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The theory of species coexistence is a key concept in ecology that has received

much attention. The role of rapid evolution for determining species coexistence

is still poorly understood although evolutionary change on ecological time-

scales has the potential to change almost any ecological process. The influence

of evolution on coexistence can be especially pronounced in microbial commu-

nities where organisms often have large population sizes and short generation

times. Previous work on coexistence has assumed that traits involved in

resource use and species interactions are constant or change very slowly

in terms of ecological time-scales. However, recent work suggests that

these traits can evolve rapidly. Nevertheless, the importance of rapid evolution

to coexistence has not been tested experimentally. Here, we show how rapid

evolution alters the frequency of two bacterial competitors over time when

grown together with specialist consumers (bacteriophages), a generalist consu-

mer (protozoan) and all in combination. We find that consumers facilitate

coexistence in a manner consistent with classic ecological theory. However,

through disentangling the relative contributions of ecology (changes in

consumer abundance) and evolution (changes in traits mediating species inter-

actions) on the frequency of the two competitors over time, we find differences

between the consumer types and combinations. Overall, our results indicate

that the influence of evolution on species coexistence strongly depends on

the traits and species interactions considered.
1. Introduction
The diversity observed in microbial communities living in seemingly simple

environments is overwhelming. One of the fundamental questions in (microbial)

community ecology is how a large number of species can coexist while sharing

only one or few resources [1–3]. Several conditions have been observed to slow

down or prevent competitive exclusion, e.g. differences in resource use, trade-

offs, spatial and temporal separation of competitors and nonlinear species

interactions [4]. Furthermore, individual traits of species that determine fitness

differences, niche overlap and species interactions with density or frequency

dependency are important factors in regulating the coexistence of competing

species. Generally, equalizing fitness among species and decreasing their niche

overlap (stabilizing effect) facilitate the coexistence of competitors.

Consumers such as predators, parasites or herbivores can have significant

effects on the outcome of competition and thus the maintenance of species diver-

sity [4,5]. In microbial communities, lysis caused by bacteriophages (i.e. phages)

and predation by protists represent major causes of mortality, and these inter-

actions can be very important for the coexistence of bacteria [6]. They can, for

example, result in apparent competition or create new niches where each species

has its own specialist consumer (e.g. [1,7–9]). In particular, specialist and general-

ist consumers can have qualitatively different effects on coexistence of resource

(prey) populations [10]. When specialist consumers dominate food webs, prey

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2017.0415&domain=pdf&date_stamp=2017-10-11
mailto:teppo.hiltunen@helsinki.fi
https://dx.doi.org/10.6084/m9.figshare.c.3889072
https://dx.doi.org/10.6084/m9.figshare.c.3889072
https://dx.doi.org/10.6084/m9.figshare.c.3889072
http://orcid.org/
http://orcid.org/0000-0001-7206-2399
http://orcid.org/0000-0001-8245-9912
http://orcid.org/0000-0002-3885-5253


rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20170415

2
species are mainly connected through shared basal resources

(e.g. nutrients). With generalists as consumers, prey species

are also connected via the shared consumers and coexistence

of prey species is possible through niche differentiation into

grazing resistance (i.e. reduced vulnerability to predation

[11]) and competitive ability [12,13].

Classic ecological theory on coexistence has focused on

interspecific differences in traits. However, more recent work

has shown that traits and species interactions within food

webs are not rigid and that evolutionary change—de novo
mutations and changes in genotype frequencies from standing

genetic variation over time—can occur at the same temporal

scale as ecological processes, as recently reviewed in [14].

Weakly defended but highly competitive prey genotypes can,

for example, coexist with highly defended but weakly competi-

tive prey genotypes in the presence of a predator where the

frequency of the two prey genotypes fluctuates over time

[9,15–20]. Besides trait polymorphisms within a population,

consumer–resource interactions can lead to rapid de novo
evolution and trait divergence between prey species [21,22],

as well as increasing intraspecific trait variation in prey popu-

lations [15,16,20]. Similarly, host–parasite interactions often

give rise to rapid coevolution of bacteria and their parasitic

phages (e.g. [23–25]), which has also been observed with other

microbes [26]. Differences in consumers and their interactions

with the resource population can lead to different evolutionary

changes in the traits of resource populations. Specialized

phages typically lead to phage-resistant mutants rapidly over-

taking bacterial populations [24,27], which has been shown to

affect species coexistence [28]. Defence traits against grazing by

a generalist consumer, such as protozoa, typically evolve at

a slower pace and provide only partial protection [22].

