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Abstract

In the past years, a number cardiac electromechanics models have been developed to better 

understand the excitation-contraction behavior of the heart. However, there is no agreement on 

whether inertial forces play a role in this system. In this study, we assess the influence of mass in 

electromechanical simulations, using a fully coupled finite element model. We include the effect 

of mechano-electrical feedback via stretch activated currents. We compare five different models: 

electrophysiology, electromechanics, electromechanics with mechano-electrical feedback, 

electromechanics with mass, and electromechanics with mass and mechano-electrical feedback. 

We simulate normal conduction to study conduction velocity and spiral waves to study fibrillation. 

During normal conduction, mass in conjunction with mechano-electrical feedback increased the 

conduction velocity by 8.12% in comparison to the plain electrophysiology case. During the 

generation of a spiral wave, mass and mechano-electrical feedback generated secondary 

wavefronts, which were not present in any other model. These secondary wavefronts were initiated 

in tensile stretch regions that induced electrical currents. We expect that this study will help the 

research community to better understand the importance of mechanoelectrical feedback and inertia 

in cardiac electromechanics.
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1. Motivation

The heart is composed of four chambers and its primary function is to circulate blood in the 

cardivascular system. To achieve this goal, electrical waves travel through the cardiac tissue 

to trigger muscle contraction and generate a coordinated movement of the ventricles that 

pump blood through the arteries. Despite tremendous scientific advances, heart disease is 

responsible for half a million deaths each year in the United States alone [39]. Many of these 

deaths are caused by lethal arrhythmias, which provoke an abnormal electrical activity of the 

heart that ultimately leads to mechanical dysfunction and death. In the case of cardiac 

fibrillation, arrhythmias are driven by electrical spiral waves that self-excite, preventing the 

coordinated contraction of cardiac tissue and diminishing the pumping capacity of the heart 

[45]. The electrical wave that modulates muscle contraction is influenced by the mechanical 

deformation. Indeed, mechanical contraction deforms the domain where the electrical wave 

is propagating, altering wave dynamics. Moreover, transmembrane currents are generated by 

the stretching of ionic channels. This mechano-electrical feedback is thought to be 

responsible for “commotio cordis”, a condition in which the precordial impact of an object 

may start ventricular fibrillation [33]. Mechano-electrical feedback is also responsible for 

“precordial thump”, a procedure in which the currents generated by this mechanism are used 

to stop fibrillation [7].

Computational modeling can help to better understand the interplay between the electrical 

and the mechanical behavior in the heart, that would otherwise be difficult to characterize in 

laboratory experiments [8, 37]. Given the complexity of these interactions, different 

computational studies decide to include or neglect certain components of the 

electromechanical system. For example, most electrophysiology simulations are performed 

on a fixed domain, ignoring the mechanical interaction [48, 2, 14, 11]. When the focus is on 

the mechanical aspects of the tissue, the influence of deformation over the electric field is 

not directly adressed, as the electrical and mechanical models are solved separately [50, 4]. 

An intermediate approach is to solve the electrical and mechanical problems staggered [53, 

41, 32, 43, 29]. Another component that is often neglected is the inertia term in the balance 

of linear momentum. Although some studies include the influence of mass in simulations of 

the heart [54, 9, 51], a large majority neglects its influence [10, 41, 43, 32, 31, 5]. In this 

work, we explore the effect of inertia in electromechanical models. We hypothesize that 

additional deformations caused by inertia may alter the electrical wave dynamics via the 

mechano-electrical feedback. Using our fully coupled formulation [18], we assess the 

influence of mass in normal wave propagation and in the case of fibrillation by simulating a 

spiral wave. We measure electrophysiological variables including the conduction velocity 

and the spiral wave trajectory. We also asses the influence of mechano-electrical feedback 

currents and their relation with inertial effects. To our knowledge, this is the first study to 

systematically quantify the inertial effect in a three-dimensional electromechanical model.

