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Abstract

Background and Objectives—Given moderate heritability and significant heterogeneity 

among addiction phenotypes, successful genome-wide association studies (GWAS) are expected to 

need very large samples. As sample sizes grow, so can genetic diversity leading to challenges in 

analyzing these data. Methods for empirically assigning individuals to genetically informed 

ancestry groups are needed.

Methods—We describe a strategy for empirically assigning ancestry groups in ethnically diverse 

GWAS data including extensions of principal component analysis (PCA) and population matching 

through minimum Mahalanobis distance. We apply these methods to data from Spit for Science 
(S4S): the University Student Survey, a study following college students longitudinally that 

includes genetic and environmental data on substance use and mental health (n=7603).

Results—The genetic-based population assignments for S4S were 48.7% European, 22.5% 

African, 10.4% Americas, 9.2% East Asian, and 9.2% South Asian descent. Self-reported census 

categories “More than one race” and “Unknown”as well as “Hawaiian/Pacific Islander” and 

“American Indian/Native Alaskan” were empirically assigned representing a +9% sample 

retention over conventional methods. Although there was high concordance between self-reported 

race and empirical population-match (+0.924), there was reduction in variance for most ancestry 

PCs for genetic-based population assignments.

Conclusions—We were able to create more genetically homogenous groups and reduce sample 

and marker loss through cross-ancestry meta-analysis, potentially increasing power to detect 

etiologically relevant variation. Our approach provides a framework for empirically assigning 

genetic ancestry groups which can be applied to other ethnically-diverse genetic studies.
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Scientific Significance—Given the important public health impact and demonstrable gains in 

statistical power from studying diverse populations, empirically sound practices for genetic studies 

are needed.
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Background and Objectives

Genome-wide association studies (GWAS) have successfully discovered thousands of 

variants robustly associated with a variety of human traits including psychiatric outcomes 

long known to be heritable.1 Although addiction related GWAS typically have used 

thousands of individuals in their samples, there is compelling evidence across a variety of 

traits that even larger sample sizes will be required to discover robustly associated genetic 

variants.2,3 This leads to the phenomenon that as larger samples are collected and 

ascertained, maintaining homogeneity across multiple domains including phenotype, culture, 

or genetic ancestry becomes increasingly difficult.

An important motive for understanding the effects of ancestry on GWAS is preventing 

genomic inflation due to population stratification. Population stratification occurs when both 

disease prevalence and allelic frequency differences exist in the subpopulation sampled. 

Such stratification may lead to false positive associations of genetic signals.4 Since up to 

millions of markers are tested across the genome, many will show differences in allele 

frequency between populations and the overall distribution of test statistics will be inflated, 

leading to an increase in false positives, hence the term “genomic inflation.”

There are several approaches by which ancestry is considered in GWAS. One is self 

identified ancestry (SIA)/ethnicity/race. There is some utility in using this information as a 

starting point for addressing population stratification. When subsetting a sample based on 

SIA, the number of markers violating Hardy Weinberg Equilibrium (HWE) and measures of 

genomic inflation are greatly reduced. However, SIA alone is usually insufficient even in 

apparently homogenous samples.5

Another approach to address ancestry in genetic studies is the use of ancestry informative 

markers (AIMS) which are a fixed small set of markers (1500–5000) shown to have high 

differentiation between ancestral populations. AIMS are useful when no GWAS data are 

available such as in candidate gene or target genotyping for replication studies. There is not 

perfect agreement between SIA and AIMs as SIA may provide more information on social 

and environmental exposures while AIMS may provide a better estimate of ancestry.6 

However, if GWAS data are available, limiting the ancestry analyses to a small fixed set of 

markers is not ideal.5,6

Admixture analysis assumes a fixed number of ancestral populations and estimates a percent 

ancestry of each ancestral population for each sample. The resulting quantitative values are 

substantially more informative than SIA, can be used to assess sample homogeneity, and 
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divide the sample into sub-populations if there are large differences. There is a variety of 

software designed to perform these analyses including ADMIXTURE,5 FRAPPE,7 sNMF.8 

However, creating more homogenous subgroups using admixture results can be challenging 

if there are no clear clusterings of individuals. Subdividing by global ancestry may not be 

sufficient to address population stratification when local population structures exist.

