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Under natural conditions, many aspects of the abiotic and biotic environment

vary with time of day, season or even era, while these conditions are typically

kept constant in laboratory settings. The timing information contained within

the environment serves as critical timing cues for the internal biological

timing system, but how this system drives daily rhythms in behaviour and

physiology may also depend on the internal state of the animal. The disparity

between timing of these cues in natural and laboratory conditions can result

in substantial differences in the scheduling of behaviour and physiology

under these conditions. In nature, temporal coordination of biological pro-

cesses is critical to maximize fitness because they optimize the balance

between reproduction, foraging and predation risk. Here we focus on the

role of peripheral circadian clocks, and the rhythms that they drive, in

enabling adaptive phenotypes. We discuss how reproduction, endocrine

activity and metabolism interact with peripheral clocks, and outline the com-

plex phenotypes arising from changes in this system. We conclude that

peripheral timing is critical to adaptive plasticity of circadian organization

in the field, and that we must abandon standard laboratory conditions to

understand the mechanisms that underlie this plasticity which maximizes

fitness under natural conditions.

This article is part of the themed issue ‘Wild clocks: integrating

chronobiology and ecology to understand timekeeping in free-living

animals’.
1. Introduction
The temporal programme of behaviours and physiology expressed by an

organism is driven by a vast network of clocks and rhythms distributed

across tissues throughout the body [1]. The interactions within this network

and its response to external time cues have been intensively studied in labora-

tory experiments. Here we want to assess how this network would operate

under natural conditions, where a plethora of potential time cues are—often

simultaneously—acting on it.

The hierarchical view of the circadian system in mammals is that the clock in

the suprachiasmatic nucleus (SCN) of the hypothalamus is entrained by the

environmental light–dark conditions, and that this timing information is trans-

mitted to clocks in other brain regions and tissues of the body (figure 1). All

non-SCN clocks are collectively known as the ‘peripheral timing system’, and

we know that almost every cell in the body can expresses a circadian clock,

making the peripheral timing system a large and complex system that expresses

many rhythms with different phases. The current hierarchical view that the

SCN acts as the conductor of this orchestra of peripheral clocks underplays the

independence of most peripheral clocks [2], which can autonomously entrain to
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Figure 1. Schematic representation of the biological timing system relevant to this paper. PVN, paraventricular nucleus; SCN, suprachiasmatic nucleus.
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many non-photic timing cues (Zeitgebers) such as food

availability [3,4], temperature [5], arousal [6] and internal

glucocorticoid levels [7], independently of SCN derived timing.

Perhaps one of the most intriguing questions is how

timing of all the clocks in the peripheral timing system can

be mapped against the abundance in rhythms in physiology

and behaviour. Several clocks will contribute to the timing of

a single process, which is, for example, clear from the simul-

taneous expression of both light and food driven timing of

behavioural activity [8,9]. In laboratory conditions, photic

and non-photic cues may be altered independently, whereas

in the field they are not always independent. For example,

daily temperature cycles can be offered in anti-phase with

the light–dark cycle in the laboratory, but in nature tempera-

ture is typically higher during the light phase due to the heat

that radiates from the sun. Similarly, laboratory experiments

offering food exclusively during the rest phase have taught us

a lot about the food entrainable oscillator (FEO), but under

natural conditions food intake will mostly happen in the

active phase, and timing of food availability may in fact be

one of the reasons why an organism is active at that time.

These dependencies among Zeitgebers in nature are complex,

and our laboratory experiments do not necessarily take

these complex relationships into account, which reduces the

translational value of our laboratory experiments.

An added complication is that phase relationships

between Zeitgebers can be variable in nature. For instance,

predation risk for small rodents may be inflicted by both noc-

turnal and diurnal predators, and depending on season,

vegetation cover or habitat, high nocturnal predation risk

may be replaced by high diurnal predation risk. Such changes

may also lead to adaptations in prey species, leading to chan-

ged phase angles of peripheral oscillators in the body. In

general, Zeitgebers to which peripheral clocks entrain, such

as food intake, light exposure, temperature and arousal can

differ in their temporal relationships due to factors such as

predation, seasons, climate, social interactions and ongoing

day-to-day variation. In addition, animals can often self-

regulate light exposure in the field by retreating into burrows,
a condition that is not always available in laboratory

conditions. Adaptation to, and anticipation of these timed

events requires a flexible phenotype that responds to daily,

seasonal and annual changes in the environment, and given

that different peripheral clocks (in e.g. the liver, heart

and adipose tissue) may respond differently to each of the

Zeitgebers, this flexible phenotype must rely heavily on

the peripheral timing system.

The complexity of the changes in this peripheral,

multi-clock timing system that result from altering phase

relationships between photic and non-photic cues, are nicely

demonstrated by studies on humans and rodent models in

the laboratory, in which photic and non-photic cues are mis-

aligned in conditions such as shift work and sleep

restriction. For instance, shift work in mice or humans leads

to severe and complex disruption of timing of gene transcrip-

tion, and the timing of gene expression may not simply shift in

line with a single oscillator, but exposes genes in which rhyth-

micity is lost or altered in phase and amplitude, and new

rhythms even appear where transcription was non-rhythmic

before [10,11]. This leads to the view of the biological timing

system as a four-dimensional landscape of loosely delineated,

resonating tissue clocks and rhythms which combine to drive

timing of behaviour and physiology. Perturbations in this

system may be associated with several adverse health con-

ditions such as obesity, diabetes, cancer, problems with

cognitive performance and mood disorders in humans, but

almost nothing is known about the implications of this com-

plex system on timing and survival of non-humans in nature.

Here, we hypothesize that in natural conditions the per-

ipheral timing system is key to the flexible phenotype, and

that this flexibility cannot be attributed to the dominance of

a single ‘master’ oscillator in the brain. We provide evidence

for this hypothesis in four aspects of the temporal niche in the

field: reproduction, endocrine activity, feeding and chrono-

type, and argue that, given this evidence, we must abandon

standard laboratory conditions if we are to understand the

regulatory mechanisms that underlie flexible timing in the

field, where it is essential to survival.
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2. Mechanisms of orchestrating peripheral timing
in the field

Endogenous circadian rhythms and their alignment with the

external world provide an adaptive advantage when they

help animals to predict upcoming events or conditions in

their (a)biotic environment. Such anticipation of environ-

mental risks and opportunities can increase fitness in many

ways such as limiting predation risk, generating offspring at

times of plentiful food availability, and by increasing energy

efficiency. In nature, however, the temporal occurrence of

Zeitgebers may be irregular, and can vary among Zeitgebers

such as light, food and predation, which can cause a reduction

in fitness due to misalignment of endogenous and envir-

onmental rhythms. Moreover, such misalignment may not

only exist between the environment and the endogenous

timing system as a whole, but because clocks in different

tissues synchronize (entrain) to different Zeitgebers, misalign-

ment may also occur among oscillators within the body.