This manuscript is organized as follows: Section 2 covers the continuum formulation of the 

electromechanics problem, Section 3 describes the computational implementation, Section 4 

describes the particular models we use to study conduction velocity and spiral waves along 

with the results of these studies. We conclude with a critical discussion in Section 5.
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2. Continuum eletromechanical model

We illustrate the continuum model of electro-mechanical coupling by briefly summarizing 

the kinematic equations, the balance equations, and the constitutive equations of excitation-

contraction coupling.

2.1. Kinematic equations

To characterize the kinematics of finite deformation, we introduce the deformation map φ, 

which maps particles X from the undeformed material configuration  to particles x 

= φ (X, t) in the deformed spatial configuration  [24]. Its derivative with 

respect to the undeformed coordinates X defines the deformation gradient,

(1)

from which we characterize local volume changes by computing the Jacobian J = det(F). We 

further introduce the right Cauchy-Green deformation tensor,

(2)

and consider the invariants,

(3)

where f0 is the material myocardial fiber unit vector, f = F·f0 is the spatial myocardial fiber 

vector with norm , and : represents the tensor contraction operator. The invariant 

I3 quantifies volumetric changes and the invariant I4 quantifies the cardiac fiber stretch. We 

further introduce the spatial myocardial fiber unit vector . In what follows, we denote 

the material time derivative as  and the material gradient and divergence as ∇
{o} = ∂{o}/∂X and Div {o} = ∂{o}/∂X : I and the spatial gradient as ∇x{o} = ∂{o}/∂x.

2.2. Balance equations

We characterize the electrical problem through the normalized monodomain equation for the 

transmembrane potential  and define the mechanical problem through the 

balance of linear momentum for the deformation φ,

(4)

Here, Q is the material electrical flux, FΦ is the material ionic current, ρ0 is the material 

density, S is the second Piola-Kirchhoff stress, and Fφ is the external mechanical force 

vector. We note that the deformation mapping allow us to compute the spatial 
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transmembrane potential  through mapping composition, i.e. ϕ(x,t) = 

Φ(φ−1(x,t),t).

2.3. Constitutive equations

To close the set of equations, we specify the constitutive equations for the electrical flux Q, 

the ionic current FΦ, the second Piola-Kirchhoff stress S, and the external forces Fφ 

Following Fick’s law, we assume that the electrical flux proportional to the gradient of the 

transmembrane potential in the spatial configuration,

(5)

where  denotes the conductivity tensor, which consists of an isotropic 

contribution diso and an anisotropic contribution dani to account for faster conductivity along 

the current fiber direction  [12]. Using the Piola transform Q = F−1 q/J, we express the 

material electrical flux,

(6)

where D = Diso C−1 + Danif0 ⊗ f0/λ2 is the conductivity tensor in the material configuration. 

The material and spatial conductivity parameters are related as Diso = J diso and Dani = J dani. 

For the ionic current, we consider a purely electrochemical component  plus a mechano-

electrical feedback component ,

(7)

For the purely electrochemical component, we adopt a modified version of the Aliev-

Panfilov model for ionic current [2, 27, 49],

(8)

where the cubic polynomial term controls the fast upstroke of the action potential through 

the parameters c2 and α [15, 40], and the coupling term controls the slow repolarization 

through the recovery variable r [2]. We treat the recovery variable as an internal variable, 

which evolves according to the kinetic equation,

(9)

where the recovery parameters γ, μ1,μ2 and b control the restitution behavior [2]. The 

mechano-electrical feedback reflects the effects of ionic current of stretch-activated ion 

channels, which we assume to the proportional to the stretch in fiber direction [18, 43, 54],
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(10)

Here, Φs is the resting potential of this current and θ(λ) with θ(λ) = 0 for λ < 1 and θ(λ) = 

1 for λ ≥ 1 is a step function that only activates this current in tension. Finally, we map the 

resulting fields and source terms into the physiological domain via  and τ 
= 12.9 t ms, to create physiologically realistic transmembrane potentials  that range from 

−80 mV to +20 mV.