The most common approach to assessing ancestry and population structure is the use of 

ancestry principal component analysis (PCA), which has been applied to adjust for global 

and local population structures such as Eastern-Western European differences9 and regional 

differences in China.10 The principal components (PCs) can be used to exclude outliers from 

otherwise homogenous groups and, importantly, used as covariates in association analyses to 

reduce effects of population stratification. However, the statistical justification for excluding 

outliers is often not clear (visual inspection), simplistic, or non-multivariate. Samples that 

show evidence for admixture or have missing self reported race/ethnicity/ancestry are often 

excluded which unnecessarily reduces sample size. Critically, the choice of PCs included in 

GWAS as covariates is commonly not done empirically. That is, not appropriately assessing 

if they are associated with the trait of interest or with some other technical artefact such as 

batch effect. The practice of blindly including PCs in GWAS (typically 10–20) can 

negatively impact results. First, if too many PCs are included association models may 

become overfit, which can reduce the power to detect etiologically relevant variation 

(inflated type-II error rates). Conversely, if too few PCs are included, which is particularly 

salient for admixed and diverse samples, population stratification can remain potentially 

leading to false positive associations (increased type-I error rates).

The standard practice in GWAS is not only to test directly genotyped markers but also to test 

unobserved markers where the genotypes are estimated using imputation. In addition to 

many quality control (QC) steps requiring homogenous samples, ancestry can influence 

imputation and some methods recommend within group imputation (MaCH, BEAGLE)11,12 

while other methods, such as IMPUTE2, recommend using diverse reference panels.13 There 

are also methods specifically intended to be used in admixed populations such as 

MaCHadmix.14 Therefore the choice to perform imputation within or across groups will 

depend on the imputation method’s recommended practices. Regardless of method, 

imputation quality can vary across groups due to a variety of factors including reference 

panel diversity and single nucleotide polymorphism (SNP) array density, content, and 

design. Meta-analysis of data from diverse populations offers the opportunity to increase the 

power to detect loci through increased sample size and improve the resolution of fine-

mapping of causal variants.15 It is expected that there will be some differences in causal loci 

between diverse populations and how well GWAS findings translate from one population to 

another depends on heterogeneity in allelic effects between distantly related populations.

Until recently, most GWAS were conducted in relatively homogeneous samples.16 For many 

samples collected in the US, the analyses were limited to individuals of European and 

African ancestry and excluded groups with too few individuals for statistical analysis. 

However, as samples become increasingly large and diverse, there is a need to establish 

practices for cosmopolitan samples. Here we describe procedures for empirically assigning 

individuals to genetically informed ancestry groups for cross-population meta-analysis with 
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the goal of maximizing power for discovering etiologically relevant genetic variants while 

minimizing false positive associations due to population stratification. Our approach is 

applied to data from Spit for Science (S4S): the University Student Survey, an ongoing study 

following college students longitudinally that consists of both genetic and environmental 

data collected on substance use and mental health. Our framework for empirically assigning 

genetic ancestry groups can be applied to other cross-population studies, including those of 

admixed ancestry such as African- and Asian-Americans.

Methods

Sample collection

Spit for Science is a longitudinal study of college students enrolled in a large, urban 

university in the mid-Atlantic, as described previously.17,18 Briefly, incoming students age 

18 or older were eligible to complete online phenotypic assessments that covered a range of 

behavioral and health-related phenotypes, as well as demographic information including 

self-identified ethnicity. Follow-up assessments were completed in subsequent spring 

semesters. Study data were collected and managed using REDCap electronic data capture 

tools19 hosted at Virginia Commonwealth University. REDCap (Research Electronic Data 

Capture) is a secure, web-based application designed to support data capture for research 

studies, providing 1) an intuitive interface for validated data entry; 2) audit trails for tracking 

data manipulation and export procedures; 3) automated export procedures for seamless data 

downloads to common statistical packages; and 4) procedures for importing data from 

external sources. All students that initiated the survey were first led through a consent 

process that further explained the study and their participation. Individuals who completed 

the online survey were also eligible to provide a deoxyribonucleic acid (DNA) sample. The 

current analyses are based on students who matriculated in the Fall of 2011 (n = 2714), 2012 

(n = 2486), and 2013 (n = 2403), for a total of n = 7603. Of these, 98% provided a DNA 

sample.

