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Abstract

Registry databases are increasingly being used for comparative effectiveness research in cancer. 

Such databases reflect the real-world patient population and physician practice, and thus are 

natural sources for comparing multiple treatment scenarios and the associated long-term clinical 

outcomes. Registry databases usually include both incident and prevalent cohorts, which provide 

valuable complementary information for patients with more recent diagnoses in the incident cohort 

as well as patients with long-term follow-up data in the prevalent cohort. However, utilizing such 

data to derive valid inference poses two major challenges: the data from a prevalent cohort are not 

random samples of the target population, and there may be substantial differences in the baseline 

characteristics of patients between treatment arms, which influences the decisions about treatment 

selection in both cohorts. In this article, we extend propensity score methodology to observational 

studies that involve both prevalent and incident cohorts, and assess the effectiveness of radiation 

therapy in SEER-Medicare patients diagnosed with stage IV breast cancer. Specifically, we utilize 

the incident cohort to estimate the propensity for receiving radiation therapy, and then combine 

data from both the incident and prevalent cohorts to estimate the effect of radiation therapy by 

adjusting for the propensity scores in the model. We evaluate the proposed method with 

simulations. We demonstrate that the proposed propensity score method simultaneously removes 

sampling bias and selection bias under several assumptions.
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1. Introduction

The focus of comparative effectiveness research when using observational data is to assess 

the use of an intervention on a more general patient population outside of controlled clinical 

trials. Observational data cohorts such as national cancer registries and the Surveillance, 

Epidemiology and End Results (SEER)-Medicare databases are natural choices for 

conducting comparative effectiveness research. Due to advances in both breast cancer 
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screening programs and adjuvant systemic therapy, fewer breast cancer cases (5.6%, 

www.seer.cancer.gov) are metastatic (stage IV) at diagnosis than ever before, especially for 

women aged 65 years and older. There are only a few standards of care in the management 

of stage IV breast cancer (Cardoso et al., 2012) and the role of radiation therapy (RT) 

remains controversial for women aged 65 years and older who had stage IV breast cancer. 

On the other hand, a randomized clinical trial is unlikely to assess the role of RT for this 

cohort of patients.

Using the recent SEER-Medicare breast cancer database of 2007-2010, it is of great interest 

to evaluate the effectiveness of receiving RT versus not receiving RT in elderly patients with 

stage IV breast cancer based on the incident cohort. This cohort consists of patients who 

were diagnosed with breast cancer from 2007 on, and who died or were right-censored at 

last follow-up. An incident cohort study is not typically an efficient design for evaluating the 

treatment effect on the failure event of interest due to relatively short follow-up times and, in 

this example, the moderate size of the population of patients with stage IV breast cancer. 

Therefore, from the SEER-Medicare claims data, we also retrieved information on patients 

who were diagnosed with stage IV breast cancer prior to 2007 and who were alive in 2007. 

This represents a prevalent cohort consisting of patients who had already experienced the 

initiating event but had not experienced the failure event at the time of ascertainment. Figure 

1 illustrates the difference in sampling scheme between a prevalent and an incident cohort 

study. By combining the data from the two cohorts with stage IV breast cancer, we may have 

a sufficiently large number of patients for a better assessment of the effect of RT.

Although we can take advantage of data from both prevalent and incident cohorts for more 

efficient statistical inference, we face two challenges. The first challenge is that the patients 

in the prevalent cohort often have longer survival times and the distribution of their 

covariates is not representative of the target population (i.e., incident cohort), as patients 

with longer survival times are preferentially sampled (Vardi, 1982; Wang et al., 1993; Gail 

and Benichou, 2000; Rothman et al., 2008; Zelen, 2006). The conventional estimator of the 

treatment effect from an outcome regression model using data from a prevalent cohort can 

be biased due to sampling bias related to the outcomes.