For simplicity, we do not consider a kinematic approach towards active muscle contraction 

in the sense of the generalized Hill model [19], but rather follow the standard Hill model in 

which the tissue stress consists of passive and active contributions,

(11)

For the passive stress, we assume a nearly incompressible, fiber reinforced, neo-Hookean 

behavior [17],

(12)

The parameters λ and μ are the Lamé constants, η controls the stiffness in the fiber 

direction, and θ activates the fiber stiffness only in the case of fiber tension, i.e., λ ≥ 1. For 

the active stress, we assume that contraction acts primarily along the fiber direction f0,

(13)

In this model, the active muscle traction Tact is driven by changes in the electrical potential 

and the parameters kT and Φr control the maximum active force and the resting potential 

[41]. The activation function, , ensures a 

smooth activation of the muscle traction Tact in terms of the limiting values ε0 at Φ → −∞ 
and and ε∞ at at Φ → +∞, the phase shift , and the transition slope ξ [18]. In the 

following, we consider the case of no external forces and set Fφ = 0.

3. Computational model

In this section, we illustrate the finite element discretization of the governing equations, 

demonstrate their consistent linearization, discuss the handling of their internal variables [6] 

and present the most relevant sensitivities.
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3.1. Strong and weak forms

To derive the weak form of the governing equations, we reformulate the electrical and 

mechanical balance equations (4) in their residual forms and introduce the electrical and 

mechanical residuals RΦ and Rφ throughout the entire cardiac domain .

(14)

We prescribe Dirichlet boundary conditions  and  on the Dirichlet boundary and 

Neumann boundary conditions  and  on the Neumann boundary 

with outward normal N. For simplicity, we assume homogeneous Neumann boundary 

conditions, i.e.,  and . We multiply the residuals (14) by the scalar- and vector-

valued test functions, δΦ and δφ, integrate them over the domain , and integrate the flux 

terms by parts to obtain the weak forms of the electrical and mechanical problems,

(15)

for admisible variations δΦ and δφ.

3.2. Temporal and spatial discretization

To discretize the weak forms (15) in time, we partition the time interval of interest  into 

nstep discrete subintervals [tn,tn+1] of length Δt = tn+1 − tn,

(16)

For the electrical problem, we adopt an implicit Euler backward scheme to determine the 

electrical potential Φ at the current time point tn+1, and approximate its time derivatives as

(17)

For the mechanical problem, we adopt a Newmark time discretization to approximate the 

mechanical acceleration and velocity  and  at the current time point tn+1,

(18)

Typical values for the Newmark parameters are β = 0.25 and γ = 0.5, for which Newmark’s 

method is stable and second order accurate for linear problems. To discretize the weak forms 
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of the electrical and mechanical problems (15.1) and (15.2) in space, we partition the 

domain of interest  into nel discrete subdomains ,

(19)

and adopt a finite element discretization in combination with a classical Bubnov-Galerkin 

scheme to discretize the test functions δΦ and δφ and trial functions Φ and φ in space within 

the element domain  [18],

(20)

where N represent the standard isoparametric shape functions and ne1 represents the number 

of nodes per element.

3.3. Residuals and consistent linearization

With the discretizations in time (17,18) and space (20), we can reformulate the weak forms 

(15) as the discrete algorithmic residuals of the electrical and mechanical problems,

(21)

The operator A symbolizes the assembly of all element residuals at the element nodes i and j 
to the global residuals at the global nodes I and J. To solve for the unknown nodal electrical 

potential ΦI and mechanical deformation φJ, we could, for example, adapt an incremental 

interative Newton-Raphson solution strategy based on the consistent linearization of the 

governing equations,

(22)

The solution of this system of equations (22) with the discrete residuals (21) and the 

iteration matrices,
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(23)

defines the iterative update of the global vector of electrical and mechanical unknowns ΦI 

← ΦI + dΦI and φJ ← φJ + dφJ. Here we have used the symmetric operator 

 and the total derivative d{●}{◦} = d{◦}/d{●}. It remains to specify 

the sensitivities of the fluxes Q and S and the source term FΦ with respect to the primary 

unknowns Φ and φ for the iteration matrices (23.1) to (23.4) [13, 18].