Trait evolution in response to the presence of predators and

phage also depends on community structure leading to diffuse

coevolution [29]. Increasing community complexity at the com-

petitor or consumer level has been commonly observed to slow

down evolutionary change, because population sizes are

reduced, lowering the supply of adaptive mutations and/or

encounter rates [30–32]. Nevertheless, little is known about

how consumer community composition affects the rapid evol-

ution and coexistence of competing species. On the basis of

previous work on consumer-mediated coexistence and the

fact that rapid evolution can alter species interactions, we

hypothesize that the effect of evolutionary change on the coex-

istence of competitors depends on the consumer community

present.

In order to test how adaptive evolution in consumer

resource communities can alter coexistence over time, we

used an experimental evolution approach to manipulate the

community structure in simple laboratory microcosms. Specifi-

cally, we ask how changes in frequencies of two competing

bacterial populations change with food web structure and

whether and how rapid evolutionary changes in traits mediat-

ing species interactions alter these frequencies over time in

relation to population size changes. For this purpose, we

tracked the population and evolutionary dynamics of two bac-

terial species, Pseudomonas fluorescens and Escherichia coli when

(i) growing without a consumer (treatment hereafter: ‘Bacteria’),

(ii) with a generalist consumer (one ciliate species, Tetrahymena
thermophila; ‘Ciliate’), (iii) with specialized consumers (specific

phages for both bacteria: T4 for E. coli and f2 for P. fluorescens;
‘Phage’) and (iv) with all three consumers (All). We used the

same isogenic lines of the bacteria to inoculate the experiments
to minimize the standing genetic variation in the beginning

of the experiment, simplifying the experimental set-up. We

assessed the ecological dynamics by measuring changes in

population size for 60 days and evolutionary dynamics by test-

ing whether the bacteria evolved resistance against the phage

and defence against the ciliate (measured as prey defence

level, D) as well as bacterial resource use (measured as

growth in used medium of the other bacterial species).

With this experimental set-up, we could test the combined

effects of specialist and generalist consumers on trait evolu-

tion of two competing bacteria and whether and how these

evolutionary changes and changes in consumer densities (ecol-

ogy) alter coexistence of the two competitors over time, here

measured as changes in the frequency of the two bacterial

species. Ideally, one would contrast experiments with and with-

out evolution to test for the role of evolution for coexistence.

However, as evolutionary adaptation in bacterial populations

in experimental studies lasting for hundreds of generations is

common [33], evolution cannot be suppressed without exten-

sive experimental manipulation and temporal interruption of

species interactions. To disentangle the roles of ecology and

evolution in coexistence of the two bacteria over time, we

used the Geber method [14,34,35] to decompose the effects of

rapid adaptation on coexistence a posteriori. The method is

based on the notion that the frequency of Pseudomonas fluores-
cens depends on densities of the bacteria and consumers (i.e.

ecology) and how well adapted the bacteria are against these

negative interactions (i.e. evolution via heritable defence

traits). We assume here that all measured trait changes are heri-

table rather than being plastic. The relative importance of these

changes can be partitioned with a two-way ANOVA.

We found that manipulating consumer community struc-

ture affected the frequencies of the two bacteria over time

and that predation by the generalist was the primary force facil-

itating coexistence within and across populations. Moreover,

the highest frequency of P. fluorescens was observed in commu-

nities with both the generalist and the specialists present.