Moreover, the treatment of interest, such as RT, is not randomly assigned, and baseline 

patient characteristics are confounded with the treatment decision. Thus, the baseline 

characteristics are often imbalanced between patients who receive RT and those who do not, 

in either the incident or prevalent cohort. The propensity score method, introduced by Rubin 

(1973) and Rosenbaum and Rubin (1985), addressed this concern by reducing multiple 

baseline covariates to a single statistic that summarizes the collective information. Using this 

statistic, the imbalance in the baseline covariates between two treatment groups can be 

adjusted to reduce bias (D'Agostino, 1998). However, the existing methods are applicable to 

the incident cohort only. Prevalent cohorts suffer additional selection bias related to the 

length of the outcomes, since the patients in the cohort have all survived until their 

enrollment in the study, and those who did not survive until that time were automatically 

excluded.
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Much progress has been made in the area of regression analysis to associate failure time and 

covariates given data from a prevalent cohort after adjusting for the sampling bias (Wang et 

al., 1993; Shen et al., 2009; Qin and Shen, 2010; Ning et al., 2011). However, little has been 

done regarding propensity score analysis using both prevalent and incident cohorts. Cheng 

and Wang (2012) and Chan (2013) developed statistical methods for propensity score 

analysis using prevalent cohort data only, in which some restrictive model assumptions had 

to be imposed.

Our strategy is to use the incident cohort to estimate the propensity for receiving RT and 

then use both cohorts to estimate the effectiveness of receiving RT versus not receiving RT 

in elderly patients with stage IV breast cancer, by using an outcome regression model (e.g., 

Cox model) involving the propensity scores. The sampling bias in the prevalent cohort has 

been corrected in the estimation of the treatment effect.

The remainder of this article is organized as follows. In Section 2, we present the proposed 

estimating equations and inference procedure to simultaneously estimate the regression 

parameters in models for the propensity score and survival outcome. In Section 3, we 

develop procedures to check whether the propensity scores estimated from the incident 

cohort can be applied to the prevalent cohort to balance the covariate distributions between 

the treatment arms. In Section 4, we report the simulation studies to assess the finite sample 

performance of the proposed method. We apply our method to the SEER-Medicare data in 

Section 5, and provide concluding remarks in Section 6. We provide details for the proofs of 

the asymptotic properties in the Appendix.

2. Model and Estimation

2.1. Notations and Model

We consider data from the incident cohort to represent the target population. Let T, Z and X 
respectively represent the failure time, treatment indicator (RT versus no RT), and a q × 1 

vector of covariates in the incident cohort. Define the censoring time and censoring indicator 

to be C and δ = I(T < C), respectively. Then the observed data from the incident cohort are 

{Yi, Zi, Xi, δi; i = 1, ⋯, m}, where Yi is min(Ti, Ci), m is the sample size of the incident 

cohort, and I(.) is the indicator function.

In the prevalent cohort, patients with the diagnosis of stage IV breast cancer prior to 2007, 

the time of enrollment to the study cohort, who were still at risk for the failure event (e.g., 

breast cancer-specific death) in 2007 were included (e.g., subjects 5 and 6 in Figure 1). The 

observed truncation time W is the duration from the initial diagnosis of the disease to 2007. 

Thus, the prevalent cohort excludes patients with T < W (e.g., subject 4 in Figure 1).

Data from the prevalent cohort represent a valuable augmentation to the incident cohort; the 

observed survival times from the prevalent cohort tend to be longer than those in the incident 

cohort. Moreover, the distributions of the baseline variables can differ between the incident 

and prevalent cohorts. We need a slightly different notation to define the observed data in the 

prevalent cohort. Let T̃, W̃, Z̃ and X̃ respectively be the failure time, truncation time, 

treatment indicator, and a vector of the covariates. Denote the residual survival time by Ṽ, so 
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that T̃ = W̃ + Ṽ. The observed data are recorded as {Ỹi, W̃
i, Z̃

i, X̃
i, δ̃i; i = 1, ⋯, n}, where Ỹi 

= min{W̃
i + Ṽi, C̃

i}, δ̃i = I(W̃
i + Ṽi < C̃

i) and n is the sample size of the prevalent cohort. 

