on the pre–1 cigarette plasma. There was 81.7% accuracy for race (Fig. S7a). Principal 

component analysis (PCA) modeling of the significant metabolites demonstrated separation 

of metabolomic profiles between Black and White smokers (Fig. S8a). In order to determine 

the racial differences in the metabolic capacity impacted by cigarette smoking, ANCOVA 

model controlling for gender and cotinine levels was conducted and 8 features were 

significantly different between Blacks and Whites (p < 0.05, Fig. 4b). There were 5 

metabolites significantly higher in Black smokers, namely menthol-glucuronide (fold 

change=3.0–4.6), glutamate (fold change=1.5–1.7), 229.05– (fold change=4.2–4.9), 

PE(P-16:0/0:0) (fold change=1.2), and 2-octenoylcarnitine (fold change=1.3–1.4). 

Metabolites higher in White smokers were lysoPC(16:1), lysoPC(15:0) and 508.34+ (fold 

change=1.3). Among the smokers in our study, 92% of the Black participants smoked 

menthol cigarettes compared to 31% of the White smokers. In order to determine the effect 

of the cigarette additive on the metabolomics profiles, smokers were stratified to menthol 

(n=71) and non-menthol (n=34) smokers, and 4-way ANCOVA models controlled for 
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gender, race, and cotinine levels were used on both groups, separately. Significantly different 

features by the type of cigarette smoked overlapped from two cigarettes (FDR < 0.05 from 

the 1st cigarette and p < 0.05 from the 2nd cigarette) indicated five from the menthol smokers 

namely menthol-glucuronide, lysoPC(20:0), chenodeoxycholic acid sulfate, oleamide, 

272.66+, and 698.29+ and 104.10+ from non-menthol smokers (Fig. 4d–e).

Gender effects

Random Forest analysis showed 87.3% accuracy for gender (Fig. S7b). PCA model of the 

significant metabolites demonstrated differential metabolomic profiles between male and 

female smokers (Fig. S8b). After adjustment for race and cotinine levels by ANCOVA 

model, 8 metabolites were significantly higher among men than women (p < 0.05) (Fig. 4c), 

namely lysoPC(O-18:0), lysoPC(18:1), 508.34+, 483.36+, lysoPC(16:0), lysoPC(16:1), 

512.36+, and 763.98+. In contrast, 2-octenoylcarnitine was higher among women than men 

after smoking both cigarettes (p < 0.05, Fig. 4c).

Pathway analysis and networks affected

The thirty-one significant metabolites affected by cigarette smoking were analyzed by IPA, 

using the KEGG IDs, and projected onto Ingenuity’s knowledge-based networks. 

Considered in this analysis were direct and indirect relationships including endogenous 

chemicals, focusing on interaction networks observed from all data sources. There were total 

of five KEGG IDs associated with the identifiable metabolites, and three out of five were 

mapped by IPA for the analysis, namely 1-acylglycerophosphocholine (representing 13 

glycerophospholipids in the study), l-glutamic acid, and oleamide. Carbohydrate 

metabolism, lipid metabolism, and small molecule biochemistry were the top three 

molecular and cellular functions affected (p < 0.05).

Network analysis was generated de novo based on the mapped metabolites to explore 

potential molecular events and mechanisms affected by cigarette smoking. It uses 

information obtained from the literature to assemble and extrapolate known interactions, 

signaling, as well as the relationships between these entities. Two networks affected with the 

associated functions of (1) Amino acid metabolism, small molecule biochemistry, cell-to-

cell signaling and interaction, with 11 molecules involved in cancer; and (2) Cellular 

compromise, connective tissue development and function, and organ morphology, with 1 

involved in cancer, were observed (Fig. 5a–b). The 12 molecules involved in cancer are 

ABCC8, cyclic AMP, GABBR1, GABBR2, GRIK2, GRM4, GRM6, GRM7, KCNK2, 

P2RY1, PER1, and PLA2G2A. Using the Molecule Activity Predictor within IPA to predict 

the in silico upstream and downstream effects in the network, IPA predicted that decreased 

level of L-glutamic acid, and oleamide in the first network will lead to the inhibition of the 

glutamate receptors GRIK2, GRM4, GRM6, and GRM7, and ultimately the inhibition of 

cyclic AMP (Fig. 5a). Cyclic AMP mediates a total of 33 relationships in this network. The 

decreased levels of glycerophospholipids in the second network were the result of the 

inhibition of calcium-dependent phospholipase A2 enzyme PLA2G2A (Fig. 5b).
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Discussion