3.4. Internal variables

To integrate the evolution equations of the recovery variable r and the active muscle traction 

Tact in time, we treat both as internal variables and update and store them locally on the 

integration point level [18, 36]. To solve the nonlinear evolution equation (9) for the 

recovery variable r, we locally adopt an implicit Euler backward scheme [17, 28],

(24)

and introduce the local residual Rr,

(25)

and its algorithmic linearization Kτ,

(26)

We iteratively update the recovery variable as r ← r − Rr/Kr [34]. To solve the linear 

evolution equation (13.2) for the active muscle traction Tact, we again adopt a finite 

difference discretization in time together with an implicit Euler backward scheme,

(27)
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and solve the resulting equation directly to calculate the active muscle traction at the current 

point in time,

(28)

Once we have determined the recovery variable r and the active muscle traction Tact, we 

calculate the electrical flux Q from equation (6), the electrical source  from equation (7), 

the passive stress Spas from equation (12), and the active stress Sact from equation (13) to 

evaluate the electrical and mechanical residuals (21).

3.5. Sensitivities

Last, we calculate the sensitivities dCFΦ, dCQ, dΦSact, and dCS for the electrical and 

mechanical iteration matrices (23),

(29)

where  and  Finally, dΦFΦ and dΦTact can be 

found in [34] and [17], respectively.

4. Model problem

In this section we summarize the model problems and their results used to assess the 

influence of mass and mechano-electrical feedback on the conduction velocity of the 

electrical wave, and the electromechanical behavior in general. Then, we consider the 

influence of inertial and mechano-electrical parameters on spiral waves. For each of these 

studies we considered five cases, plain electrophysiology (EP), electromechanics (EM), 

electromechanics with mass (EMM), electromechanics with mechano-electrical feedback 

(EM+MEF), and electromechanics with mass and mechano-electrical feedback (EMM

+MEF) as summarized in Table 1.

Table 2 summarizes the electrical, mechanical, and electro-mechanical parameters of these 

models. To obtain realistic mass-to-stiffness ratios, we calibrated the parameters of the neo-

Hookean material model to fit the Holzapfel model [25] in the range of 0 to 15% tensile 

strain. In these two models, fiber stiffness is only activated when in tension. Given that we 

are simulating the contraction of cardiac tissue that results mainly in compressive strains in 

the fiber direction, we consider this neo-Hookean material a good first approximation. We 
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also calibrated the active contraction parameters to obtain strains on the order of 12%, which 

agree with strains measured in vivo [52].

4.1. Conduction velocity study

To study conduction velocity, we consider 5 mm × 5 mm × 10 mm rectangular bar (Figure 1) 

using time steps of Δt = {0.005,0.01,0.05} ms and mesh sizes of Δx = {0.1, 0.25,0.5} mm. 

We take advantage of the symmetry of the problem by simulating one fourth of the cross 

section. As mechanical boundary conditions, we fix the plane x = 0 mm in the x direction, 

the plane y = 0 mm in the y direction, and the plane z = 0 mm in the z direction. To initiate a 

planar wave front, we apply a surface flux of 30 mV/(ms mm2) in the plane x = 0 mm at 

time t0. We compute the conduction velocity in the reference configuration with the 

activation times at x = 2.5 mm and x = 7.5 mm. We define the activation time as the moment 

when the action potential reaches 0mV. To better approximate the activation times, we 

linearly interpolate between two discrete time points.

Figure 2 and Tables 3 and 4 summarize the results from the conduction velocity study. As 

presented in Figure 2, refining the time discretization decreases the conduction velocity and 

refining the mesh size increases the conduction velocity. The conduction velocities range 

between 0.374 m/s for Δx = 0.5 mm, Δt = 0.005 ms to 0.431 m/s for Δx = 0.1 mm, Δt = 0.05 

ms. The variations in conduction velocity, however, can be considered small, falling below 

5% for all models when compared to the smallest time step and mesh size for each model. 