The propensity score method is used to mitigate the treatment selection bias arising from 

non-random treatment assignment in observational studies (Rosenbaum and Rubin, 1983; 

Kang and Schafer, 2007; Austin, 2008). We assume that the propensity score, i.e., the 

probability of receiving the treatment, is associated with the baseline patient characteristics 

via a logistic regression model,

(1)

where γ is a vector of regression coefficients, and the interaction terms of X may be 

included to increase the flexibility of the propensity score model. As shown by D'Agostino 

(1998), Rosenbaum and Rubin (1985) and Rubin (1979), using the propensity score as a 

covariate in an outcome regression analysis can effectively reduce the bias in the estimation 

of the treatment effect in observational studies. To determine the association between the 

survival outcome T and RT treatment, the Cox proportional hazards model is used to adjust 

for the effects of baseline covariates by including the propensity score as a covariate:

(2)

where λ0(.) is an unspecified baseline function, α is the log-hazard ratio of the RT treatment 

after the propensity score adjustment, β is a vector of parameters in g(.) and g(.) is a flexible 

and differentiable function.

One major advantage of using the propensity score as a covariate in the outcome regression 

is to avoid over-parameterizing or mis-specifying the model with a large number of 

covariates. By collapsing all covariates into a single propensity score and incorporating the 

plausible nonlinear and interaction terms of the covariates into the propensity score, one can 

greatly reduce the possibility of outcome model misidentification (D'Agostino, 1998). 

Regression adjustment with the propensity score was used by Cheng and Wang (2012) to 

analyze prevalent survival data. Although the propensity score analysis introduces an 

additional assumption of a propensity score model, that assumption can be reinforced by 

assessing the balance in the covariate distributions between the two groups. The propensity 

score model can be reformulated until adequate balance is achieved. From this perspective, 

the propensity score analysis involves weaker assumptions than direct regression on the 

outcomes using a large number of covariates, and the estimation of α is more robust than an 

estimation that is conditional on all the covariates.
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2.2. Estimating Equation Methods

Without loss of generality, we use a simple linear form of g(.) for illustration, g{e(X; γ); β} 

= βe(X; γ). Using the data from the incident cohort, we estimate the propensity score by 

solving the score equations under the logistic regression model,

(3)

The score equation under the Cox model using the incident cohort is

(4)

where R1(t) = {j : Yj ≥ t} is the at-risk function for the incident cohort. We estimate γ, α and 

β by solving (3) and (4) when using the incident cohort only.

Next, we describe how to combine the data from the prevalent cohort to improve statistical 

efficiency. In our motivating example, the incident cohort and prevalent cohort are derived 

from the same target population but with different sampling schema. Thereby, the propensity 

scores estimated from the incident cohort can be applied to the prevalent cohort to balance 

the baseline variables. The Cox model structure assumed for the incident cohort can be 

different from the one for the observed data from the prevalent cohort. Therefore, we need to 

adjust for biased sampling due to left-truncation when modeling the treatment effect on the 

survival outcome by using a modified at-risk function (Lai and Ying, 1991; Wang et al., 

1993). We extend score equation (4) to incorporate the information from the prevalent 

cohort:

(5)

where R2(t) = {j : W̃
j ≤ t ≤ Ỹj} is the modified at-risk function for the left-truncated and 

right-censored data for the prevalent cohort. Then, estimating equations U1(γ) and U2(γ, α, 

β) are simultaneously solved to estimate the parameters of interest, γ, β and α. The first 
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component of U2(.) uses data from the incident cohort, which often has shorter follow-up 

outcomes than the prevalence cohort but is not subject to biased sampling; whereas the 

second component of U2(.) uses data from the prevalent cohort, which often has longer 

follow-up outcomes but requires an adjustment of biased sampling.

Define θ̂ = (γ̂⊤, α̂, β̂)⊤ as the solution of U(θ) = (U1(γ)⊤, U2(θ)⊤)⊤ = 0 and θ0 as the true 

value of θ. We show in the Appendix that U(θ) = 0 asymptotically has a unique solution θ̂, 

and then derive the consistency of θ̂. Moreover, based on Taylor expansions of U(θ) around 

θ0, the central limit theorem, and the martingale central limit theorem, we can prove that θ̂ is 

asymptotically normally distributed under certain regularity conditions. We summarize these 

results in the following theorem, whose proof is presented in the Appendix.

Theorem 1: Under the logistic regression model for the propensity score and the Cox model 

for the survival time and regularity conditions [C.1-C.6] listed in the Appendix, the 

estimator θ̂ converges to θ0 in probability. Moreover, √n(θ̂ − θ0) converges in distribution to 

a normal distribution with mean 0 and covariance matrix defined in the Appendix.

