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Abstract

Posterior fossa ependymomas (EPN_PF) in children comprise two morphologically identical, but 

biologically distinct tumor entities. Group-A (EPN_PFA) tumors have a poor prognosis and 

require intensive therapy. In contrast, group-B tumors (EPN_PFB) exhibit excellent prognosis and 

the current consensus opinion recommends future clinical trials to test the possibility of treatment 

de-escalation in these patients. Therefore distinguishing these two tumor subtypes is critical. 

EPN_PFA and EPN_PFB can be distinguished based on DNA methylation signatures, but these 

assays are not routinely available. We have previously shown that a subset of poorly prognostic 

childhood EPN_PF exhibits global reduction in H3K27me3. Therefore, we set out to determine 

whether a simple immunohistochemical assay for H3K27me3 could be used to segregate 

EPN_PFA from EPN_PFB tumors. We assembled a cohort of 230 childhood ependymomas and 

H3K27me3 immunohistochemistry was assessed as positive or negative in a blinded manner. 

H3K27me3 staining results were compared with DNA methylation-based subgroup information 

available in 112 samples [EPN_PFA (n=72) and EPN_PFB tumors (n=40)]. H3K27me3 staining 

was globally reduced in EPN_PFA tumors and immunohistochemistry showed 99% sensitivity and 

100% specificity in segregating EPN_PFA from EPN_PFB tumors. Moreover, H3K27me3 
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immunostaining was sufficient to delineate patients with worse prognosis in two independent, non-

overlapping cohorts (n=133 and n=97). In conclusion, immunohistochemical evaluation of 

H3K27me3 global reduction is an economic, easily available and readily adaptable method for 

defining high-risk EPN_PFA from low-risk posterior fossa EPN_PFB tumors to inform prognosis 

and to enable the design of future clinical trials.
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Introduction

Ependymomas (EPN) are the third most common childhood brain tumor and can occur 

throughout the neuraxis, but most frequently arise in the posterior fossa [17]. Recent 

genomic, DNA methylation and gene expression studies have identified molecular 

subgroups within EPN occurring at different locations along the neuraxis [18, 24, 25]. 

Posterior fossa ependymomas (EPN_PF), previously thought of as a single entity, have been 

classified into EPN_PFA and EPN_PFB subgroups based on gene expression and DNA CpG 

island methylation profiles that correspond to crucial differences in clinical outcomes [18, 

24, 27, 34]. EPN_PFA tumors frequently occur in younger children (<5 years) and carry a 

dismal prognosis while EPN_PFB are more common in older children (5–18 years) and 

adults, and carry a favorable prognosis [18, 24, 27, 34]. More recently, molecular 

subgrouping along with the extent of tumor resection (a previously established prognostic 

indicator) has been suggested to be critical in designing treatment approaches in these 

children. A recent study from 820 patients demonstrates that children with EPN_PFA have 

the best outcomes when maximal safe surgical resection is combined with localized 

radiotherapy, while EPN_PFB patients exhibited excellent prognosis with surgical 

resection[27]. Therefore, the 2017 consensus for the clinical management of EPN suggests 

maximal resection and radiation for EPN_PFA in contrast to the potential for de-escalation 

of therapy for EPN_PFB [23]. While EPN_PFA and EPN_PFB tumors most commonly 

occur at opposite ends of the age spectrum, children between 6–16 have similar frequencies 

of both tumor subgroups [27]. Therefore it is critical to stratify patients in this age group.

Delineation of EPN_PFA from EPN_PFB currently relies on methylation arrays to examine 

CpG island DNA methylation patterns [18, 24, 27]. However, this approach is not readily 

adaptable to routine clinical testing, as it requires specialized equipment, and may be 

difficult to validate. The absence of a high-quality, cost-effective test that can be routinely 

deployed in most clinical settings is a significant obstacle to widespread implementation of 

molecular stratification of these tumors, impacting not only clinical care resulting in 

overtreatment of children, but also the ability to design future clinical trials. Our goal was to 

develop an easy to implement immunohistochemical molecular surrogate to enable pediatric 

EPN_PF subgrouping. We have recently reported that a subset of childhood EPN_PF exhibit 

global reduction in the repressive mark histone H3 lysine 27 trimethylation (H3K27me3) 

that is driven by aberrant DNA methylation [1]. An immunohistochemical stain for 

H3K27me3 segregated posterior fossa EPN in a binary fashion, wherein a subset of tumors 
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exhibited global loss of H3K27me3 staining similar to that observed in H3K27M mutant 

gliomas [1, 3, 14, 31]. Moreover, H3K27me3 negative EPN showed overlap in clinical 

features with EPN_PFA tumors in a small number of cases (n=14) [1]. This led us to 

hypothesize that global reduction in H3K27me3 is specific to EPN_PFA and can serve as an 

immunohistochemical surrogate to subgroup childhood posterior fossa EPN.