Therefore, the process of maximizing the temporal niche in

nature faces two challenges: (i) how to align circadian

rhythms of multiple tissues correctly towards each other,

and (ii) what is the most beneficial internal alignment pattern

for any given environmental temporal niche? These questions

remain mostly unanswered, and we will discuss these by

taking a bottom-up approach, starting at the cellular circadian

oscillator.
3. The molecular circadian clockwork is
expressed in almost all cells

A key feature of circadian rhythms is that they are en-

dogenously driven with a period close to 24 h in constant

conditions. To a large extent, these rhythms are considered

to be generated by cellular molecular oscillators, which are

observed in almost every nucleated cell of the body. These

oscillators drive widespread temporal gene expression pat-

terns that are tissue specific [12], forming the foundation of

rhythmic physiology and behaviour. In mammals, this clock-

work consists of two interlocking transcription–translation

feedback loops in which proteins serve as negative feedback

on their own RNA transcription. This molecular oscillator can

explain the rhythmic expression of numerous tissue-specific

genes through rhythmic interactions with the E-Box, D-Box,

and Rev response elements (RREs) in the promotor regions

of many genes throughout the genome [13]. However, this

molecular oscillator can also have more subtle effects on

downstream gene expression, for example through opening

up the chromatin structure, which ‘gates’ the ability of circa-

dian transcription factors to bind to the promotor region of

target genes [14–16]. It is easily conceivable that many

clock controlled genes are influenced in their final phase of

expression by the combined actions of these rhythmic core

transcription factors [17].

It is estimated that the cellular molecular clock drives

thousands of different protein coding genes to exhibit daily

rhythms in expression [12]. These circadian transcripts con-

tribute significantly to the physiological functions of a cell.

However, because circadian rhythmicity is so widespread,

the origin of circadian rhythmicity in a given processes can

be complex. For example, the response to a constant signal

(e.g. a stable plasma glucose level) may still be rhythmic if
there is a daily rhythm in the sensitivity of a cell due to a

daily rhythm in receptor expression. In line with the different

physiological roles of different cell types and tissues, we typ-

ically observe different combinations of transcripts of clock

controlled genes (CCGs) across tissues, and therefore each

tissue possesses its own, unique rhythmic transcriptome

[12,18]. Moreover cellular clocks and their accompanying

rhythmic transcriptome are sensitive to entrainment by

Zeitgeber in a tissue-specific way; the liver is primarily

entrained by food intake, whereas the SCN of the hypo-

thalamus is almost exclusively entrained by environmental

light–dark cycles.
4. The suprachiasmatic nucleus as central light
entrainable clock

In mammals, neurons in the SCN display a robust and high

amplitude circadian rhythm in neuronal activity, with high

frequency action-potential trains during daytime and rel-

atively few neurons firing at night [19,20]. Neurons of the

SCN are highly coupled, increasing both the robustness as

well as the accuracy of the generated rhythms (for review

see [21,22]). Light is the main Zeitgeber that determines

the phase, period and amplitude of the SCN (for review

see [23]). The SCN is often regarded as the main circadian

pacemaker that sets the phase of peripheral oscillators

throughout the body, but—while this might be valid under

stable laboratory conditions—natural conditions might

reveal the SCN’s role as less prominent. SCN lesions in

rodents lead to a loss of circadian rhythmicity in physiology

and behaviour in constant environments, a finding that first

led to the (now outdated) title of ‘master clock’ for the SCN

[24–26]. However, housing animals in more natural rhythmic

environments, in which factors such as light-level, food

abundance, social cues, ambient temperature, or exposure to

rewarding or fearful experiences show daily variation, can

reinstate rhythms in behaviour and physiology in SCN-

lesioned individuals [8,27,28]. These rhythmic phenotypes in

SCN lesioned animals are testimony to the fact that circadian

responses that animals display can (in part) be independent of

SCN timing, and that rhythmicity in physiology and behav-

iour may also be a direct response to environmental cues

(masking [29], also see [30]) or may even trigger extra-SCN

circadian oscillators to drive rhythmicity in the body [8,31].

Rhythmicity in peripheral organs therefore does not require

an intact SCN, and instead, it seems more appropriate

to denote the SCN as an entity which provides the body

and brain with an internal representation of the external

light–dark cycle, rather than a ‘master’ clock.
5. Linking the suprachiasmatic nucleus and
peripheral timing

Under constant laboratory conditions, the (dorsal) SCN

provides a phase reference through direct neuronal projections,

releasing glutamate, GABA, AVP and other factors. These path-

ways regulate target (thalamic and hypothalamic) brain regions

through neuronal projections [32–34] and paracrine output

[35]. A major neuronal output pathway is the SCN’s projection

to the paraventricular nucleus (PVN), driving the autonomous

nervous system that reaches peripheral organs such as liver,
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kidney and adrenal gland [36,37]. The SCN-PVN-adrenal pro-

jection offers a potentially important role for glucocorticoids

to mediate circadian organization in the body [7,37,38],

although they can also encode stressful events.

Glucocorticoids have been shown to be key Zeitgebers for

peripheral tissues [7], which can interfere with other

Zeitgebers such as food availability [39] as described below.

There are also several interactions between circadian and glu-

cocorticoid systems during early development that are still

not well understood [40]. For example, fetuses exposed to

increased maternal glucocorticoid concentrations display

phase-advances in locomotor activity rhythms later in life

(citations in [40]). This effect is likely mediated through

glucocorticoid receptors, which are present in the fetal

SCN [41]. Further blood-borne Zeitgebers could include

several cytokines—including TNF-a and IL-6, which were

suggested to have regulatory effects on peripheral clocks

[42,43]. As these anti-inflammatory cytokines are also pro-

duced by glial cells, it remains to be tested whether glial

communication might also be involved in the principles of

entraining and maintaining rhythmicity in neuronal tissues

(a theory already proposed more than 20 years ago [44]).
6. Modulation of suprachiasmatic nucleus
rhythmicity by peripheral feedback