2.2.1. Special Case: Length-biased Data—If the onset of the disease follows a 

Poisson process, the observed survival data from the prevalent cohort are considered to be 

length-biased data (Wang et al., 1993). The aforementioned set of estimating equations can 

be modified to increase statistical efficiency by incorporating the distributional information 

of the truncation time. Using the weight in a manner similar to the approach of Shen et al. 

(2009) and Qin and Shen (2010), we restructure unbiased estimating equations for 

estimating γ by using the baseline covariate data from the prevalent cohort: ULB1(γ) = 0, 

where

(6)

, and Sc(.) is the survival distribution for the residual censoring time C̃ − W̃ 

which can be consistently estimated by the Kaplan-Meier estimator. The second component 

of (6) is similar to the first one, but is inversely adjusted by the weight w(Ỹj) for data from 

the prevalent cohort (Ertefaie, 2014).

Similarly, the second set of estimating equations under the Cox model can be reconstructed 

to efficiently utilize the length-biased data: ULB2(γ, α, β) = 0, where
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(7)

In the second component of (7), the subjects in the risk sets are weighted to adjust for the 

length-biased sampling constraint. By using derivations similar to those of Qin and Shen 

(2010), (7) has mean zero and can be combined with (6) for estimating θ. The consistency 

and weak convergence of the resultant estimators can be established using techniques similar 

to those for Theorem 1.

3. Testing the Balancing Property

Unlike the motivating example, the incident cohort and prevalent cohort may not be 

generated from the same target population in some applications. In this case, we need to 

check the assumptions for the proposed method to determine whether the propensity scores 

estimated from the incident cohort can balance the covariate distributions of the two 

treatment arms in the prevalent cohort. This test is conducted under the following modeling 

assumption:

where μ(.) is a pre-specified flexible function (e.g., fractional polynomial function or spline 

function), and ξ and ζ are vectors with the same dimension of X̃
i.

Under this model specification, testing the null hypothesis of the covariate being 

independent of the treatment assignment is equivalent to testing for H0 : ζ = 0 vs H1 : ζ ≠ 0. 

This test can also be viewed as a test for the specification of the propensity score model (1) 

(Imai et al., 2008; Li and Greene, 2013). Rejection of the null hypothesis indicates that the 

propensity score model derived from the incident cohort is not applicable to the prevalent 

cohort.

Under the assumption that the initial event has stationary incidence, we construct an 

unbiased estimating equation for estimating the unknown parameters and making inference 

on ζ:
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(8)

The unknown weight function w(Ỹi) involved in (8) can be readily estimated by the Kaplan-

Meier estimator. In the Appendix, we have derived the asymptotic normality of estimator ζ̂, 

the solution of (8). We propose a Wald-type test statistic to test for H0 by Ttest = ζ̂⊤V̂−1 ζ̂, 
where V̂ is the variance-covariance matrix of ζ̂. The following theorem summarizes the 

limiting distribution of the test statistics. A sketch of the proof is provided in the Appendix.

Theorem 2: Under regularity conditions [C.1-C.7] listed in the Appendix and the null 

hypothesis, Ttest converges weakly to a chi-squared distribution with a degree of freedom of 

q.

The weight function in (8) can be generalized to accommodate general left-truncated data 

for which the stationarity assumption is not satisfied. If the truncation time follows a density 

function hθA with a finite dimensional vector of parameters θA, the generalized weight 

function is . Similarly, the weight can be estimated 

consistently by plugging in consistent estimators for the censoring survival function and θA.

4. Simulation Study

We conducted simulation studies to evaluate the finite sample performance of the proposed 

methods. We simulated two cohorts from the same target population: m = 200, 400 or 600 

subjects in the incident cohort and n = 200 patients in the prevalent cohort. For both cohorts, 

we generated the treatment assignment Zi via the propensity score function

where the baseline covariates Xi = (Xi1, Xi2, Xi3) followed the standard normal distribution 

and γ = (0.1, 0.4, 0.4, 0.4). Given (Zi, Xi), the failure time Ti was generated from an 

exponential distribution with a rate of exp{0.5Zi + e(Xi; γ)}. The censoring times were 

independently generated from the uniform distribution [0, τc], where τc = 0.52 in Scenario I 

and τc = 1.3 in Scenario II. The sampling constraint in the prevalent cohort was introduced 

by a uniform truncation time; only patients satisfying Wi < Ti were included in the prevalent 

cohort. We considered different combinations of sample sizes and censoring rates to cover a 

wide range of scenarios. We used estimating equations U1(γ) and U2(γ, α, β) to fit the 

propensity score and survival outcome, where g{e(X;γ); β} = βe(X; γ).