Genotyping and imputation

Genotyping was performed at Rutgers University Cell and DNA Repository using the 

Affymetrix BioBank array (653k) which contains both common GWAS framework variants 

(296k) for imputation and functional variants (357k) including rare high impact exome 

variants (272k), indels (18k), eQTLs (16k) and miscellaneous markers (51k). QC excluded 

Off Target Variants found by SNPolisher, high missingness SNPs (5%) and samples (2%), 

and post sample filtering high missingness SNPs (2%) similar to the Psychiatric Genomics 

Consortium (PGC).20 There were 6534 samples passing DNA and initial genotyping QC. An 

additional 209 samples were removed due to excessive relatedness (n = 194) and/or Pi_Hat 

> 0.1 (n = 180), leaving 6325 samples and 560138 variants for imputation. Imputation was 

conducted using SHAPEIT2,21 IMPUTE2,22 and the 1000 genomes phase 3 (1KGP) 

reference panel (n = 2504) which includes 81,706,022 variants.23,24 The post imputation and 

pre-GWAS filtering included excluding rare (MAF <0.005) and low quality (INFO<0.5) 

variants, SNPTEST v2.5.225 was used to calculate Hardy-Weinberg Equilibrium (HWE) 

which yielded 17,461,305 variants. Group (super-population or census race) GWAS filtering 

was performed using within grouping specific HWE (p-value>10−6) and sample size based 
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MAFs. Instead of using a fixed MAF threshold for each group, the minimum observed 

minor allele count (MAC) of 40 was used as this minimum is robust for most association 

analyses performed in GWAS.26

Ancestry principal components

Ancestry PCs can be estimated from the sample itself or from an external reference such as 

the 1KGP and projected onto the GWAS sample. The use of an external reference panel has 

advantages such as not needing to exclude relatives or poorly performing samples, and some 

of the loadings can be interpreted (i.e., what ancestral population it reflects) based on 

reference panel populations. Here, 1KGP phase 3 variants (2504 samples, 26 populations), 

found in common with the post QC filtered S4S genotypes were merged together. Regions 

with high LD were excluded27,28 and the common set of variants was then pruned (r2 < 0.1) 

using PLINK 1.929,30 (–indep-pairwise 1500 150 0.1) to yield 109,259 semi-independent 

variants for ancestry analyses. EIGENSOFT and SmartPCA27,31 were used to perform PCA 

using only the 1KGP phase 3 reference panel to determine SNP weights for each 

eigenvector. This solution was then projected onto the S4S data to generate 10 PCs.

Genetic based population assignment

The 1KGP reference panel was used for S4S population assignments. The 1KGP consists of 

26 populations including Han Chinese in Bejing China (CHB), Japanese in Tokyo Japan 

(JPT), Southern Han Chinese (CHS), Chinese Dai in Xishuangbanna China (CDX), Kinh in 

Ho Chi Minh City Vietnam (KHV), Utah residents from the USA with Northern and 

Western Ancestry (CEU), Toscani in Italia (TSI), Finnish in Finland (FIN), British in 

England and Scotland (GBR), Iberian Population in Spain (IBS), Yoruba in Ibadan Nigeria 

(YRI), Luhya in Webuye Kenya (LWK), Gambian in Western Divisions in the Gambia 

(GWD), Mende in Sierra Leone (MSL), Esan in Nigeria (ESN), Americans of African 

Ancestry in Southwest USA (ASW), African Caribbeans in Barbados (ACB), Mexican 

Ancestry from Los Angeles USA (MXL), Puerto Ricans from Puerto Rico (PUR), 

Colombians from Medellin Colombia (CLM), Peruvians from Lima Peru (PEL), Gujarati 

Indian from Houston, Texas USA (GIH), Punjabi from Lahore Pakistan (PJL), Bengali from 

Bangladesh (BEB), Sri Lankan Tamil from the UK (STU), and Indian Telugu from the UK 

(ITU). The 26 1KGP populations are divided into five super populations: African (AFR), 

admixed from the Americas (AMR), East Asian (EAS), South Asian (SAS), and European 

(EUR).