We observe that the biggest impact on conduction velocity is caused by including mechano-

electrical feedback in the model (EM+MEF). The addition of this mechanism leads to an 

increase of 6% in conduction velocity when compared to the purely electrophysiological 

model (EP). The inclusion of inertia in the electromechanical model (EMM+MEF) further 

exacerbates the effect of mechano-electrical feedback, increasing the conduction velocity by 

8% when compared to the EP case. We explain this difference by the additional 

displacements caused by the inertial effect, which are translated into additional current via 

the mechano-electrical feedback. This observation is further supported by the small 

difference in conduction velocity between the electromechanics model with mass (EMM) 

and without mass (EM). In this case, the inertial displacements do not generate additional 

currents, and the difference in conduction velocity can be attributed to the coupling between 

the electrical flux and the deformation. With this in mind, we can quantify the cumulative 

contributions to the increment in conduction velocity as a 2% caused by electrical flux 

coupling, 4% caused by the mechano-electrical feedback and a final 2% caused by the 

inertial effect.

Figure 3 illustrates the sensitivity of the conduction velocity to the mechano-electrical 

feedback. We systematically vary the parameter Gs from 0 to 25 using the same geometry 

with Δx = 0.5 mm and Δt = 0.05 ms. Figure 3 shows that the conduction velocity increases 

with Gs for the cases with and without mass. However, this effect is more prominent in the 

case with mass. The differences in conduction velocity between the case with mass and 

without mass increases from 0.2% for Gs = 0 to 2.6% for Gs = 25.

Figure 4 highlights the response of the different models for a segment of the cardiac wall 

excited in three regions. The simulation covers the isovolumetric contraction phase during 
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the cardiac cycle. Figure 4, left, illustrates the 20 mm ×20 mm × 10 mm block to represent a 

region of the cardiac wall, which we excite in three arbitrary elements on the endocardial 

surface with a body flux of 300 mV/(ms · mm3). This boundary condition mimics the 

activation by the Purkinje network, which is only connected at discrete points to the 

myocardial tissue [49]. We fix all faces of the block in their normal direction except the 

epicardial surface and we set Δx = 0.5 mm and Δt = 0.05 ms. As an indicator of conduction 

velocity in this irregular activation pattern, we use the time to completely activate the block. 

The results show that the differences in conduction velocity now can be mainly attributed to 

the mechano-electrical feedback. The electromechanics coupling (EM) and inertia (EMM) 

have little impact on the total activation time, with differences lower that 0.3% when 

compared to the plain electrophysiology case (EP). The addition of mechano-electrical 

feedback (EM+MEF, EMM+MEF) leads to a reduction of more than 8% in the total 

activation time when compared to the other cases (EP, EM, EMM). There is virtually no 

difference, <0.1%, in the total activation time between the mechano-electrical feedback 

cases without mass (EM+MEF) and with mass (EMM+MEF), which suggests that inertia 

does not play a significant role in this simulation.

4.2. Spiral wave trajectory

Figure 5 illustrates a slab of tissue with dimension 50 mm × 50 mm × 5 mm in which we 

study the effect of mass on spiral waves. We set the element size to 0.5 mm and an adaptive 

time step limited to 0.5 ms. We connect all the boundary of the tissue with springs pointing 

in the normal direction of the surface and set the stiffness of these springs to 4.5 · 10−8 

N/mm to ensure convergence while leaving the tissue fairly unconstrained. To create the 

spiral wave, we adopt an S1–S2 protocol. We first apply a stimulus S1 of 12mV/(ms mm2) 

for 2ms in the plane x = 0mm to create a planar wave front. After 290ms, we apply a 

stimulus S2 of 15mV/(ms mm3) in the quadrant {x < 25, y < 25} mm for 5ms. Finally, we 

simulate the spiral wave for 1000 ms. As a post-processing step, we track the spiral tip 

through the entire timespan of the simulation. We calculate the position of the spiral tip as 

the intersection of two isopotential lines at Φ = −30 mV of two consecutive time points at 

the z = 0 plane in the reference configuration [14]. For each rotation, we compute the spiral 

center position as the mean of all points on the trajectory. We calculate the spiral center 

velocity by taking the norm over the difference of two consecutive center positions and 

dividing it by the rotation time.