The SCN seems primarily entrained by photic input (both

directly through the RHT and indirectly through the geniculo-

hypothalamic–neuropeptide Y (GHT–NPY) pathway). In

addition to this, non-photic inputs can also modulate the

circadian properties of the SCN clock (see for review [45]). Indu-

cing activity during the day was shown to increase NPY release

from IGL terminals onto SCN cells at the time of induced run-

ning [46]. Indeed, running wheel access and scheduled

activity can have considerable impact on light entrained activity

patterns in rodents and also in humans [45]. Another level of

SCN modulation by peripheral feedback may be through sex

hormones such as androgens and oestrogens, for which the

SCN expresses receptors [47,48], as is described in §11.
7. Non-suprachiasmatic nucleus derived
Zeitgebers of peripheral clocks

Physiological output rhythms of one tissue (e.g. body temp-

erature or corticosterone release) can serve as rhythmic

input to other cellular clocks. For example, all peripheral tis-

sues can entrain to body temperature cycles in vitro [5]. Often,

peripheral tissue clocks are sensitive to (rhythmic) inputs

from multiple sources (e.g. expressing both melatonin and

glucocorticoid receptors and receiving both sympathetic

and parasympathetic input). In addition, it is well known

that behavioural rhythms such as feeding and fasting can

have a strong effect on the circadian phase of local tissue

clock-gene rhythms. The wide diversity of signalling routes

makes it a complex and daunting task to understand the

phase relationship between cellular clocks in multiple tissues,

and grasp the flexibility between circadian rhythms in the

SCN versus those in non-SCN tissues. For most tissues we

still need to establish which specific inputs determine the

phase of the local cellular clock. Local clock-phase is likely

the result of checks and balances between multiple inputs
collectively, and the relative contributions of the involved

signals may be altered depending on the environmental

or internal condition at the time that the Zeitgebers are

perceived.

A flexible timing system would be essential for evolu-

tionary reasons, as circadian organization may need to alter

alignment when the environment or the animal’s internal

state changes over time, requiring adaptive phasing of behav-

iour and physiology. We are only just starting to comprehend

the flexibility between the phase of the SCN and the phase of

organ clocks. Furthermore, in order to obtain a useful concept

of this flexibility, it is important to understand the dynamics

and variability of the natural habitats. Understanding the

relevance and limitations of circadian flexibility may bear

highly relevant insights into human health (e.g. shift work,

jet-lag recovery, performance and productivity, timed medi-

cine, and healthy lifestyles). Similarly, understanding how

the daily timing system can incorporate past experiences

into future predictions would be a mayor insight helpful to

conservation biology, for instance by allowing predictions

on how species can adapt with changing habitat conditions

such as caused by global warming.
8. Contribution of peripheral clocks to flexible
reproductive timing in the field

Reproductive activity is typically observed during specific

seasons, and circadian timing of Zeitgebers such as dusk

and dawn (photoperiod) predictably vary between these sea-

sons. Indeed, in the laboratory, rodents from the temperate

zone often respond robustly to short photoperiod by suppres-

sion of reproductive physiology and activity, and respond to

long photoperiod by stimulating reproduction [49,50]. These

photoperiodic responses depend upon nocturnal secretion of

melatonin by the pineal, driven by a functioning central cir-

cadian clock [51]. In the field, however, the patterns can be

more complex than explainable by reference solely to melato-

nin and the central clock [52]. For example, in some species of

Peromyscus, long photoperiods in the laboratory trigger fertil-

ity and breeding [49], but the same species—and often the

same populations in the field—exhibit a summer, long-day

hiatus in breeding [52–56]. The causes of the summer inter-

ruption in breeding are debated, with lines of evidence

emerging that parasites, disease and food availability all

have significant roles in this behaviour [55,57–59].

The mismatches between laboratory and field data are

conceivably due to (i) different inputs to the central clock in

the SCN, (ii) difference in other environmental factors that

act as gatekeepers for the reproductive axis by affecting hypo-

thalamic reproductive neurons, and (iii) environmental

factors that act on peripheral clocks in reproductive tissues.

The presence of robust peripheral circadian rhythms has

been implicated in reproductive function of the hypothala-

mus [60], pituitary, gonads and reproductive organs [61,62].

The single exception is the testis, which exhibits relatively

weak circadian rhythms [61,63–66]. In the testis, the periph-

eral clock is blocked by the testis-specific repressor PASD1

acting against CLOCK:BMAL1 [67]. However, testicular

Leydig cells and their secretory rhythm of testosterone

appear to be controlled at least partially by a peripheral

clock [68]. Disruption of peripheral clocks may contribute

to infertility [62,68,69], suggesting that these peripheral



r

5
clocks are potential targets for environmental modification of

reproduction.
stb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160254
9. A role for peripheral clocks in incorporating
food availability and disease-loads into
reproductive functions

In males, even in the absence of strong peripheral clocks in

the testis, peripheral clocks have the potential to alter fertility.

Dissociating feeding cycles from the light–dark cycle (known

as temporal food restriction; described in §10) has been

reported to cause changes in androgen-dependent male

reproductive tissues, including changes that inhibit fertility

[70]. In wild mammals, this response to temporal food restric-

tion could inhibit fertility when unusual conditions force a

male to feed outside of the normal activity period. This

response to temporal food restriction may increase fitness

by reducing the costs of reproduction until conditions

return a male to a normal feeding cycle.

Peripheral clocks appear to be present in reproductive

tissues across mammals, birds, other vertebrates and inver-

tebrates [31]. Some of these clocks may have little direct

effect on reproduction; instead, for example, they could be

coordinating a daily cycle of nutrient input from gut and

liver with body-wide cycles of nutrient demand [71–73].

However, there is evidence for relevance of these peripheral

clocks to fertility. There is a growing body of evidence that

peripheral circadian clocks in the ovaries of vertebrate

females can adjust the sensitivity of the ovary to luteinizing

hormone (LH), thereby modifying the LH surge that causes

ovulation [31,74,75]. The surge in LH induces a surge in oes-

trogen, which induces mating behaviours in many species.

Therefore, peripheral clocks have the potential to alter the

timing of ovulation, mating and conception in mammals

[31,74] and birds [75]. The timing of mating may affect the

risk of predation during mating, while alterations in

the timing of conception may alter the timing of birth. There-

fore, peripheral ovarian clocks that regulate mating and

pregnancy may serve an important ecological function for

reproductive timing.

Ovarian clocks may affect both the development of

embryos and sex steroid secretion. After fertilization, the ovi-

duct supports the developing embryo for a period of days,

and the timing of mating affects the proportion of morpho-

logically normal embryos through embryonic development.