Table 1 summarizes the empirical biases, empirical standard errors, average asymptotic 

standard errors and coverage probabilities of the 95% confidence intervals based on 1, 000 

simulations. As shown, the parameters in both the propensity score model and the Cox 

model were estimated reliably by the proposed method. The empirical biases were close to 

zero, and the model-based standard errors were close to their empirical values. Furthermore, 
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the coverage probabilities of the 95% confidence intervals were close to the nominal level. 

As expected, the standard errors decreased with increasing sample sizes, and the standard 

errors of parameter estimates in the Cox model increased with increasing rates of censoring. 

For comparison (but not reported here), we also calculated the standard errors of α̂ and β̂ by 

ignoring the additional variation due to the estimated propensity score. We found that the 

standard errors were underestimated and the associated coverage probabilities were much 

smaller than the nominal value. For example, in the scenario with a sample size of 200 from 

each cohort, the estimated standard error of β̂ was 0.409, which is substantially lower than 

its empirical standard deviation of 0.576 in Table 1. We compared the small sample 

performance of the estimators from the estimation equations U1(γ) and U2(γ, α, β), and the 

estimation equations ULB1(γ) and ULB2(γ, α, β). As expected, by incorporating the 

distribution information of the truncation time, the estimators obtained from estimation 

equations ULB1(γ) and ULB2(γ, α, β) are more efficient than those from estimation 

equations U1(γ) and U2(γ, α, β), which are for general left-truncated data. More details are 

provided in the Supplementary Materials.

We conducted some sensitivity studies to evaluate robustness of the proposed method with 

violations of model assumptions. The simulation results and findings are summarized in the 

Supplementary Materials.

Table 2 lists the simulation results of two naive methods: one uses the incident cohort data 

only, the other uses the prevalent cohort data only without adjusting for the sampling bias. 

As expected, the first naive method was valid, with small empirical biases and coverage 

probabilities close to the nominal value, but was much less efficient than the proposed 

method, which combined data from the two cohorts. In contrast, the second naive method 

produced biased estimates and misleading inference by ignoring that neither the baseline 

covariate distribution nor the survival outcomes were representative of the target population.

The second set of simulations evaluates the finite sample performance (size and power) of 

the proposed test for determining the covariate balance in the prevalent cohort under various 

scenarios. We used 5000 replications of the tests to calculate the size and power, and let 

μ{e(X̃
i; γ̂)} = e(X̃

i; γ̂). We generated data for the incident cohort from the same model 

described in the first set of simulations. Under the null hypothesis, the propensity score of 

the prevalent cohort is the same as that of the incident cohort, e(xi) = P(Zi|Xi) = expit(0.1 

+ 0.4Xi1 + 0.4Xi2 + 0.4Xi3), where expit(.) = exp(.)/{1 + exp(.)}. Under the alternative 

(power I), we set the propensity score of the prevalent cohort as 

, which has a different form than the 

propensity score function of the incident cohort. For another alternative (power II), we chose 

the propensity score of the prevalent cohort as e(xi) = P(Zi|Xi) = expit(0.1 + 0.8Xi1 + 1.2Xi2 

+ 1.6Xi3), which has the same function form but different coefficients from that in the 

incident cohort.

Table 3 lists the rates of rejecting the null hypothesis at a significance level of 0.05. The type 

I error rates were well maintained in the null scenario, especially for larger sample sizes. 