Figure 6 shows the transmembrane potential and fiber stretch fields for all cases during the 

planar wave propagation stage and by the end of the simulation, when spirals are present. At 

time 50 ms, compressive stretches are produced in the activated regions, where the action 

potential is high. We observe that the inclusion of mass alters the stretch distribution in the 

upper and lower boundaries. The differences are accentuated when the spiral wave develops. 

In the cases with mass, considerable regions of the tissue experience tensile stretch not 

present in the cases where mass is neglected.

Figure 7 illustrates a consequence of mechano-electrical feedback, where wave fronts are 

generated in secondary locations when the combination of mass and mechano-electrical 

feedback is included. The high tensile stretch observed in the upper boundary of the case 

Costabal et al. Page 11

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2018 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with mass and mechano-electrical feedback is followed by the activation of this region 10 

ms later. This wavefront later collides with the existing spiral at time 144 ms, while another 

wavefront appears in the lower boundary. In the absence of inertial effects, the tensile 

stretches generated solely by the active contraction are lower in magnitude and are not able 

to generate additional wave fronts.

Figure 8 shows the emergent spiral wave dynamics by means of the spiral wave center 

trajectories for all models. All trajectories show different directions and lengths, displaying 

an important model dependency of this variable. The spiral waves in the electrophysiology 

(EP) and mass and mechano-electrical feedback (EMM+MEF) cases drift to the left while 

they drift to the right for the remaining three cases (EM, EM+MEF, EMM). We also observe 

two trends: first, mechano-electrical feedback tends to decrease the trajectory length with or 

without mass. Figure 6 shows that in the vicinity of the spiral tip, there are regions of tensile 

fiber stretch. The mechano-electrical current generated in this region could stabilize the 

spiral wave. Second, we see that the cases when mass was included have longer trajectories 

for the same amount of time. When we compare the spiral center speed in Figure 9 we 

observe that, for most rotations, the speed is higher when mass is considered. Towards the 

end, the speed increases for the cases with mass, suggesting that the spiral would continue 

drifting. For the cases without mass, we see the opposite: the spiral center speed tends to 

zero, suggesting that spiral would continue to be stable.

5. Discussion

In this work, we systematically studied the role of inertia and mechano-electrical feedback 

in cardiac electromechanics models. As a first step, we considered simple geometries to 

accurately assess the impact on electrophysiological and mechanical metrics. However, we 

believe our results translate directly into more realistic models, despite the inherent 

geometrical complexities [30] or boundary conditions [3]. In these sophisticated models, we 

expect to see a major influence in the electrical propagation of the mechano-electrical 

feedback and a minor influence of the inertia term in both the electrical and mechanical 

behavior. Nonetheless, we plan to incorporate our findings into a four-chamber, high 

resolution heart simulator [4] and explore the influence of inertia and mechano-electrical 

currents on clinically relevant variables such as electrocardiograms [34, 35, 26, 49] and 

pressure-volume loops [16]. We also plan to include a more sophisticated material model 

and study the effects of viscosity [22, 44]. Additionally, we would like to include the effect 

of stretch and velocity in the active contraction model [21, 47, 50, 38], to simulate relevant 

macroscopic characteristics of the heart, such as the Frank-Starling effect. Our modular 

approach allows us to easily incorporate these changes in our model.

In this study, we explored the differences between including mass and/or including 

mechano-electrical feedback using our fully coupled finite element electromechanical 

formulation. Our major finding is that the additional deformation caused by inertia alters the 

electrical wave dynamics when mechano-electrical currents are present. We observed that 

the inclusion of mass and mechano-electrical feedback lead to highest increase in 

conduction velocity. However, the inclusion of mass solely did not alter the conduction 

velocity compared to the plain electromechanics case. Taken together, this suggests that 
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inertia is generating tensile stretches that initiate mechano-electrical currents, which add to 

the wave propagation. This observation was further confirmed by our spiral wave study. 