Using all 10 ancestry PCs, we began by calculating the median and variance for each 1KGP 

population and then calculating the Mahalanobis distance(30) for each 1KGP sample for all 

26 populations (Figure 1a). We chose to apply Mahalanobis distance, a common approach 

for detecting outliers, to assign the best population match in multivariate space as it accounts 

for both mean distance and group variances. Reference population outliers (> 4 SD from 

population median, n = 61) were then removed (Figure 1b) and the procedure was repeated 

for all 1KGP samples. Every S4S sample was then assigned to the 1KGP population with the 

minimum Mahalanobis distance. The S4S samples were then collapsed into their respective 

super-population assignment (Figure 1c).

Peterson et al. Page 5

Am J Addict. Author manuscript; available in PMC 2017 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results

Study population

Responses for self-identified ethnicity were as follows: American Indian/Alaska Native (n = 

35); Asian (n = 1223); Black/African American (n = 1464); Hispanic/Latino (n = 450); More 

than one race (n = 467); Native Hawaiian/Other Pacific Islander (n = 50); Unknown (n = 

30); and White (n = 3763). Participants could also elect not to answer (n = 108). As noted 

previously, the sample of participants corresponds closely to the overall demographics of the 

university student population.18

Genetic based population assignment

To assess population matching, the assigned versus known population and super-population 

for each 1KGP sample was examined. The average 1KGP cross-population mismatch rate 

was 0.09 (ranging from 0.03 for AFR to 0.185 for SAS). However, there were no cross 

super-population mismatches. For S4S, the concordance rate between super-population 

assignment based on minimum Mahalanobis distance and self-reported census race was 

greater than 92.4% with 4.6% of the samples within the major census categories changing 

super-populations. As expected, the census category Asian split into EAS and SAS super-

populations. Furthermore, samples in “More than one race” and “Unknown” groups were 

empirically assigned. Additional details are shown in Table 1 and plots of the first three PCs 

for the empirically matched S4S super-population assignments are shown in Figure 1c. 

Although there is high concordance between self-reported census race and empirical genetic 

population match, there is reduction in variance for most ancestry PCs for the genetic based 

super population assignments. Specifically, of the 10 PCs constructed variances were smaller 

for all 10 PCs in the EUR, 8 in the AFR, 8 in EAS, 7 in SAS but only 2 in the AMR group. 

Variance reduction was statistically significant via the sign-test for the EUR (p = 0.0008), 

AFR (p = 0.029), and EAS super population groups (p = 0.029). Although 7 of 10 PC 

variances were smaller in the SAS group, the reduction did not reach statistical significance 

(p = 0.103). Plots of the first three PCs for each self-reported census race and super-

population assignments showing the reduced variance can be seen in Figure 2.

Sample and marker retention

Conventional GWAS strategies typically remove those subjects that are missing self-reported 

census race, those endorsing more than one census race, or those census categories with 

small sample sizes. By applying our population matching methodology we were able to 

create more genetically homogenous groups while retaining those groups that are commonly 

removed from analyses. As shown in Table 1, were able to retain greater than 9% of the 

sample, which would otherwise have been excluded.

There are established QC metrics that are used to remove problematic variants prior to 

running GWAS analyses, including markers in violation of HWE, low minor allele 

frequency (MAF), and poor imputation quality. These QC procedures need to be carefully 

considered when applied to diverse samples as there can be significant differences on these 

metrics by ancestry. Therefore standard QC procedures were applied to each genetically 

assigned super-population separately. Post GWAS filtering was performed using ancestry 
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specific HWE (p >10−6) and sample size based MAFs. As a result, there was greater marker 

retention by applying QC to empirically assigned ancestry groups and then meta-analyzed 

across groups. When analyzing all samples together, 2.7×106 markers were removed due to 

excessive violation of HWE (p<10−6), representing 16% of markers passing minimum INFO 

and MAF thresholds. As shown in Table 2, for individual groups, few markers (0.1%) were 

filtered due to HWE except for census Asian (0.8%) which had a higher frequency of 

markers failing HWE than other census categories. By performing meta-analysis across 

assigned ancestry groups, as compared to census categories or all samples together, we were 

able to retain 220,689 – 1,930,671 SNPs, which would have otherwise been removed from 

analysis (Table 2).