The power of the test increased with increasing sample sizes and did not change with the 

censoring rate. However, the proposed test performed differently for the two alternative 
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settings. The test was very powerful for detecting different function forms between the two 

propensity scores (power scenario I); but, it had only mild power to detect the difference 

when the propensity scores shared the same model form but had different regression 

coefficients (power scenario II). Because the proposed test has relatively low power under 

power scenario II, we applied the proposed estimation method to the data generated from 

power scenario II when the difference in propensity score models was ignored. The resulting 

treatment estimators were reasonably robust to such model misspecification, and did not 

have substantial biases; for example, the bias was 0.05 (true value=0.5) and the associated 

coverage probability was 0.933 when m = 400 and n = 200.

5. Data Application

We used data from the SEER-Medicare database, which links the National Cancer Institutes 

SEER registry with Medicare claims and enrollment files. The SEER-Medicare database 

connects 94% of patients aged 65 years or older. Using this population-based database, we 

identified a prevalent cohort and an incident cohort to evaluate the effect of RT in patients of 

age ≥ 66 who were diagnosed with stage IV breast cancer as the first primary cancer. The 

incident cohort consisted of 1867 patients who were diagnosed with breast cancer after 

2007, and the prevalent cohort included 1106 patients who were diagnosed with breast 

cancer prior to 2007 and were alive in 2007. Patients in both cohorts were followed until 

death or the last observation time as of December 31, 2010.

The clinical question of interest was whether RT had any benefit on the overall survival time 

measured from the date of breast cancer diagnosis. We extracted each patient's baseline 

covariates, including comorbidity, race, region of residence, age at diagnosis, estrogen-

receptor status, progesterone-receptor status, and tumour size. We used Medicare claims to 

identify RT received within 12 months of breast cancer diagnosis. Table 4 summarizes the 

patient characteristics by cohort. Using the Kaplan-Meier method, the estimated median 

survival times for the prevalent cohort were much longer than those for the incident cohort, 

which suggested that the observed outcome data from the prevalent cohort were sampled 

with bias. We used the t-test or chi-square test to detect the difference in the covariate 

distributions between the two cohorts. Except for race, all covariates had different 

distributions between the two cohorts, which implied that the observed covariates in the 

prevalent cohort likely did not represent the target population.

For patients older than 65 years who had stage IV breast cancer, those who received RT 

might differ from those who did not receive RT. For example, it is likely that patients who 

received RT were healthier than patients who did not, regardless of whether there was any 

clinical benefit of RT in that age group. Hence, we included the propensity score in the Cox 

model to balance the covariate distributions between the RT and no-RT patient groups. We 

first used the baseline covariates from the 1867 patients in the incident cohort to estimate the 

propensity scores of a patient receiving RT, and then used the combined cohort to fit the Cox 

model while controlling for and not controlling for the propensity score. As seen in Table 5, 

a much larger beneficial effect of RT (hazard ratio=0.66) was found in the Cox model when 

we ignored the covariate imbalance between the RT and no-RT groups, which was likely to 
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be overestimated. When controlling for the covariate imbalance by the propensity score, the 

hazard ratio of receiving RT was 0.76, with a standard error of 0.05.

Our next step was to combine the prevalent and incident cohorts to gain statistical efficiency. 

Using the test in Section 3, we checked whether the estimated propensity scores from the 

incident cohort can be applied to the prevalent cohort to balance the covariate distribution 

between the RT and no-RT groups. The p-value was 0.99, which suggested that the RT and 

no-RT groups within the prevalent cohort had comparable baseline covariate distributions 

after applying the propensity score from the incident cohort. We then included the prevalent 

data to fit the Cox models after adjusting for baseline covariates and sampling bias in the 

prevalent cohort. The results indicated that the use of RT had a significant benefit for the 

overall survival time (hazard ratio=0.75;p-value< 0.001), and the combined data yielded a 

similar RT effect, but with a smaller standard error (0.03 vs 0.05) compared to that from the 

incident cohort only.

6. Discussion

Propensity score analysis is a valuable and convenient approach to the analysis of 

observational data. If data come from a prevalent cohort study, the propensity score analysis 

encounters significant difficulty because of sampling bias. However, prevalent cohorts 

contain valuable information on clinical outcomes, usually with longer periods of follow-up 

compared with incident cohorts. In this article, we propose a propensity score method based 

on the joint analysis of the incident and prevalent cohorts, which allows for adjustment for 

both the covariate imbalance between treatment arms and the sampling bias in the prevalent 

cohort. We assume both cohorts come from the same target population so that the joint 

analysis of both cohorts would provide more efficient results than the analysis of the 

incident cohort alone.