In 2009, The United States Congress passed the Family Smoking Prevention and Tobacco 

Control Act (FSPTCA) authorizing the FDA to regulate the tobacco industry, including 

requiring performance standards that govern exposures and assessing products putatively 

developed to reduce exposure (and health claims associated with them). Critical to these 

efforts are human studies using biomarkers of exposure and harm in both observational 

studies and clinical trials, in lieu of long-term epidemiology studies. While there are 

chemically-specific biomarkers for smoke exposure that are being studied for risk, e.g., 

cotinine, tobacco-specific nitrosamines and 1-hydroxypyrene (10). These biomarkers have 

proved useful for estimates of tobacco exposure but other biomarkers are needed to 

understand the relation between tobacco exposure and biologic effect. Separately, new 

biomarkers of smoking-related disease are needed to improve the early detection of lung 

cancer and other diseases. For example, while low-dose CT screening is now recommended 

for lung cancer screening, biomarkers could be useful for identifying persons who would 

most benefit from screening, or assist in follow-up for detection lesions with better decision 

making about invasive procedures.

In this study, using a novel experimental design where an individual smoked two cigarettes 

allowing for within-subject replication, dynamic changes on the smoking profiles were 

observed and biomarkers affected by cigarette smoking were identified. Thirty-one 

metabolites were definitively shown to be affected by cigarette smoking, among which a 

menthol metabolite was the most significant. There are current considerations for menthol 

regulation by the Food and Drug Administration. This first identification of a menthol 

metabolite in smokers’ blood serves as a proof-of-principle for untargeted metabolomics to 

find new biomarkers of smoking, and also provides new opportunities for human studies of 

menthol tobacco products. For example, e-cigarette vapors do not have most of the tobacco 

toxicants, but some are mentholated and so the menthol-glucuronide might be useful for 

studies of e-cigarettes that need to assess exposure. Separately, the effects of menthol on 

smoking behavior and carcinogen exposure have been inconclusive (11), and so this marker 

could help better define exposure. Other metabolites were identified including the reduction 

of glutamate and oleamide, and the systematic reduction of 13 glycerophospholipids after 

cigarette smoking. The network analysis indicated multiple inhibitions to the glutamate 

receptors and the inhibition of cyclic-AMP, which may be important in carcinogenesis but 

not previously linked with tobacco-related carcinogenesis. Networks affected involved total 

of 12 known molecules for cancer.

The menthol glucuronide levels in this study rose with each cigarette, and the baseline level 

was correlated with the plasma cotinine levels in all smokers combined, and more so for 

menthol cigarette smokers. Menthol was detected in all smokers because menthol is 

contained in all cigarettes, including ones not marketed as containing menthol (12). While 

menthol glucuronide has never been identified before in the blood of smokers, in urine, it 

has been correlated with cigarettes per day, cotinine, and tobacco-smoke carcinogens (12). 

In this previous study, menthol glucuronide was measured in 54% of regular cigarette 

smokers, compared to 82% of menthol cigarette smokers. However, our study identified the 

menthol glucuronide in the blood of all smokers.
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This study identified new endogenous biomarkers that were affected by smoking, namely a 

decrease in 13 glycerophospholipids, including 11 lysoPCs. These compounds, also known 

as phosphoglycerides, are important cell membrane constituents that maintain structural 

integrity and ion permeability, and in pulmonary surfactant to reduce surface tension during 

expiration (13). In animal models, consistent with our data, glycerophospholipids decreased 

with smoke exposure in liver (14) and with cigarette-containing naphthalene treatment in 

lung (15). These are biologically potent compounds presenting as minor phospholipids in the 

plasma (8–12%) and cellular membranes (≥ 3%) (16). They are involved in inflammation 

and immune responses (17), and assist cell differentiation (18). Patients with atherosclerotic 

diseases (19) have lower levels of plasma lysoPCs and these compounds induce 

inflammation of human coronary artery smooth muscle cells (20), while inhibiting 

endothelial cell migration and proliferation (21). In the lung, they are protective against lung 