Materials and Methods

Study design and patients

This retrospective international study involved patient tumor sample assessment (n=230) 

from 22 different institutions. The only inclusion criterion was diagnosis of EPN_PF in 

children below 18 years of age (18 years cutoff defined by Central Brain Tumor Registry of 

the United States [22]) and multiple centralized neuropathological review (S.V., J.C., C. D., 

S. Y., M. P., Mar. S., Mat. S., Cyn. H. and A. K.) to confirm diagnosis. All studies were 

performed after institutional review board approval from all institutions. From these 230 

tumor samples, molecular subgroup information (determined using Illumina 450K DNA 

methylation beadchip arrays) was available for 112 EPN (EPN_PFA=72 and EPN_PFB=40) 

[18, 24, 27], 14 of these cases have been previously published [1]. Tumor samples were 

obtained as unstained tissue sections derived from formalin fixed paraffin embedded blocks 

and were assembled into two cohorts. Cohort 1 (n=133): EPN samples from Children’s 

Hospital Los Angeles (CHLA) (n= 38), Children’s Hospital of Philadelphia (CHOP) (n= 

15), The Johns Hopkins Hospital (n= 4), University of California San Francisco (UCSF) (n= 

17), The Hospital for Sick Children (n= 30), German Cancer Research Center (DKFZ) (n= 

25) and NYU Langone Medical Center (n= 4). Samples were in the form of full sections 

(n=97) or were contained in tissue microarrays (n= 36). The H3K27me3 staining and 

clinical data from 59 cases in cohort 1 have been previously published [1]. Cohort 2 (n=97, 

contained in tissue microarrays): EPN samples obtained from the University of British 

Columbia from the trans Canadian ependymoma study that did not overlap with the cases 

obtained from The Hospital for Sick Children [15]. Demographic and clinical details of 

patients are summarized in table 1. Patient identifiers were removed from all cases. All 

studies were conducted in compliance with REMARK and STARD guidelines [6, 19].

Immunohistochemistry and scoring

Immunohistochemistry for H3K27me3 was performed using standard immunostaining 

protocols as previously described [1, 31]. Inter laboratory variability was assessed in two 

independent institutions using two different antibodies using two independent staining 

platforms (Ventana and Leica Bond systems).

Institution 1—“Immunostaining was performed using the Discovery XT processor 

(Ventana Medical Systems). Tissue sections were blocked for 30 min in 10% normal goat 

serum in 2% BSA in PBS. Sections were incubated for 5 h with rabbit polyclonal anti-

H3K27me3 antibody (07–449, Millipore, 0.1 µg/mL). Tissue sections were then incubated 

for 60 min with biotinylated goat anti-rabbit IgG (PK6101, Vector Labs) at 1:200 dilution. 

Blocker D, Streptavidin-HRP, and DAB detection kit (Ventana Medical Systems) were used 

according to the manufacturers’ instructions”.
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Institution 2—Immunohistochemistry for H3K27me3 was performed using the Leica 

Bond RXm™ automated staining processor (Leica Biosystems, Buffalo Grove, IL). Tissue 

sections were cut at 5µm and dried at 70°C for 30 min. They were then dewaxed and antigen 

retrieval was in the Bond Rx system with Epitope Retrieval Solution 2 (pH9) for 40 min. 

Sections were incubated for 30 min with rabbit monoclonal anti-H3K27me3 antibody 

(C36B11, Cell Signaling, Danvers, MA) at a concentration of 1:150 using the standard Leica 

Bond protocol IHC-F. The Leica Bond Polymer Refine DAB detection kit was used 

according to the manufacturer’s instructions.

Positive, negative and internal controls and scoring—H3K27M mutant gliomas 

that exhibit global reduction in H3K27me3 and H3 Wild-type gliomas with preserved 

H3K27me3 staining in tumor cells were used as positive and negative controls respectively 

(Online Resource 1, Fig S1a–b). Non-tumor cells in the microenvironment including 

endothelial cells and immune cells served as internal positive controls. Five individuals 

scored H3K27me3 staining independently in a blinded manner based on scoring systems for 

H3K27M tumors [2, 31]. Sections were scored positive when more than 80% cells were 

positive for H3K27me3 and scored negative when they did not. Inter-reviewer variability 

(disagreement with consensus opinion) ranged from 0 to 3.1% with a median of 1.18%. 