An influence of the timing of mating on the frequency of mor-

phologically defective embryos in the oviduct suggests that a

peripheral clock in the oviduct could affect fertility [76]. Else-

where in the ovary, clock gene knockouts restricted to

steroidogenic tissues disrupt the secretion of steroids, altering

stages of the female reproductive cycle from ovulation to par-

turition [77], further indicating the importance of peripheral

clocks for fertility and reproduction. Following conception,

the corpus luteum produces progesterone to maintain the

uterus in a condition to support embryos. Clock and Bmal1
knockouts that are either systemic, ovary-specific, or even

clock-gene knockdowns within the ovary, can all result in

implantation failures. These failures may be caused by a

deficient clock in the corpus luteum, which can contribute

to reduced progesterone secretion and failure of implantation

or reabsorption of an embryo [31,77–80]. In nature,
disruption of a peripheral clock in the corpus luteum could

be an ecologically relevant mechanism for post-fertilization

blockage of pregnancy, in response to an environment hostile

to raising offspring. Finally, uterine myometrial deletion of

Bmal1 can alter the timing of parturition [81], providing

further evidence for peripheral clocks as modulators of repro-

ductive events. In mammals, the timing of birth is often

linked to specific times of day that minimize risk to mother

and offspring during this vulnerable period, suggesting an

important ecological role for a myometrial uterine clock.
10. How the reproductive state might affect
peripheral rhythms of other organs

Peripheral reproductive clocks respond to ecologically rele-

vant signals that include availability of metabolic fuels.

These include glucose-sensing [82] and responses to free

fatty acids [83] by specific aspects of the molecular cellular

clock. Peripheral clocks in the adrenal glands, and elsewhere,

have been shown to contribute to the control of blood glucose

[82]. Neurons in the central circadian clock alter function in

response to glucose-sensing [84], and glucose-sensing alters

the function of peripheral clocks in the liver [85] and isolated

fibroblasts [86]. There is evidence for feedback from repro-

ductive tissues to the liver, as pregnancy alters circadian

expression of clock genes in the liver [87], raising the intri-

guing possibility that synchronization between peripheral

clocks in the liver and placenta are a normal part of pregnancy.

One function of peripheral reproductive clocks may be to

stimulate or inhibit activity in reproductive organs based

upon availability of metabolic fuels as well as to stimulate

other peripheral clocks to increase nutrient availability.

Fertility is affected by parasites [88] and disease, and

there are ecological trade-offs between immunity and fertility

[89,90]. It seems likely that there are interactions between

parasites, disease and inflammation with peripheral clocks

involved in fertility. Peripheral clocks exist in immune tissues

(see table 1 in [91]), and the immune system has multiple

mechanisms of signalling to the circadian system [92].

These local responses may be a particularly rich area for

investigation. Pathogen associated molecular patterns

(PAMPs) and damage associated molecular patterns

(DAMPs) are major molecular inputs to pattern-recognition

receptors in signalling pathways that respond to damage or

disease [93]. Peripheral clocks can control the timing of

expression of receptors for DAMPs or PAMPs (e.g. [94]),

and immune cells that respond to DAMPs and PAMPs pro-

duce circulating signals that can affect peripheral clocks in

other tissues [93,95,96]. For example, specific regions of

the ovary, oviduct and uterus (all of which contain periph-

eral clocks) might respond to local signals of damage by

modifying their clock function. Firstly, peripheral clocks in

reproductive tissues might be impacted by regions of

damage to reduce, for example, the receptivity of dysfunc-

tional areas within a uterus to implantation. Secondly,

systemic signalling induced by parasites or disease may

affect peripheral reproductive clocks. Systemic effects of

rhythms in the peripheral immune system include the cir-

cadian rhythm of TNF-a, driven in part by peripheral

clocks in lymphocytes of the immune system [97], as well

as proinflammatory cytokines regulated by the clock protein

CRYPTOCHROME [98]. The role of cytokine signalling from
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peripheral clocks to the reproductive system is not well

studied, but there are indications that cytokines affect fertil-

ity. Local proinflammatory signals may be a normal aspect

of mammalian implantation [99], while excessive proinflam-

matory signals may disrupt fertility and pregnancy

[100,101] and contribute to infertility in males [102,103].

Here, there are profound gaps: could PAMPS and DAMPS

affect peripheral clocks and rhythms in the reproductive

system and fertility, either directly, or indirectly via signals

from clock-driven lymphocytes? It seems reasonable that cir-

cadian clocks may integrate information about damage or

parasite infestation to cause adaptive, localized responses

that allow the reproductive system to bypass areas of

damage, and direct activities and embryos to areas that are

undamaged. One could speculate that signals from the

immune system modify peripheral clocks involved in preg-

nancy, in order to alter the rate of development during

responses to parasites or disease. In such a case, peripheral

clocks may permit adaptive changes in fertility in response

to systemic signals of parasitism or disease.

It is plausible that these peripheral clocks are sensitive to

additional environmental inputs that in nature either enhance

or suppress fertility to increase fitness. For example, high

levels of androgens from either endogenous or exogenous

sources may disrupt peripheral clocks and alter fertility

[104]. Both central and peripheral clocks contain elements

for glucose sensing [85] and free fatty acid sensing [83],

suggesting that peripheral clocks in reproductive tissues

might modify fertility based upon the availability of nutri-

ents. Decreases in Leydig cell metabolism may be linked

via the cell energy-sensing protein SIRT-1 to the peripheral

clock and reduced secretion of testosterone, suggesting a

potential link between the nutritional environment and ferti-

lity in males [105]. Variation in nutritional input may be due

to external ecological factors, such as drought or competition

for resources, or due to internal signals, such as nutritional

modulation by social cues, parasites or disease.

It is clear from laboratory studies that peripheral clocks

are necessary for normal fertility, and that modulation of per-

ipheral clocks may enhance or inhibit fertility. However,

whether such involvement of peripheral timing benefits

fertility and reproduction in field condition remains mostly

unclear. As it stands, there is insufficient evidence argu-

ing either for or against such benefits, but given the many

roles of peripheral clocks in regulating fertility, particularly

in females, it is reasonable to expect that environmental sig-

nals act on fertility in many animals in part by modifying

peripheral clocks.
11. Contributions of sex hormones to flexibility
timing in the field

Reproductive hormones such as sex steroids convey infor-

mation on biotic or abiotic variation in the environment of

an organism to the internal central and peripheral clock sys-

tems. It is well established that social and environmental

factors can modulate plasma concentrations of sex steroids

both in the field and in the laboratory [106,107], as well as

cause ubiquitous changes in many other hormones related

to reproduction in vertebrates [108–110]. For example, in

the majority of seasonal vertebrate species, circulating con-

centrations of sex steroids increase dramatically when the
reproductive axis becomes activated as a result of photic

stimulation. Such elevated levels of sex steroids serve to

promote the expression of behaviours associated with

reproduction, including territorial aggression, courtship,

competitive and mating behaviour [111–114]. Not only

photic signals, but also social stimuli can be potent

modulators of sex steroid concentrations [115,116].