Figure 6 shows higher tensile stretches for both cases with mass. Moreover, Figure 7 shows 

the extreme case when the tensile stretches are large enough to create mechano-electrical 

currents that lead to an additional wave front. We also observed that the inclusion of mass 

leads to a larger and faster spiral drift, which is associated with polyformic ventricular 

tachycardia, a precursor of ventricular fibrillation [20, 54]. Recent studies have shown that 

knowing the precise position of the spiral wave center is critical when attempting to 

terminate atrial fibrillation through localized ablation [46].

From a computational point of view, our model showed little sensitivity to the spatial and 

temporal discretization. In the conduction velocity study, the maximum difference was less 

than 5% for all cases, which is considerable smaller than the 50% of variation that other 

formulations exhibit for the same range of time increments and mesh sizes [42]. Our model 

is able to handle the anisotropic architecture of cardiac tissue at the electrical and 

mechanical levels, with complex wave spiral waves and heterogeneous deformations 

induced by inertial effects. Ultimately, our model will help the research community to better 

understand the complex interactions that govern the heart’s function.
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A. Appendix: Abaqus Implementation

In this Appendix, we illustrate the specific implementation of the electromechanics problem 

into the finite element software package Abaqus/Standard [1]. We took advantage of the 

existing coupled thermal-displacement procedure in Abaqus. By setting the density and the 

specific heat to unity, we recover the balance equations (4). However, this procedure neglects 

the inertia term in equation (4.2). To analyze the effect of mass, we superimposed a user 

element to the standard element as is explained in (A.3). In the following, we explain the 

different subroutines used to create the electromechanical model.

A.1. User material - UMAT

In this subroutine, we calculate the passive stress, the active stress, and the mechanical 

transmembrane current with their corresponding sensitivities. We use the left Cauchy-Green 

deformation tensor,

(30)
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Abaqus/Standard uses the Cauchy stresses, σpas and σact, which follow from the push 

forward, σ = F · S · Ft/J, of the Piola-Kirchhoff stresses, Spas and Sact, in equations (12) and 

(13),

(31)

For the stress sensitivity, Abaqus uses the Jauman stress rate of the Kirchhoff stress divided 

by the Jacobian,  [23], where  is the Eulerian elasticity tensor, which follows 

from the push forward,  of the Lagrangian elasticity tensor, 

, from equation (29.4),

(32)

and ¢′ is a correction for the Jauman rate

(33)

A crucial step in this subroutine is the computation of the spatial fiber vector f. When using 

local orientations, Abaqus rotates the local coordinate system using the rotation matrix R of 

the polar decomposition of the deformation gradient, F = v · R, where v is the left stretch 

tensor. We now seek to compute f′, which is the spatial fiber vector in the rotated coordinate 

system. We define  as the fiber vector rotated only by rigid body motion. These 

two vectors have the same components, but in different coordinate systems, such that 

 We start from the definition of f = F · f0, or equivalently, 

Premultiplying this equation with R −1 = Rt yields, 

 We can now proceed to 

calculate the spatial fiber vector in the rotated coordinate system using the polar 

decomposition of the deformation gradient, F′ = v′ · R. Finally, we can directly implement 

the mechano-electrical source term in the form of equation (10),

(34)

and calculate the push forward, , of its sensitivity, 

, from equation (29.1),
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(35)

A.2. Nonlinear source term - HETVAL

This subroutine is designed to define thermal body flux, which can depend on internal 

variables [1]. In our formulation, we can use this body flux to represent the transmembrane 

current . In this subroutine, we evaluate equations (24) to (26) with a local Newton-

Raphson solver to update the internal variable r and the magnitude of the current  (using 

equation (8).