Staining results using two independent antibodies performed in two independent laboratories 

were identical. To assess variability between tissue microarrays and full sections, we 

assessed staining results in 70 cases contained in tissue microarrays with their corresponding 

full sections selected from the same blocks that were used to generate the TMA. This 

comparison showed that staining results were identical in tissue microarrays and full 

sections.

Automated, blinded quantification—were performed as we have previously described 

[31]. “Each slide was scanned at 40× magnification using an Aperio Scanscope Scanner 

(Aperio Vista, CA) and viewed through the Aperio ImageScope software program. An 

individual blinded to the experimental design captured JPEG images from each core 

(circular area of 315 cm2 corresponding to the entire core) at 10× magnification on the 

Aperio ImageScope viewing program. Quantification of immunostaining on each JPEG was 

conducted using an automated analysis program with Matlab’s image processing toolbox 

algorithm that used color segmentation with RGB color differentiation, K-means clustering 

and background-foreground separation with Otsu’s thresholding. To arrive at a score the 

number of extracted pixels were multiplied by their average intensity for each core. The final 

score for a given case and marker were calculated by averaging the score of two cores vis-à-

vis that marker. Quantification of the captured images was conducted using an automated 

analysis program with Matlab’s image processing toolbox as described previously”[31].

Statistics

Statistical analyses were performed in consultation with the University of Michigan’s 

department of Bioinformatics and the Division of Hematology/Oncology and Hospital for 

Sick Children, Toronto. Because our study was a retrospective in nature, no a priori power 

analysis was performed. Sensitivity, specificity, positive predictive value, negative predictive 
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value, false positive rate, false negative rate and false discovery rate were calculated using 

standard definitions.

Overall survival (OS) and progression-free survival (PFS) were defined as the time from 

histologic diagnosis to death (OS) or the minimum of first progression or death (PFS). 

Kaplan-Meier curves were generated to estimate the OS and PFS; between group differences 

in OS or PFS were tested using log-rank tests. Univariate and multivariate Cox proportional 

hazard regression models were used to assess the relation between covariates and OS or PFS 

outcomes. All statistical analyses were performed in the R statistical environment (v3.3.2), 

using R packages survival (v2.40-1), rms (4.3-1) and ggplot2 (v2.2.0). Unpaired, two-tailed, 

Mann Whitney test with 95% confidence intervals were used to compare mean age 

differences and H3K27me3 quantitative values. Data are represented as the means ± 

standard deviation (s.d.) or median with interquartile range with 95% CI.

We evaluated the discriminatory capacity of biomarkers using Harrell’s C index and time 

dependent AUC evaluated at year five. To account for possible bias from using the same 

dataset to build and assess models, these statistics were calculated using 5-fold cross 

validation repeated 20 times, for 2 models: 1) H3K27me3 with covariates and 2) EPN_PFA/ 

EPN_PFB subgroup with covariates. Time dependent AUC was calculated following 

Heagerty and Zheng, 2005 [10].

Results

H3K27me3 immunohistochemistry distinguishes EPN_PFA from EPN_PFB tumors

We first determined the relationship between H3K27me3 immunostaining and EPN 

molecular subgroups in a cohort (n=112) of previously classified childhood posterior fossa 

EPNs [18, 24, 27] using H3K27M mutant and H3 wild type gliomas as controls [2, 3, 14, 

31]. H3K27me3 immunostaining was assessed as negative or positive by five blinded 

observers. These studies showed that all 72 (100%) EPN_PFA were negative for H3K27me3 

staining, while 39 of 40 (97.5%) EPN_PFB were positive and 1 of 40 (2.5%) of EPN_PFB 

was negative for H3K27me3 (Online resource 1-Fig. S1 and Fig 1a–b). As an objective 

measure, an individual blinded to the study design captured and quantified images from each 

case using MATLAB algorithms we have previously standardized [31]. Global reduction in 

H3K27me3 in EPN_PFA compared to EPN_PFB was confirmed by the quantification data 

(Fig. 1c). One outlier was identified. It was a tumor from a 12 year-old female in cohort 1, 

which was H3K27me3 negative (Online resource 1-Fig S1e). This tumor was confirmed to 

be an EPN_PFB based on DNA methylation analyses. Overall, H3K27me3 staining showed 

99% sensitivity and 100% specificity in determining the predefined molecular subgroup. 

