Skip to main content
. 2017 Oct 18;3(10):e1701438. doi: 10.1126/sciadv.1701438

Table 1. Predicting the biodiversity in tropical forests.

Predicted total number of species, Spred, at the whole-forest scale (corresponding to p = 1) for each of the 15 tropical forests in our database. Predictions are determined by using information on the sampled scale p* (fourth column), where we observe N* trees belonging to S* species (second and third columns). In the fifth column, we show the predictions obtained by using the NB framework with a single NB for fitting the sampled SAD. SEs were computed by propagating the errors in the fitting parameters of the SAD (obtained by the bootstrapping method) and of S*. The latter has been determined as follows: For each data set, we created the corresponding predicted forest at the scale p = 1 by generating Spred numbers distributed according to an NB with parameters (r, ξ). We then sampled the p% of the list of individuals, as in the original data. The last two columns show the predictions of the LS and Chao methods.

Forest S* N* p*% Spred
(NB)
Spred
(LS)
Spred
(Chao)
Amazonia 4962 553949 0.00016 13602 ± 711 14984 5561
Barro
Colorado
301 222602 3.20513 366 ± 15 419 315
Bukit
Barisan
340 14974 0.00169 471 ± 40 1020 346
Bwindi 128 18490 0.01813 163 ± 15 288 129
Caxiuana 386 32701 0.01818 437 ± 14 915 386
Cocha Cashu 489 16640 0.00035 731 ± 63 1674 501
Korup 226 17427 0.00473 282 ± 23 591 226
Manaus 946 38933 0.06000 1016 ± 14 2242 956
Nouabalé-
Ndoki
110 7196 0.00143 125 ± 8 316 110
Pasoh Forest
Reserve
927 310520 0.35714 1193 ± 36 1590 1049
Ranomafana 269 34580 0.01463 336 ± 22 620 269
Udzungwa 109 18447 0.00302 146 ± 20 269 114
Volcan Barva 392 44439 0.02025 448 ± 16 895 395
Yanachaga 209 2041 0.00372 802 ± 211 802 259
Yasuni 481 13817 0.61100 565 ± 20 974 484