vascular injury mediated by the inhibition of neutrophil NADPH oxidase activation through 

the elevation of intracellular cAMP (22). From the pathway analysis herein, decreased levels 

of glycerophospholipids were the result of the predicted inhibition of calcium-dependent 

phospholipase A2 enzyme PLA2G2A (Fig. 5b). Reduced expression of PLA2G2A has been 

associated with high-grade tumors, increased lymph node metastasis, increased venous 

invasion, lymphatic invasion in esophageal squamous cell carcinoma (ESCC) (23), and 

reduced in overall survival rate in ESCC (23) and gastric cancer (24). Thus, lower levels of 

lysoPCs may contribute to lung cancer, heart disease and lung disease.

Previous studies using untargeted metabolomics have also identified the effects of smoking 

on lipid metabolites, as reported herein. One studied 25 smokers and 25 non-smokers, who 

first identified differences in a number of fatty acids that were either higher or lower in 

smokers than non-smokers, including 3 lysoPCs that were increased and 5 that decreased 

(25). A second study of 28 smokers versus 101 nonsmokers also observed that some lysoPCs 

went up while others decreased, with glycerophospholipid changes for 30 subjects who quit 

smoking (26, 27). The identified changes, however, were different than those reported 

herein, but these studies have the potential for confounding due to their cross-sectional 

nature, while our study demonstrates conclusively the impact of smoking on 

glycerophospholipid levels. In our study, baseline levels of PE(P-16:0/0:0), PC(P-15:0/0:0), 

oleamide, lysoPE(18:0/0:0), lysoPC(20:0), lysoPC(O-18:0) and lysoPC(19:0) from both 

cigarettes were significantly lower than non-smokers (QCs) while lysoPC(16:1) and 

lysoPC(18:1) were higher than non-smokers (FDR < 0.05, Fig. S9). LysoPC(16:1) and 

lysoPC(18:1) of smokers both have greater dynamic range than non-smokers compare to 

other significant metabolites (Fig. S9). In addition, the level of lysoPC(16:1) was higher 

among Whites than Blacks (Fig. 4b), and the level of lysoPC(18:1) was higher among men 

than women (Fig. 4c). Importantly, lysoPC(16:0), lysoPC(18:0), and lysoPC(18:1) that are 

changed herein have been noted as lower in the plasma of lung cancer patients compared to 

controls (28). Concluding from the literature and our findings, decreased levels of 

lysoPC(16:0), lysoPC(18:0) and lysoPC(18:1) could be potential biomarker for early 

carcinogenesis influenced by cigarette smoking to be evaluated in future prospective studies.

Oleamide in this study was found to decrease with smoking. This is consistent with a 

previous report indicating that levels decrease in smokers and in lung cancer patients 

compared to controls (29). However, a mechanism of action for cancer is unclear, although it 
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is widely used experimentally to inhibit gap junction intercellular communication, may serve 

as a proliferative agent for human lymphocytes and breast cancer cells, and derivatives of 

oleamide are being investigated as an antimetastatic agent (30, 31).

In the present study, plasma glutamate levels were significantly decreased after cigarette 

smoking. Glutamate is a crucial nutrient involved in more than 40 metabolic pathways, 

maintaining cellular functions and has an important role in amino acid and carbohydrate 

metabolism (33). Krebs cycle is the key metabolic pathway in the carbohydrate metabolism 

that’s altered by mainstream cigarette smoke in lung cells (34). The decrease of glutamate 

could be due to the deamination catalyzed by glutamate dehydrogenase to the production of 

α-ketoglutarate, an intermediate in the Krebs cycle, which plays an anaplerotic function in 

the carbohydrate metabolism (33). Together with l-cysteine and glycine, glutamate is also 

one of the precursors for the synthesis of glutathione, the major cellular protective 

antioxidant in the lungs (35). Low plasma glutamate and glutamine levels are often found in 

patients with chronic obstructive pulmonary disease (COPD) (36) and emphysema (37), and 

is associated with an increase in glycolytic metabolism within respiratory and peripheral 

skeletal muscle, and reduction of glutathione levels (37, 38). Xu et al. reported significant 

higher serum levels of glutamate among smokers compared to non-smokers in their cross-

sectional study (27), while Mandal et al. reported higher plasma glutamate among smokers 

than non-smokers (39); neither reported results specific to smoking a cigarette. Here we also 

observed higher plasma levels of glutamate among smokers from the baseline compared to 

non-smokers (Fig. S10). The deprivation of glutamate found herein could be due to the up-

regulation of glutathione synthesis, or an increased glutaminolysis rate, all in response to 

cigarette smoking. From the pathway analysis, decreased levels of plasma glutamate after 

cigarette smoke lead to the inhibition of glutamate receptors: GRM4, GRM6, GRM7 and 