We develop a test procedure to check whether the propensity score model estimated with the 

incident cohort can balance the covariates between treatment groups in the prevalent cohort. 

Once the balance property of the prevalent cohort is confirmed by the test, we include the 

estimated propensity score in the Cox model and propose estimating methods, in which the 

modified at-risk function or the inverse weighting method is adopted to handle the biased 

sampling issue in the prevalent cohort. Given additional distribution assumptions on the 

truncation time, the data from the prevalent cohort can be utilized to estimate the propensity 

score and improve statistical efficiency.

It has been argued that a specification test can be used to check the adequacy of the 

propensity score model (Li and Greene, 2013; Imai et al., 2008; Hansen and Bowers, 2008). 

In this article, we present an implementation of this idea in the context of the joint analysis 

of prevalent and incident cohorts. For the proposed test, we restrict our attention to the 

setting where the censoring time and truncation time are independent of the covariates. To 

accommodate the possibility of covariate-dependent censoring and covariate-dependent 

truncation, we can adopt regression analysis or a local Kaplan-Meier estimator (González-

Manteiga and Cadarso-Suarez, 1994) to estimate the covariate-specific distributions, denoted 

as hθA(a|z, x) and Sc(t|z, x). The test procedure can be generalized to incorporate covariate-
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dependent censoring and covariate-dependent truncation, by replacing the weighting 

function in (8) by . After the replacement 

we plug the estimated covariate-specific distributions in the implementation of the test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Appendix

A.1. Regularity conditions

C.1) Given the observable covariate X, potential outcomes are independent of the 

treatment assignment.

C.2) The propensity score e(x) ∈ (0, 1), such that subjects with the same covariate 

values have a positive probability of being assigned to either of two treatment arms.

C.3) The parameter space of θ is a compact subset of ℝq+3, and the true parameter 

value θ0 is in the interior of the parameter space.

C.4) X is a q × 1 vector of bounded covariates, not contained in a (q − 1)-dimensional 

hyperplane.

C.5) The censoring time C is not degenerate at 0 given any (z, x), and P(T > C|Z, X) > 

0.

C.6) The conditional survival function of C̃ satisfies t0 ≤ sup{t : S̃
c(t|Z̃, X̂) > 0} ≤ t1 

uniformly in (Z̃, X̃) for some positive constants t0 and t1. Furthermore, P(Ṽ > C̃|Z̃, X̃) 
> 0.

C.7) , where Sυ(.) is the survival 

function for the residual failure time.

Condition C.1, referred to as ignorability assumption, implies that all variables that influence 

treatment assignment and potential outcomes are observed. Condition C.2 rules out the 

phenomenon of perfect predictability of the treatment received given X. Condition C.3 

ensures the compactness of the parameter space, and Condition C.4 is for model 

identifiability in the regression analysis. Conditions C.5 and C.6 state assumptions for the 

censoring time of the incident cohort and the residual censoring time of the prevalent cohort 

such that there is a probability of observing uncensored observations in both cohorts. 

Condition C.7 is a required assumption for the weak convergence of the Kaplan-Meier 

estimator of the residue censoring.

A.2. Proof of Theorem 1

Note that the estimating equation U1(γ) = 0 is the score estimating equation under the 

logistic regression model. Under regularity conditions C.3 and C.4, the maximum likelihood 

estimator γ̂ is consistent.

Ning et al. Page 12

Can J Stat. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Under the Cox model, the estimating equation U2(θ) = 0 is the sum of the partial score 

equation for the data from the incident cohort and the conditional score equation for the data 

from the prevalent cohort. Hence the solution to U2(θ) = 0, denoted as θ̂, is the maximum of 

the likelihood L(θ) = L1(θ) × L2(θ), where L1(θ) is the partial likelihood of the data from 

the incident cohort and L2(θ) is the conditional likelihood for the data from the prevalent 

cohort. For simplicity of notation, let θ0 = 0. For any δ = 0, since the intersection of the 

parameter space of θ and the closure of a δ-neighborhood of origin is closed, log L(θ) has a 

local maximum on this set. If we can show that the maximum lies in the parameter space of 

θ at a distance from the origin less than δ in probability, then the existence and consistency 

of θ̂ will follow immediately. This can be shown by proving that log L(θ) < log L(0) with 

probability tending toward 1 for all θ in its parameter space that are at a distance δ from the 

origin. Such a fact can be established by using the Taylor expansion of log log L(θ) around 

0. For simplicity, we assume θ is one-dimensional, then we have

where δ* is a point between the origin and δ. Note that when n and m go to infinity,

Then we have {L(δ) − L(0)} < 0 in probability. Consistency follows.