In many species, plasma sex steroid concentrations

undergo diel variations, with testosterone typically being

elevated at night and/or during the early morning

[117–119]. While such diel rhythms in sex steroid concen-

trations are clearly present in the laboratory, at present we

lack evidence for their existence under natural conditions

(though diel rhythms in glucocorticoids are present in wild

populations [120,121]). As a result, specific characteristics of

diel rhythms in sex steroids in wild populations such as

phase angles and amplitudes, as well as their variation

with season, local environmental conditions and social cir-

cumstances still have not received much attention, and

remain mostly unknown. Partly, this lack of knowledge

may arise from logistical issues associated with sampling

wild populations repeatedly at specific times of day. How-

ever, non-invasive techniques such as hormone analyses

from excrements and new technologies including implantable

biosensors may open up new opportunities for closing this

gap [122,123]; but see [124].

A topic that has received more attention, at least in select

species, are the actions of sex steroids on circadian timing.

In various vertebrates, experimental manipulation of sex

steroid concentrations and/or their rhythms has profound

effects on circadian characteristics, with consequences for

entrainment properties including altered phase angles and

activity timing [125]. For example, in male mice a reduction

of testosterone concentrations through gonadectomy results

in a lengthening of the free-running period (t) of circadian

activity rhythms and reduces the precision of activity onset

as well as overall activity levels, while androgen replacement

restores these changes [47,126]. Oestrogens also can affect

circadian properties in rodents [127]. For example, natural

increases in oestrogen concentrations during oestrous as

well as experimental oestrogen administration phase-

advances behavioural activity rhythms in some rodent species

[128–130]. Oestrogens can also increase overall behavioural

locomotor activity, and oestrogens may also modulate the

effectiveness of non-photic stimuli mediated through, for

example, wheel-running on circadian rhythms [131]. How-

ever, the proximate mechanism underlying these oestrogenic

actions in female rodents is still debated and may involve

changes in activity levels, arousal, sleep and responsiveness

to non-photic stimuli rather than changes in t, although

species differences may also account for some divergences

in mechanisms [48,130,132].

In terms of mechanism, the effects of androgens on t in

rodents are likely mediated by androgen receptors that are

present in the SCN [47]. The SCN also expresses oestrogen

receptors, although only sparsely in female rodents [48].

Hence, effects of oestrogens on circadian functioning may

occur primarily through peripheral sites outside the SCN,

and mechanisms of actions may differ between the two

sexes [48]. Both androgen and oestrogen receptors have

been located in brain regions that communicate with the

SCN, as well as other parts of the body including the

gonads [133].
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Taken together, the available evidence from laboratory-

based studies suggests that sex steroids can have substantial

modulatory effects on circadian rhythms, although there

exist large variations in these effects and the mechanisms

they employ among taxa. It has been hypothesized that

these actions are adaptive, serving to fine-tune activity

times to match altered needs during the reproductive

period. For example, altered phase-angles during oestrous

may promote encounter rates between males and females,

thus increasing mating opportunities [128]. Rigid field tests

of this appealing idea are thus far still lacking. However,

some recent field studies in avian species have corroborated

fitness benefits associated with altered circadian function

during the reproductive period [134]. For example, in blue

and great tits, males with earlier activity and song onset

during the mating period gain more extra-pair fertilizations

than males that become active later [135,136]. Further, experi-

mentally induced delays in male activity onset increase the

rate of cuckoldry of focal individuals, suggesting that mate-

guarding abilities are also impaired by mistimed activity

[137]. It is tempting to speculate that sex steroids, which are

increased during the reproductive season, are involved in

this circadian reorganization, but direct tests of this idea

have not yet been carried out.

Clearly, more work under natural conditions is needed to

understand why there exists variation in the effects of sex

steroids on circadian functioning among taxa and between

the sexes. Likewise, the functional reason for the existence

of diel variations in circulating sex steroid concentrations is

also still unclear. Why is testosterone elevated at night in

diurnal taxa such as birds? Does that pattern represent a phy-

logenetic constraint, since it appears to be present across

taxa or does it have specific functions, for example for the

reorganization of circadian patterns?
12. Contribution of peripheral food entrainment
to flexible timing in the field

Food availability has long been known as the ‘other’

circadian Zeitgeber [138] which serves side-by-side with the

light–dark Zeitgeber as the dominant entraining cue for

the circadian timing system. The feeding ecology of most ani-

mals in the field includes temporal restrictions on food

availability for reasons such as daily prey availability/preda-

tion risk, environmental darkness and of course one’s own

sleep–wake cycle. Daily feeding constraints lead to demon-

strable changes in timing of overt behaviour in laboratory

rodents, most notably as daily bouts of food anticipatory

activity (FAA) [139]. Many studies have exposed that ability

of food to entrain circadian feeding patterns in, for example,

rodents [140], omnivores [141], herbivores [142], carnivores

[143], primates [144], marsupials [145,146] and birds [147],

but the ‘strength’ of feeding as a timing cue for FAA varies

between species and studies.

It has been firmly established in laboratory conditions

that food timing directly entrains molecular peripheral

clocks and the transcriptome of tissues such as in the liver,

adipose tissue, gastrointestinal tract, kidney, heart and pan-

creas, without shifting the clock in the SCN [3,4,148,149],

which means that food entrainment is restricted to the per-

ipheral timing system, including non-SCN brain regions

[139,150]. Food entrainment has been conceptualized to be
driven by a ‘food entrainable oscillator’, but the exact

nature and location of this oscillator is not fully understood

[139]. Even though it is unclear what the critical clocks

are, the mechanisms that encode food timing into cellular

circadian oscillators in mammals are being identified as bi-

directional interactions between the genes and proteins

involved with the circadian clock and biochemical markers

of cellular cat- and anabolism. Known examples include

intracellular (i) NADþ, (ii) AMP, (iii) haem and (iv) reactive

oxygen species (ROS) which participate in molecular inter-

actions with clock genes, thereby altering their expression

and protein stability [151,152]. (i) BMAL1 and PER2 are sub-

ject to NADþ dependent deacetylation by SIRT1, altering

their stability and thereby altering their transcriptional con-

trol over other clock genes [153]. (ii) AMP-activated protein

kinase phosphorylation destabilizes CRY1, altering the

repressive feedback on Clock and Bmal1 [154]. (iii) REV-

ERBa non-covalently binds haem, which promotes binding

of REV-ERBa with a co-repressor complex resulting in repres-

sion of Bmal1 expression [155]. (iv) Hyperoxidized moieties of

peroxiredoxins (PRX-SO2/3H) exhibit circadian rhythms,

reflecting ROS production, which is proposed as a novel,

non-genetic circadian clock [156].