(Fig 1d).

Global reduction in H3K27me3 immunostaining relates with poor prognosis

We next sought to determine if H3K27me3 immunostaining was sufficient to prognosticate 

EPN_PF when the molecular subgroup was not known. To address this we divided the 230 

samples into two independent, retrospective, non-overlapping cohorts (cohort 1, n=133 and 

cohort 2, n=97, Table 1 and Online resource 1-Fig S2) Sections were stained for 
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H3K27me3, and scored as positive or negative according to our validated method. All 

analyses were performed in a blinded manner (including blinding of the molecular subgroup 

information available in 112 of these cases). Rare EPN_PF exhibit H3K27M mutations [7]. 

Screening for H3K27M using a mutant specific antibody [2, 32] did not reveal any H3K27M 

mutant tumors in both cohorts. Univariate and multivariate analyses with other reported 

variables including age, sex, tumor grade, and the extent of resection were performed [27]. 

H3K27me3-negative tumors mainly occurred in young children below 5 years of age 

(median age= 3.35 years, p< 0.0001 in cohort 1 and median age= 2.8 years, p < 0.0001 in 

cohort 2) as reported with EPN_PFA tumors (Fig 2a, d) [24, 27, 34]. In contrast, 

H3K27me3-positive tumors occurred predominantly in older children and adolescents above 

5 years (median age=13 years in cohort 1 and median age=9.7 years in cohort 2) as 

described in EPN_PFB tumors [24, 27, 34] (Fig 2a, d). The comparative age distribution of 

H3K27me3 negative and positive tumors demonstrated opposite trends as observed with 

EPN_PFA and EPN_PFB tumors [24, 27, 34] (Fig 2g). Moreover, H3K27me3 negative 

tumors exhibited significantly worse progression free survival as compared to H3K27me3 

positive tumors in either cohort (p < 0.0001 in cohort 1 and cohort 2), and overall survival (p 

< 0.0001 in cohort 1 cohort 2) or in the combined cohort (PFS and OS p< 0.0001) (Fig 2, b, 

c, e, f, h and i). Similar survival differences have been as observed between EPN_PFA and 

EPN_PFB tumors [24, 27, 34].

Multivariate Cox proportional hazards regression analyses were performed in the combined 

cohort (Table 2) because the H3K27me3 positive arm showed very few deaths or disease 

progression in each individual cohort (Fig 2), precluding multivariate analyses. H3K27me3 

immunostaining status was a significant predictor of overall survival and progression free 

survival (OS, p< 0.05, PFS, p< 0.01) (Table 2). Extent of resection has previously been 

shown to be a strong predictor of survival in posterior fossa EPN and our results confirmed 

this finding [8, 26, 27, 29, 33]. Furthermore, we compared the discriminatory capacity of 

H3K27me3 negative / positive with that of EPN_PFA / EPN_PFB status as biomarkers using 

Harrell’s C index and time dependent AUC evaluated for 5 year survival. Both the C-index 

and AUC showed similar values for H3K27me3 negative / positive and EPN_PFA/ 

EPN_PFB subgroups for overall survival and progression free survival in both univariate and 

multivariate analyses with differences of less than .01 for the multivariate models (Table 3).

Discussion

Our understanding of the molecular drivers of pediatric brain tumors has dramatically 

advanced over the last ten years. Recent studies have revealed molecular heterogeneity 

within brain tumors that inform clinical outcome, and have the potential to drive 

fundamentally different and personalized approaches to patient care [16, 17]. In posterior 

fossa EPN both molecular subgrouping and the extent of resection are critical predictors of 

patient outcome [23, 24, 27]. Moreover, while EPN_PFA are more common in young 

children, both EPN_PFA and EPN_PFBs occurred at comparable frequencies in children 

between 5 and 16 years of age [27]. A recent study demonstrates that majority of EPN_PFB 

did not recur after gross total resection. This has led to the suggestion for future clinical 

trials to test if de-escalation of therapy including avoiding harmful radiation therapy may be 

beneficial for these patients [23, 27]. In contrast, EPN_PFA tumors behave more 
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aggressively and the current consensus recommendation is that these patients be treated by 

maximal safe tumor resection followed by localized adjuvant radiation therapy [23, 27]. 