A.3. User element - UEL

To include the effects of inertia, we superimpose user elements that share their nodes with 

the coupled thermaldisplacement elements of Abaqus/Standard. To compute the 

accelerations and velocities, we adopt Newmark’s method (18) and store these quantities as 

internal variables in the user element. To superpose these effects to the quasi-static solution, 

we add an inertia term to the mechanical residual,

(36)

and the corresponding linearization term, the consistent mass matrix, to the mechanical 

tangent operator,

(37)

We specify the tissue density ρ0 as an element property.
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Highlights

► Modeling cardiac electromechanics is critical to predict mechanisms of 

cardiac dysfunction

► We study two commonly neglected effects of cardiac electromechanics: 

mechano-electrical feedback and inertia

► We show that conduction velocities and spiral wave dynamics are sensitive to 

these effects

► Mechano-electrical feedback and inertia may initiate secondary waves and 

shift trajectories

► Correctly identifying the trajectories of spiral wave centers can improve 

ablation therapies
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Figure 1. 
Simulation protocol to study conduction velocity. We apply a stimulus at the x = 0 mm plane 

to generate a planar wavefront. Then, we allow the entire bar to activate in 40 ms.
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Figure 2. 
Results of the conduction velocity study. In the upper row, we observe that refining the time 

increment reduces the conduction velocity for a given mesh size. In the lower row, we see 

that refining the mesh size produces the opposite effect, increasing the conduction velocity.
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Figure 3. 
Effect of mechano-electrical feedback parameter Gs on conduction velocity. The left panel 

shows the conduction velocity values for the cases without mass (EM+MEF) and with mass 

(EMM+MEF). The right panel shows the percentual differences in conduction velocity 

between both cases, using the case without mass (EM+MEF) as reference.
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Figure 4. 
Simplified model of in vivo conditions. We simulate the isovolumetric contraction phase of 

the cardiac cycle by fixing all faces of the block except the epicardial surface. We activate 

three arbitrary elements to simulate the Purkinje network interaction with the tissue. We 

observe the total time to activate the entire block is mainly dependent on the presence of 

mechano-electrical feedback, which increases the conduction velocity.
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Figure 5. 
Simulation protocol to study spiral waves. First, a stimulus S1 is applied in the x = 0 plane to 

generate a planar wavefront. Later, a stimulus S2 is applied in the tail of the wave to trigger 

the formation of a spiral wave.
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Figure 6. 
Planar wave propagation (left) and spiral wave (right) for all cases considered. The inertial 

effect creates tensile fiber stretch during the spiral wave stage that are not present when mass 

is not considered.
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Figure 7. 
Effect of mechano-electrical feedback on spiral waves. When we include mass (lower row), 

there are regions of high tensile fiber stretch that create mechano-electrical currents. These 

currents later translate into secondary activation fronts at times 98 ms and 144 ms. This 

effect is not present when we neglect inertia (upper row).
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Figure 8. 
Trajectories of the spiral wave center. We observe that cases with mecho-electrical feedback 

tend to have shorter trajectories and cases with mass tend to have longer trajectories.
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Figure 9. 
Speed of spiral wave center. The cases with mass have greater speeds for most rotations, 

particularly towards the end. This trend suggest that the spiral would continue drifting, while 

in the cases without mass, the spiral would stabilize in one position.
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Table 1

Cases considered in the numerical study. The ✔symbol marks the components present in each model.

case/component Electrophysiology Mechanics Mass Mechano-electrical feedback

EP ✔

EM ✔ ✔

EMM ✔ ✔ ✔

EM+MEF ✔ ✔ ✔

EMM+MEF ✔ ✔ ✔ ✔
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Table 2

Model parameters used in all simulations.

electrical

conduction diso = 0.0952 mm2/ms dani = 0.03 mm2/ms [42]

excitation α = 0.05 γ = 0.002 [27]

c1 = 52 c1 =8 [34]

μ1 = 0.1 μ2 = 0.3 [27]

b = 0.35

mechanical

passive ρ0 =1.1 g/cm3 λ = 100 kPa

μ = 3.91 kPa η = 4.02 kPa

active kT = 0.015 kPa/mV Φr = −80 mV

coupling

activation ε0 =0.01/mV ε∞=1/mV [18]

ξ = 0.5/mV [18]

MEF Gs = 20 Φs= 0.6 [54]
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