In field conditions, food availability is paramount to sur-

vival, especially for species that feed only at limited times of

the day such as hunting species. However, many species,

including grazers, have been shown to forage at several,

and not a single, specific times of day, which can be synchro-

nized among conspecifics within the same group [157].

Animals eat in many different feeding patterns, which are

often multi-modal, with two or more ‘meals’ per day [158].

Such multi-modal patterns in feeding are different from

what is normally assumed and/or enforced in laboratory

conditions and therefore the translation of laboratory studies

to field conditions is constrained. The clock in the liver can

entrain to a sequence of several meals, rather than a single

meal, possibly taking into account both timing and size of

each meal [159,160]. However, the consequences of several

meals on peripheral timing has been reported to dissociate

timing of rhythms such as ghrelin and cortisol, as well as

the phase of several peripheral brain clocks [161].

Bi, or tri-modal feeding patterns are distinctly different

from ultradian feeding patterns, which are defined by semi-

equidistant meals throughout day and night. In the field,

ultradian feeding and sleep cycles are particularly evident

in the common vole (Microtus arvalis) [162]. This herbivore

hindgut fermenter feeds every 2–3 h throughout the day

and night, while simultaneously expressing weak circadian

modulation of behaviour [9]. In the vole liver, there are no

detectable circadian expression patterns of clock genes,

while in the very same animals these genes exhibit clear

circadian expression rhythms in the SCN [6]. Imposing

daily, 8 h fasting episodes results in strengthened circadian

timing of behaviour in the vole and the emergence of

circadian cycles of clock gene expression in the liver [6]. Inter-

estingly, it was recently shown that widespread ultradian

gene expression patterns in the mouse liver transcriptome

in vivo, as well as fibroblast in cell culture in vitro, are strongly

associated with cellular metabolism [163], suggesting a

relevance of ultradian timing of metabolism irrespective of

feeding patterns.

Next to the multimodal feeding patterns often

observed in nature, a second constraint in translating our
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laboratory-based data to the field is the daily variation in

feeding time. For example, in a group of Kerry cows,

day-to-day variation in feeding time is larger than between-

individual variation [164], but for many species these levels

of variation are unknown. The ability of the food entrainment

system to deal with such daily variability is mostly unex-

plored, although Escobar et al. showed that rats receiving

daily changes in food access were able to shift their FAA

each day corresponding to the food availability the day

before [165].

Food entrainment can even serve to drive behavioural

and physiological cycles that are independent of the SCN,

or light-entrained activity patterns [8,9,166], which indicates

that besides the primary benefit of anticipating food avail-

ability and post-prandial anabolic metabolism, food

entrainment may also aid entrainment in conditions where

the light–dark cycle is a weak or absent Zeitgeber. Food

cycles hasten re-entrainment to a changing phase in the

light–dark cycle [167,168], which may aid entrainment of

species that live in covered or underground habitats such as

the ground squirrel [169,170]. It has also been suggested

that food availability can substitute for photoperiod as the

primary signal driving seasonal timing at latitudes where

the seasonal change in photoperiod is minimal, or in temper-

ate ecosystems where food is more critical than season for

initiating reproductive effort [171].

One interesting aspects of food entrainment of the

peripheral timing system is the relationship between diet

and chronotype (temporal niche), for example in fish, in

which major shifts in daily timing and chronotype occur

with changes in diet and juvenile and adult phase [172],

and the cheetah, which varies the number and duration of

feeding bouts in response to the lunar cycle (visibility) and

wet versus dry season [173]. These changes in chronotype

are directly related to availability of the food in terms of

accessibility and abundance, but have also been suggested

to relate to energy balance and thermoregulation.
13. Temporal niche switching
When daily activity patterns of several species have been

measured in the field, these patterns appear to be decidedly

different from the nocturnal activity patterns of these same

animals in the laboratory [174]. A landmark study that

exposed switches in the temporal niche of overt behaviour in

the golden hamster (Mesocricetus auratus), reported that in

their native habitat in Turkey these animals exhibited

crepuscular activity patterns, which contrasts the laboratory-

conditions in which they are almost completely nocturnal

[175]. Similarly, when laboratory mice were housed in large

outdoor enclosures exposing them to natural weather

conditions they departed from their initial nocturnal behav-

ioural activity rhythm, and showed multiple temporal niche

switches between nocturnality and diurnality over the 2 year

study period [176]. The functional factors underlying temporal

niche switching in these studies are mostly unknown but

multiple studies have suggested changes in predation risk

[177,178], interspecific competition [179] and challenges to

the energetic balance [176,180] as driving forces.

The effect of energetic challenges on the daily timing of

behaviour in mice has been shown under controlled labora-

tory conditions. Challenging mice by housing them at
lowered ambient temperatures and/or letting them run in a

wheel to earn food pellets results in phase advances of the

active behavioural phase, where the magnitude of the shift

into the light phase depends on the severity of the energetic

challenge [181–183]. Phase-shifting the light–dark cycle

results in a corresponding shift of activity, demonstrating

continued light–dark entrainment under energetically chal-

lenging conditions [183]. The phase-shifted behavioural

active phase does not depend on a phase shift of the central

circadian clock in the SCN [183] but likely results from a

shifted downstream mechanism controlling the timing of

behaviour. Such an altered coupling of behavioural timing

to the SCN phase suggests a role for the SCN as an internal

representation of the external light–dark cycle, with other

mechanisms linking behavioural timing to the SCN. Such a

mechanism would be beneficial to animals that spend large

parts of the day hiding in dark locations, to distribute phys-

iological and behavioural activity into the appropriate daily

phase without the need to constantly assess the external

light–dark cycle. A further benefit of using the SCN as an

internal representation of the light–dark cycle is that it

can make the daily timing of activity more robust to daily

variability in light exposure. The self-sustained nature of

the SCN clock makes it robust against day-to-day variability

in light exposure, thereby preventing dramatic shifts in daily

activity timing as a result of daily variability in the timing of

light exposure.
14. The role of the peripheral timing system in
temporal niche switching

The behavioural shift to diurnality in response to energetic

challenges is mirrored by simultaneous phase advances of

peripheral oscillations [183]. Peripheral rhythms of corticos-

terone and Period2 clock gene expression in the liver and

adrenal are shifted by 4–6 h under conditions of simulated

food shortage [183], resulting in an internal phase angle

between SCN and peripheral clocks that is similar to that

seen in diurnal rodents [184,185]. The shifted phase of

peripheral oscillators likely reflects a shift of the overall

physiology to remain synchronized with the shifted timing

of activity in energetically challenged mice. The mechanisms

responsible for the circadian reorganization of internal clocks

and behaviour in response to energetic challenges are, how-

ever, unknown. The shift in the phase of peripheral clocks

under these conditions is likely a direct consequence of the

shift in behavioural timing and clocks in the brain, and not

dependent on altered characteristics of peripheral oscillators.