Because posterior fossa EPN subgrouping has such a strong prognostic impact in children 

and adolescents, it has been recommended as part of the routine workup for the care of 

ependymoma patients [23]. Another important prognostic indicator in ependymomas is the 

gain isochromosome 1q seen in 20–30% of cases [5, 8, 9, 12, 13, 21]. In the current study 

information on 1q status was not available in the majority of cases. In future studies we will 

determine the relationship between H3K27me3 and 1q status.

EPN_PFA, but not EPN_PFB tumors show higher methylation of CpG islands with many of 

the corresponding genes converging on polycomb repressive complex 2 (PRC2) and 

H3K27me3 regulated pathways [18]. H3K27me3 is enriched at unmethylated CpG islands 

[20, 28, 35] and we have previously demonstrated that CpG island methylation inversely 

drives H3K27me3 levels so that EPN_PFA with high CpG island methylation exhibit global 

reduction in H3K27me3 levels compared to EPN_PFB [1]. We have extended this 

observation to demonstrate that H3K27me3 immunostaining stratifies childhood EPN_PF in 

a binary fashion into H3K27me3 negative tumors and H3K27me3 positive tumors 

corresponding to EPN_PFA and EPN_PFB, respectively.

The current standard for the identification of EPN_PF molecular subgroups relies on DNA 

methylation profiling using methylation arrays [18, 23, 24, 27]. DNA methylation arrays are 

not easily adoptable for widespread clinical testing, as this requires equipment, reagents and 

personnel beyond the resources of most clinical laboratories. Further, regulatory standards 

may present variably challenging hurdles for the development and validation of clinical tests 

based on DNA methylation profiling. In contrast, immunohistochemistry is routinely used in 

clinical practice worldwide and does not require additional equipment, infrastructure or 

personnel. As such it is a highly cost effective and widely reproducible platform for clinical 

testing that can be readily adapted for detection of molecular surrogates. For example, 

immunohistochemistry for a mutant specific IDH1 R132H is part of the routine workup for 

infiltrating gliomas in adults [4], as is SMARCB1 and H3K27M immunostains as molecular 

surrogates to diagnose rhabdoid tumors [11] and pediatric midline gliomas [2, 17, 32] in 

children. Moreover, H3K27me3 immunohistochemistry is already currently used in many 

neuropathology laboratories as a molecular surrogate to identify H3K27M mutant gliomas 

[2, 30, 31] and PRC2 mutant malignant peripheral nerve sheath tumors and can be easily 

adapted for use in childhood EPN_PFs [2, 30, 31]. Therefore, immunohistochemical staining 

for H3K27me3 is cost effective, highly sensitive and specific molecular surrogate to 

establish the molecular subgroup childhood posterior fossa ependymomas and can be used 

to inform prognosis, design and implement molecular-guided therapies to reduce adverse 

effects of radiation therapy in children and to facilitate the development of much-needed 

clinical trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure. 1. H3K27me3 immunohistochemistry segregates EPN_PFA from EPN_PF B tumor
a. Representative images of H3K27me3 immunostaining in grade II and grade III EPN_PFA 

and EPN_PFB. Arrowheads (black) indicate cells within the microenvironment of tumor 

including endothelial cells that stained positive for H3K27me3 and were used as internal 

positive control. Scale bars represents 200 µM

b. Percent distribution of H3K27me3 negative (Red) and H3K27me3 positive (Blue) cases in 

predefined EPN_PFA and EPN_PFB tumors. Numbers in parentheses indicate the number of 

tumors studied.
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c. Quantification of H3K27me3 immunostaining in EPN_PFA and EPN_PFB. Each point 

represents a single tumor. Error bars represent mean +/− S.D.

d. Percent sensitivity, specificity, positive predictive value, negative predictive value, false 

positive rate, false negative rate and false discovery rate for detection of childhood posterior 

fossa EPN_PFA vs. EPN_PFB molecular subgroups using H3K27me3 immunostaining.
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Figure. 2. Global loss of H3K27me3 immunostaining relates with younger age and poor 
prognosis in two independent cohorts
a. Box and whisker plot of age distribution of H3K27me3 negative and H3K27me3 positive 

tumors in cohort 1.

b–c. Progression free survival (PFS, B) or overall survival (OS, C) of EPN stratified by 

H3K27me3 staining in cohort 1.

d. Box and whisker plot of age distribution of H3K27me3 negative and H3K27me3 positive 

tumors in cohort 2.
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e–f. Progression free survival (PFS, E) or overall survival (OS, F) of EPN stratified by 

H3K27me3 staining in cohort 2. The numbers below the X-axis indicates the number of 

persons at risk at each time point.

g. Percentage of H3K27me3 negative and H3K27me3 positive tumors (Y-axis) plotted 

against corresponding patient age (X-axis).

h–i. Progression free survival (PFS, H) or overall survival (OS, I) of EPN stratified by 

H3K27me3 staining in combined cohorts 1 and 2.