Discussion and Conclusions

As GWAS studies grow larger and more inclusive, guidance on how best to perform GWAS 

in highly diverse samples is needed. Here we outline a strategy for empirically assigning 

samples to more homogenous ancestry groups based on reference populations. This 

approach minimizes overall sample and marker loss and reduces within group genetic 

variance with the potential to increase discovery and replication power without increased 

inflation due to population stratification.

We demonstrate the utility of a multivariate approach to assigning samples to more 

homogeneous genetic groups by using minimum Mahalanobis distance based on 1KGP 

reference populations. By doing so, we were able to balance maximal genetic similarity 

within group assignment with minimal sample loss due to unknown and self-reported mixed 

ancestry. We were able to include 9% of the sample that may have been excluded otherwise. 

As more cohorts are combined through large scale collaborations, maximizing sample 

retention, particularly for understudied ancestry groups, while reducing population 

stratification remains an important endeavour.

Another practice supported herein is to perform pre-GWAS QC on homogenous ancestry 

groups rather than on the entire cohort. In addition to known QC metrics sensitive to 

population ancestry, such as heterozygosity rate and IBD, we show by applying QC on 

ancestry groups rather than on the entire sample there is a reduction in marker loss due to 

MAF and HWE thresholds. By removing markers that would be retained in subpopulation 

analyses potential etiologically relevant associations may be missed.

Although we see modest gains in QC metrics by applying our practices, there are limitations 

to consider. For example, even though the concordance rate between super-population 

assignment and self-reported census race was high (+92.4%), we cannot rule out the 

possibility that a portion of the 4.6% of samples that changed super-population category 

were due to sample mix-ups, which could impact results. However, it should be noted that 

our method can correct some response biases due to misrepresentation by respondents 

whether intentionally or unintentionally (e.g.; ethnic identity, truthfulness, technical 

problems). For example, 37 S4S respondents self-identified as census category white were 

empirically matched to SAS, representing 6.3% of the S4S SAS super population. Although 

a seemingly large proportion of cross-super population mismatch, this rate is consistent with 
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previous reports of census race category endorsements of South Asians in the US (e.g.; 

Indian, Pakistani, Bangladeshi).32

There are limitations to applying Mahalanobis distance matching methods. First, 

Mahalanobis distance is generally employed to identify multivariate outliers. Here, we have 

used it to find the closest group for each sample in multivariate space. However, it is 

possible the sample may still be an outlier from the closest group, especially if the individual 

is from a population not well represented on the reference panel. Indeed, the 1KGP 

reference panel is missing human populations including those from Oceania and the Middle 

East. An important scientific venture will be the inclusion and representation of all human 

populations, which will see the current method improved with respect to both resolution and 

applicability.

An additional limitation of this method is the requirement of a large starting sample is 

needed since dividing the sample into genetically homogenous subpopulations leads to 

smaller groups. Indeed, significant structure remained in the SAS (n = 584) and AMR super-

populations (n = 659) but further dividing the populations would yield problematically small 

sample sizes. Therefore, the need to create more homogenous subpopulations must be 

balanced against losing power from small subsamples.

Despite these limitations, the population-matching paradigm presented herein has several 

important extensions beyond standard GWAS such as reducing problems of stratification in 

conventional genetic methods including gene and pathway based tests, functional 

enrichment, aggregate genetic risk profiles, and rare variant analyses. Furthermore, the 

development of methods that facilitate inclusion of more diverse, and often understudied, 

populations in genetic studies will have significant downstream public health impacts, as 

made necessary by long-standing disparities in addiction research.
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Figure 1a. 
1KGP population assignment. The first three principal components (PC) plotted for each of 

the 26 1KGP populations with Mahalanobis distance outliers marked in black.
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Figure 1b. 
1KGP super-population assignment. The first three PCs plotted for each of the 5 1KGP 

super-populations with Mahalanobis distance outliers marked in black.
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Figure 1c. 
S4S super-population assignment. The first three PCs plotted for each of the 5 genetic based 

super-populations determined using Mahalanobis distance.
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Figure 2. 
The first three principal components (PC) plotted for self-reported census race and genetic 

super-population assignments. Comparison of self-reported census race and genetic super-

population assignment plots indicate a reduction of variance in PCs for genetic based super-

population assignments.
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