Peripheral clocks are entrained by the combined influence

of multiple factors that act as Zeitgebers to peripheral oscil-

lators, and under natural conditions, all of these timing

signals are expected to peak at roughly the same time of

day since environmental and brain-controlled rhythms will

be synchronized to the stable environmental day–night

cycle. The brain mechanisms involved in resynchronizing

the timing of behaviour and timing cues originating from

SCN phase are unknown. An oscillator downstream of

the SCN that alters its phase relationship with the SCN

depending on the energetic state of an animal and controls

the timing of behaviour and systemic timing signals would

be sufficient to optimize the timing of physiology and

behaviour to the encountered environmental conditions.
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However, at the current time it is unclear whether a change in

timing of peripheral clocks precedes, or follows, the shift

in behavioural timing.
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15. Ultimate consequences of temporal niche
switching

Avoiding prolonged periods of negative energy balance is an

important and often challenging requirement for animals

living under natural conditions in the field. Maintaining

energy balance requires balancing energy intake and expend-

iture, and both of these components are influenced by the

daily timing of activity and rest. A substantial part of

energy expenditure of small endotherms living in temperate

climates is used for thermoregulation [186]. The circadian

thermo-energetics hypothesis proposes that endotherms can

reduce thermoregulatory costs by shifting activity to the

day [180]. Because ambient temperatures are high during

the day and low at night and the resting phase is associated

with energy saving strategies, being active during the

warmer day allows animals to optimize the energetic benefits

of insulation and reduce daily energy expenditure. Quantifi-

cation of different environmental factors modulating energy

expenditure identifies thermal buffering provided by a shel-

tered nesting location as the dominant factor in determining

the energetic consequences of temporal niche switching

[187]. The daily temperature cycle inside a sheltered nesting

location has a reduced amplitude compared to the outside

ambient temperature cycle. Diurnality therefore allows ani-

mals to use the difference in nest and outside temperatures

to encounter the higher nest temperature during the night

and go outside during the warmer day, thereby encountering

higher ambient temperature during both day and night [9].

Daily energy expenditure of small endotherms living in tem-

perate climates is therefore expected to be reduced by 6–10%

as a result of a shift of the active phase to the day [187].

Optimizing the daily timing of activity in relation to the

timing of other animals is a second major factor in determin-

ing the ultimate consequences of a selected temporal niche

[188]. One obvious example of the importance of finding

the appropriate temporal niche is during the search for a

mate, since a mate can only be found when both animals

are active at the same time. Similarly, avoiding activity at

times when predators are present can increase survival,

while activity should be synchronized with prey species.

An illustrative example of how temporal niche selection

depends on the activity timing of both predator and prey

has been documented in two species of hawks [189]. This

study recorded the activity timing of the sharp-shinned

hawk (Accipiter striatus) and the larger Cooper’s hawks

(Accipiter cooperii) and their relation to the activity patterns

of their primary prey, small songbirds [189]. The activ-

ity and most dense period of attacks of the Cooper’s hawks

followed the peak in prey abundance in the hours around

sunrise and sunset. For the smaller A. striatus the morning

peak of hunting activity was largely absent, the hawks leav-

ing their roosts after the time of densest prey abundance. Of

the 12 sharp-shinned hawks that were killed by predators by

the end of the study, one fell prey to a Cooper’s hawk and the

remaining 11 were caught by nocturnal owls. Hence, the

presence of higher order predators might relieve some of

the predation pressures on the small songbirds in this habitat,
indicating that predator–prey relationships might operate

directly and indirectly between the different species that

occupy a certain habitat. In general, there is not a specific

temporal niche that will minimize predation risks and maxi-

mize food availability for all habitats, but whenever daily

rhythms in predation risk/food availability are present it is

to be expected that a specific temporal niche exists that

would be optimal. Plasticity in the daily timing of activity

allows animals to respond to environmental changes and

be able to cope with different ecological niches.
16. Selecting the temporal niche in a complex
environment that maximizes fitness

In order to increase fitness, temporal niche selection should

ultimately optimize the sum of costs and benefits of all pos-

sible fitness components, such as energy expenditure,

survival, reproduction and other interspecific interactions

[190]. These different fitness components are influenced by

rhythms in environmental factors such as ambient tempera-

ture, predation risk and the availability of food and mates.

Since the optimal time of day to be active will often be differ-

ent for different environmental factors (e.g. predation risk

might be lowest at night but this is also the energetically

worst time to be active), trade-offs between fitness com-

ponents have to be made. The mechanisms involved in

making this trade-off are unknown but are important for

understanding temporal niche selection in the field.

Although the ultimate benefits of temporal niche switching

might be reductions in energy expenditure or predation risks,

the proximate mechanisms responsible for these shifts can be

unrelated to the specific benefits. In order to assess the roles

of the light–dark and ambient temperature cycles for selecting

a temporal niche, energetically challenged mice were housed

under laboratory conditions with temperature cycles either

in phase or in anti-phase with the light–dark cycle, which

altered their daily distribution of activity, including a switch

from nocturnality to diurnality [183]. Similarly, common

voles (Microtus arvalis) exposed to constant high ambient

temperatures during lactation shifted their nursing behaviour

to the night [191]. Both of these examples illustrate that it is the

light–dark cycle and not the temperature cycle that is used to

determine the energetically optimal timing of activity and rest.

Since daytime temperatures are reliably higher compared to

the night (diurnality is energetically beneficial on 95–98% of

days [187]), the light–dark cycle can be used as a proxy for

the energetically optimal time of day to be active. The high pre-

dictability of higher temperatures during the light phase thus

makes more complex regulatory mechanisms involving direct

feedback from the ambient temperature cycles unnecessary.