GRIK2 (Fig. 5a). Glutamate receptors are present in the nervous system as well as peripheral 

organs including liver, kidney, lung, muscle, and blood cells. Decreased expression of 

metabotropic glutamate receptor 4 (encoded by GRM4) has been shown to increase cancer 

cell growth (40). While the mechanism behind the acute effect of cigarette smoking in 

decreasing plasma glutamate remains unexplored, more studies are needed to elucidate the 

role of different glutamate receptor subtypes in peripheral circulation influenced by cigarette 

smoking.

There is evidence that for a given level of smoking history, women may be at increased risk 

for lung cancer compared to men. Genetics and hormonal factors have been proposed as 

smoking-attributable risks for lung cancer in women (41). It is known that estrogen is 

involved as important regulators of plasma lipid metabolism and lipid profile. Women 

smokers are at higher risk developing dyslipidemia (42) and cardiovascular diseases (43). 

Aberrant plasma lipid profiles were often found in various cancers and are associated with 

cancer risk (44), and gender-specific lipid metabolites are also found in lung cancer patients 

(29). However, definitive mechanisms underlying this disparity are still unclear. In our study, 

8 metabolites including 4 lysoPCs were lower, and 2-octenoylcarnitine is higher in women 

than men after smoking. It reveals gender differences in cigarette-influenced metabolites and 

suggests that attention should be paid for their application as biomarkers in studying gender-

specific early carcinogenic events.
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Lung cancer incidence and mortality rates are higher in Blacks than Whites, and Black 

smokers preferentially smoke menthol cigarettes compared to Whites (45). Differences in 

genetics, nicotine metabolism, and smoking behavior could all play a role on this health 

disparity. In our study, menthol-glucuronide, glutamate, 229.05-, PE(P-16:0/0:0), 2-

octenoylcarnitine were higher among Blacks and lysoPC(16:1), lysoPC(15:0), 508.34+ were 

higher among Whites. These differences appear to be related to preferences for specific 

types of cigarettes, as we observed stronger preference for menthol cigarettes among Blacks 

(92%) than Whites (31%) in our study.

Perturbations in small molecules by wet total particulate matter and gas/vapor phase from 

mainstream whole smoke treated human alveolar epithelial carcinoma (A549) cells were 

investigated previously (34), and changes of small molecule metabolic pathways in amino 

acid, carbohydrate, lipid, energy, nucleotide, coenzyme, vitamin & others were found (34). 

The pathway analysis herein indicated that carbohydrate metabolism, lipid metabolism and 

small molecule biochemistry were the top three metabolic processes affected in smokers, all 

of which are known to be affected by smoking (46). The major network affected includes 12 

known cancer molecules and among their biological functions are inhibition of second 

messenger cAMP, which in turn leads to many signal transduction cascades including the 

inhibition of proliferation, collagen synthesis, myofibroblast transformation and to mediate 

antiproliferative effects in lung fibroblasts (47). Inhibitors of a cAMP specific 

phosphodiesterase 4 (PDE4) preventing the breakdown of cAMP is used for the treatment of 

asthma (48) and COPD (49). Based on our pathway analysis, we suggest for the first time, 

that the acute effects of cigarette smoking could lead to a reduction of cellular cAMP level, 

provide proliferative advantage for DNA damaging cells, and thus create a 

microenvironment for tumor growth and respiratory disease.