For the asymptotic normality, apply the Taylor expansion of U(θ) around θ0:

where N = n + m. By the strong law of large numbers,  converges to

(9)

almost surely, where ρ = limn→∞,m→∞m/(m + n),
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The matrix A can be empirically estimated by definition. Applying the classical central limit 

theorem and martingale central limit theorem, as n → ∞ and m → ∞, we have

(10)

where , , and 

. The covariance matrix that corresponds to 

estimating equation U1(θ0) can be consistently estimated by

and the covariance matrix associated with estimating equation U2(θ0) can be consistently 

estimated by

where
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Summarizing equations (9) and (10), we have the asymptotic normality for θ̂

A.3. Proof of Theorem 2

Without loss of generality, we assume μ{e(X̃
i; γ̂)} = e(X̃

i; γ̂) in the proof of Theorem 2. Let 

η = (ξ, ζ) with true value η0, and

Applying the Taylor expansion of Utest(η) around η0:

By the law of large numbers,  converges in probability to its expectation, 

denoted as Aη. The remaining task is to check the asymptotic behavior of Utest(η0). It can be 

shown that

(11)
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(12)

(13)

(14)

(15)

By the uniform consistency of ŵ(y) to w(y) and the martingale expression of the Kaplan-

Meier estimator, (12) can be rewritten as

where

and Λc(u) is the cumulative hazard function of the censoring time. By the martingale central 

limit theorem and regularity condition C.7), (12) follows a normal distribution with variance 

denoted as ΣM. The asymptotic behavior of (13) is determined by the asymptotic behavior of 

γ̂, because it is equal to

(16)
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By Theorem 1, when m → ∞ and n → ∞, we have , where 

 and  is the (q + 1) × (q + 1) upper submatrix of A−1ΣA−1. Therefore, (13) 

converges in distribution to a normal distribution with mean 0 and variance Σ2, where

After some algebra, we can show that (14) converges to 0 in probability. Similar to the 

arguments used for (13), (15) converges in distribution to a normal distribution. 

Summarizing the previous arguments, , where

and

This implies that under the null hypothesis, ζ̂ converges in distribution to a normal 

distribution with mean 0 and variance V, where V is the submatrix of 

corresponding to ζ̂. In other words, the limit distribution of the proposed test Ttest is a chi-

squared limiting distribution with a degree of freedom q under the null hypothesis.
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Figure 1. Incident and prevalent cohort sampling schemas
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Table 4
Distribution of patient characteristics by cohort

Variable Incident (m = 1867) Prevalent (n = 1106) P-value

Median survival time (years) 3.6 7.6

Age at diagnosis (years) 77.2 75.9 < 0.0001

Race

 Non-Hispanic white 1494 (80.0%) 893 (80.7%) 0.6678

 Non-Hispanic black 206 (11.0%) 117 (10.6%) 0.7149

 Hispanic and other 167 (8.9%) 96 (8.7%) 0.8413

Comorbidity

 0 1207 (64.6%) 808 (73.1%) < 0.0001

 1 406 (21.7%) 185 (16.7%) < 0.0008

 ≥2 254 (13.6%) 113 (10.2%) 0.0068

ER

 Positive 1136 (60.8%) 784 (70.9%) < 0.0001

 Negative 349 (18.7%) 152 (13.7%) 0.0005

 Other 382 (20.5%) 170 (15.4%) 0.0005

PR

 Positive 871 (46.7%) 606 (54.8%) < 0.0001

 Negative 588 (31.5%) 307 (27.8%) 0.0349

 Other 408 (21.9%) 193 (17.5%) 0.0039
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