Identification of the proximate factors responsible for

temporal niche switching in response to changes in predation

risk is hampered by the difficulties in systematically studying

predator–prey interactions. Field studies assessing changes

in daily activity timing in response to changes in (perceived)

predation risk have shown that prey species can respond to

increased night-time predation by becoming diurnal

[177,178] and vice versa following increased daytime preda-

tion [192]. This suggests that prey species, at the very least,

incorporate the temporal niche of the predator in their tem-

poral niche selection. The greater variability in the temporal

organization of predation risk compared to the high
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predictability of ambient temperature rhythms would be an

argument for more complex regulatory mechanisms being

responsible for temporal niche switching in response to

changes in predation risk.
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17. Putting it all together
Under natural conditions, animals are exposed to a variety of

environmental opportunities, challenges and threats that

require adaptive responses to maximize fitness. Some of

these environmental variables will exhibit predictable vari-

ation over the day (e.g. light, temperature), some will be

constantly present (e.g. food for grazers), and some will

have erratic timing over the day or season (e.g. rain, drought).

Moreover, the diurnal patterns of variables such as predation

risk can vary strongly between days. Thus, in order to maxi-

mize fitness, animals must find the optimal balance between

foraging, predation risk and reproduction, and finding such a

balance requires maximizing the orchestration of timing of

these behaviours across the day.

The mammalian SCN provides an internal representa-

tion of the light–dark cycle [193] and therefore provides

an essential timing signal for target tissues in the central

nervous system and peripheral organs (figure 1). The SCN

has therefore been historically coined as the ‘conductor’ of

the clocks in the rest of the body [2]. However, this paradigm

is primarily based on evidence gathered under laboratory con-

ditions, when most peripheral Zeitgebers are aligned with the

light–dark cycle. Under natural conditions not all relevant

environmental variables show stable, aligned daily cycles,

and the notion of the SCN as orchestrator is stretched to its

limits. In fact, maximization of fitness is reliant on plasticity

in the timing of these peripheral rhythms, as well as behav-

ioural activity that is associated with non-photic cycles and

patterns. These real-life considerations suggest that an SCN-

centric view is in direct contradiction with maximizing fitness.

We have shown here that timing of behavioural activity

associated with, for example, the endocrine system, food

availability and other factors is associated with peripheral

clocks and rhythms. Moreover, there are many examples of

non-photic Zeitgebers driving clocks and rhythms in the per-

iphery, often dissociated from the light–dark cycle. Even a

lack of food per se will have a dramatic impact on overt and

endogenous rhythms. Similarly, ambient temperature and

predation risk can lead to substantial changes in rhythmicity

in mice, and voles seem especially adapted to change their

rhythmicity from more circadian to more ultradian forms,

whereby a noticeable shift to more diurnal activity occurs

especially when it is cold and food is scarce.

Based on these tangible, real-life considerations—rather

than those originating from laboratory-based obser-

vations—it does not seem appropriate to describe the SCN

as the conductor of the orchestra of body tissues. It seems

much more pertinent to consider the SCN primarily as the

internal representation of the external light–dark cycle, pro-

viding a signal that can be consulted by other brain areas

and peripheral tissues (figure 1). This change in viewpoint

provides a prominent role for peripheral tissues, also because

the degree to which peripheral clocks follow the SCN signal

or other signals depends—at least in part—on the state of

each of these individual clocks. The palette of hormonal

and neurotransmitter receptors expressed by each tissue
in the body, including hypothalamic nuclei downstream

from the SCN, will therefore determine their phase angle

relative to that of the SCN, as well as their response to

environmental cues.

Some functions of peripheral tissues, however, require a

tight phase angle with the light–dark cycle by means of a

tight coupling with the SCN. Melatonin production may be

one of them. The direct coupling of the melatonin producing

pinealocytes to the SCN [32,33] can be functionally understood

from its role in the photoperiodic response, driving seasonal

gonadal development (see for a brief review [134]). The periph-

eral clock in the ovaries, for example, will detect the carefully

timed hypothalamic drive on gonadotropin release by the pitu-

itary as a response to photoperiod [69]. This hypothalamic drive

depends on the measurement of photoperiod, requiring the

SCN–melatonin axis and circadian clocks in the pars tuberalis

to precisely work together [194]. A series of circadian clock sys-

tems need to be precisely tuned to the environment and to each

other to get successful ovulation: day length . SCN .

melatonin . pars tuberalis . pituitary . ovary. But even here

it is clear that internal state (fat reserves) and environmental

variables (e.g. temperature and food) play important roles in

modifying the hypothalamic drive to the pituitary, although

the precise mechanisms by which these modifiers act remain

unclear [195].

In the natural world, there is no single optimum phenotype

for the interacting central and peripheral clocks because

environments vary spatially and change over time. All animals

inherit the clocks of ancestors whose fitness was based on their

specific environment: the specific location and time in which

they lived. Much of the spatial variation in environment

among individuals is not predictable, and the exact timing of

seasonal change, daily temperature change, and other vari-

ables is not predictable. Thus, selection is acting on clock

systems that exist in a cyclical world with significant unpre-

dictable variation. Natural selection cannot favour an

optimum for all existing environments; natural selection can

only favour alleles that tend to be successful in most environ-

ments. Offspring of individuals who happen to have clocks

that function well in one year and one location, will disperse

to new and different locations, and those offspring will grow

and mature in different days/seasons/years in which those

same clocks may, by chance, decrease fitness. The fitness land-

scape is complex, and that landscape becomes even more

complex when there are multiple interacting components:

the many different peripheral clocks in animals.

Understanding the adaptive value of the mammalian cir-

cadian system thus requires a better understanding of the

mechanisms by which peripheral clocks are timed by the

environmental cues in combination with SCN derived sig-

nals. To obtain such insights, we must expand beyond the

standard 12 h light : 12 h dark regimes at room temperature,

because these artificial conditions hide, or mask, the indepen-

dence of peripheral clocks. The plasticity of circadian

organization, as provided by the contribution of peripheral

clocks under a range of real environmental conditions,

should be studied to provide insight into the heterogeneity

of regulatory mechanisms in circadian organization. Even-

tually we should be able to understand the variety of

circadian patterns observed under natural conditions, how

they evolve, to which signals they respond, what the func-

tions of those responses are, and how they contribute to

increasing survival and reproduction. We can then see a
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range of mechanisms by which the environment connects

with a complex internal circadian landscape to allow timing

relationships between the SCN and multiple peripheral

clocks that maximize fitness under natural conditions.
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