For a and d, data are plotted as median with interquartile range with 95% CI and each point 

represents a single tumor. Data was analyzed using unpaired, two-tailed Mann Whitney test. 

For survival curves, the numbers below the X-axis indicates the number of persons at risk at 

each time point. Data was analyzed using the Log-Rank test.
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Table 1

Demographics of childhood EPN_PF patients in cohorts 1, 2 and the combined cohort

Characteristic Factor Cohort 1
(n=133)

Cohort 2
(n=97)

Combined

Age Median Age (Interquartile Range) 5.4 (2.14 – 10.29) 3.1 (1.62 – 5.95) 3.7 (1.90 – 8.89)

Gender Male n (%) 75 (56.4) 62 (63.3) 137 (59.3)

Resection STR n (%) 27 (20.3) 16 (16.3) 43 (18.6)

H3K27me3 status H3K27 negative n (%) 93 (69.9) 81 (82.7) 174 (75.3)

Grade Grade III n (%) 69 (51.9) 25 (25.5) 94 (40.7)

Survival Died from disease n (%) 48 (36.1) 39 (39.8) 87 (37.7)

Median OS (Years) 13.8 16.7 16.7

Progression free survival Progression n (%) 32 (24.1) 46 (46.9) 78 (33.8)

Median PFS (Years) NA 3.4 NA

(Data not available in Cohort 1: Extent of resection n=42, grade n=5, Overall survival n=6, Progression free survival n=42. Data not available in 
Cohort 2: Extent of resection n=1). OS – overall survival, PFS – progression free survival; NA – not available; not defined by software because 
more than half of the patients did not progress throughout the study.
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Table 2

Multivariate Cox proportional hazards analysis in the combined cohort

Overall Survival (n=184)

HR 95% CI p value

Age 0.911 (0.819, 1.014) 0.089

Cohort (2 vs 1) 1.428 (0.839, 2.431) 0.189

Extent of resection 2.196 (1.268, 3.803) 0.005

Gender 1.246 (0.750, 2.069) 0.396

Grade 1.389 (0.824, 2.341) 0.218

H3K27me3 negative 6.797 (1.423, 32.475) 0.016

Progression Free Survival (n=169)

HR 95% CI p value

Age 0.879 (0.784, 0.985) 0.026

Cohort (2 vs 1) 1.579 (0.926, 2.690) 0.093

Extent of resection 2.706 (1.568, 4.670) <0.001

Gender 1.332 (0.806, 2.183) 0.266

Grade 1.891 (1.140, 3.138) 0.014

H3K27me3 negative 17.043 (2.150, 135.100) 0.007

Overall Survival (n=224) without extent of resection

HR 95% CI p value

Age 0.969 (0.902, 1.041) 0.388

Cohort (2 vs 1) 1.050 (0.672, 1.640) 0.831

Gender 1.070 (0.695, 1.647) 0.760

Grade 1.561 (0.995, 2.449) 0.052

H3K27me3 negative 6.231 (2.056, 18.879) 0.001

Progression Free Survival (n=188) without extent of resection

HR 95% CI p value

Age 0.917 (0.839, 1.002) 0.057

Cohort (2 vs 1) 1.451 (0.893, 2.359) 0.133

Gender 1.071 (0.678, 1.690) 0.769

Grade 1.809 (1.119, 2.924) 0.016

H3K27me3 negative 4.125 (1.437, 11.841) 0.008
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Table 3

C-index and AUC analysis

Overall Survival Progression Free
Survival

AUC C index AUC C index

Multivariate

H3K27me3 status with covariates 0.691 0.704 0.757 0.755

EPN subgroup with covariates 0.713 0.764 0.748 0.779

Covariates only 0.671 0.678 0.726 0.727

Univariate

H3K27me3 status 0.623 0.627 0.667 0.650

EPN subgroup 0.666 0.678 0.726 0.714
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