There are strengths and limitations to our study. One important strength is the unique study 

design that assessed smokers immediately before and after smoking a cigarette. This allowed 

us to examine the dynamic changes on the plasma metabolome regulated by the acute effects 

of cigarette smoking without confounding by other exogenous exposures that would affect 

the metabolome (e.g., diet, medication, and lifestyle). Acute effects happen very rapidly 

after a single exposure has occurred, and chronic effects happen only after repeated long-

term exposure due to numerous single exposures. Thus, single acute exposures, well 

documented by our methods, have direct relevance to chronic risk since they represent what 

happens for each and every cigarette smoked. Furthermore, oleamide is an endogenous 

substance occurs naturally in the body, and was found to decrease with smoking in this 

study. It has also been reported as slip agent from polymers along with a larger amide 

erucamide (32). However, no erucamide was found in the datasets and no signs of polymer 

contamination occurred during the experiment. Therefore, the results reported herein are 

reflecting dynamic oleamide changes in the metabolome, while contaminants would be 

either random or constant and would not pass the stringent statistical tests. Additionally, 

assessing the smokers for two cigarettes allowed for within-subject replication. There are 

some limitations of this study, such as low sample size and limited statistical power for some 

subset analyzes, and causal relationships cannot be established due to nature of the study. 

Another limitation was the choice of reversed-phase UHPLC column and separation 

methods, which were chosen to obtain the most abundant profile for our samples. Using this 
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column, highly polar metabolites, such as sugars and amino acids are not retained 

sufficiently compared to hydrophobic compounds. This methodology also limits the ability 

to detect some carcinogen-metabolites normally bound to plasma proteins such as polycyclic 

aromatic hydrocarbons, benzo[a]pyrene, and NNAL. However, this is balanced by the 

opportunity to study cellular endogenous metabolites affected by smoking, providing some 

insight into possible disease mechanisms. The identification of unknown metabolites is a 

major bottleneck in the metabolomics field. It is a complex and costly process limited by the 

number of commercially available standards, with intensive effort required, and often results 

in a low yield of correctly characterized metabolites. Therefore, identification of the 

unknown metabolites was not carried out in the present manuscript. However, spectral 

interpretation and structural elucidation of the unknown features are needed in the future in 

order to identify and validate the unknown features in the study.

In summary, a metabolomics assessment was applied to a novel experimental design in 

smokers to evaluate the acute effects of cigarette smoking. The identification of particular 

metabolites (e.g., menthol-glucuronide, glutamate, oleamide, and glycerophospholipids) 

allows for future studies to assess smoking-related exposures affecting endogenous cellular 

mechanisms and accounting for exogenous smoke exposure that could assist the FDA’s 

regulation of tobacco products. The pathways identified herein provide insight into tobacco 

disease pathogenesis. These results, if indicative of cancer risk pathways, could enhance 

smoking risk assessment and improve early detection strategies.
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Fig. 1. 
(a) Study design for the cross-sectional study of smokers. (b) Distribution of the estimated 

measurement error in CV (%) before filtering. Each dot represents a single peak. The dot 

size and color corresponds to the CV value: the larger the dot, and the brighter the color of 

the dot, the larger the CV value of the individual peak.
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Fig. 2. 
Scatter plots representation of significant features regulated by (a) the first cigarette, and (b) 

the second cigarette. Significant features were selected by paired t-tests with threshold 0.05. 

The red dots represent features above the threshold. All p values are transformed by -log10 

so that the more significant features (with smaller p values) were plotted higher on the 

graph. (c) Venn diagram representing metabolites significantly increased or decreased after 

1st and 2nd cigarette.

Hsu et al. Page 17

Mol Carcinog. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Significant metabolites and their putative identifications. (a) Venn-diagram represents the 

significant metabolites influenced by cigarette smoking from the ANCOVA model; (b) 

Pairwise correlations from pre-1 cigarettes for the significant metabolites. Abbreviations: 

phosphatidylethanolamine (PE), phosphatidylcholines (PC), lysophosphatidylcholines 

(LysoPC), lysophosphatidylethanolamine (LysoPE).
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Fig. 4. 
(a) Levels of menthol-glucuronide across all time points. Blue dots and lines represent 

menthol smokers and red dots and lines represent non-menthol smokers. Each error bar was 

constructed using 1 standard error from the mean. Differences in (b) Race, (c) Gender, and 

among (d) Menthol cigarette smokers and (e) Non-menthol cigarette smokers on the 

significant metabolites after both cigarette smoking. All differences in fold change were 

significant at p < 0.05 level.
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Fig. 5. 
Two networks associated with cigarette smoking. Green nodes represented metabolites 

decreased in level in our study. Twelve molecules known as biomarkers for cancer were 

outlined in magenta.
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