Our results show that the relative contributions of evolution

(temporal changes in the resistance and/or defence traits)

and ecology (population sizes of the consumers) to changes

in the frequency of the two bacteria over time were strongly

dependent on community structure and time. Interestingly,

the contribution of evolution in the frequency changes of the

two bacteria was negligible when phages were present.
2. Material and methods
(a) Model system
As host/prey, we used two bacterial species: P. fluorescens SBW25

[36] and E. coli ATCC 11303. As a specialist consumer species, we

used two lytic bacteriophages: f2 [24] specific to P. fluorescens
and T4 ATCC 11303-B4 specific to E. coli. As a generalist consumer,

capable of consuming both bacterial species, we used the ciliated

protozoan T. thermophila 1630/1U (CCAP). Generally, the ancestral

E. coli grows faster and reaches higher densities when cultured

alone (electronic supplementary material, figure S1), and is more

limited by predation at high bacterial densities than P. fluorescens
(electronic supplementary material, figure S2). Prior to the exper-

iments, all bacterial and phage stocks were kept at –808C and

ciliate stocks were cultured axenically in proteose peptone yeast

extract (PPY) medium containing 20 g of proteose peptone and

2.5 g of yeast extract in 1 l of deionized water. All treatments
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were started from clonal cultures of bacteria and phages to achieve

minimal initial genetic variability in populations.

(b) Microcosm experiment and manipulating
community structure

Experiments were conducted in standard 25 ml glass vials (a micro-

cosm type previously used, e.g. in [21,24,33,37–39]) with 6 ml

medium containing M9 salts and King’s B (KB) nutrients at 1%

concentration (1% KB: 0.2 g l21 Peptone number 3 and 0.1 ml l21

glycerol). All treatments were replicated three times. Every 48 h,

1% of each culture (approx. (0.4–1.6) � 105 cells) was transferred

to a new vial containing fresh culture medium. Microcosms were

kept at 28+0.18C and shaken constantly (50 r.p.m.). We manipu-

lated the community structure by having (i) bacteria only (in all

treatments both species present), (ii) bacteria and generalist ciliate

consumer, (iii) bacteria and both of their specific phage consumers

and (iv) bacteria and all three consumers. The duration of the exper-

iment was 60 days, representing approximately 340 bacterial and

190 ciliate generations.

(c) Community dynamics
During each transfer, a 0.5 ml subsample from each vial was frozen

with 0.5 ml of 80% glycerol and kept at –808C for later analysis (cili-

ates do not survive freezing under these conditions). Total bacterial

biomass was estimated as optical density (OD) at 600 nm (UV-1800

spectrophotometer, Shimadzu, Japan). We estimated the relative

frequency of the two bacterial species with selective agar plating

of dilution series. For P. fluorescens, we plated samples on agar

containing CFC selective supplement (CFC supplement: 10 mg of

cetrimide and fucidin and 50 mg cephalosporin in 1 l of PPY

agar). For E. coli, we used Tryptone Bile X-Glucuronide agar. We

cultured all samples for 48 h: P. fluorescens at 288C and E. coli at

378C to obtain optimal growth for the target species. With these

selective media and culture conditions, we were able to clearly dis-

tinguish and enumerate both bacterial species from mixed samples.

At this point, we also isolated 16 individual colonies (clones) from

both species that were stored at –808C for later analysis. Phage den-

sities were enumerated with plaque assay in which the two phage

species were distinguished by plating mixed phage samples to agar

plates to two separate agar plates, each containing one host species.

Tetrahymena thermophila cell densities were enumerated directly

from live 2.5 ml subsamples using a compound microscope (Zeiss

Axioskop 2 plus, Oberkochen, Germany).

(d) Evolutionary changes in predator defence
and phage resistance

Evolution of the prey defence trait D against predator grazing

was quantified with a simple, ecologically relevant bioassay, as

described in detail in [21]. Briefly, after thawing cryopreserved bac-

terial clones, we grew samples in liquid culture (1% KB) for 24 h,

corresponding to approximately 10 bacterial generations, so that

the subsequently measured phenotypic differences resulted from

evolutionary change rather than an induced defence mechanism.

We then mixed all 16 clones in equal proportions, added 100 ml of

the mixture into 2 ml of fresh culture medium, and added 2100 cili-

ates from the stock: that is, we used naive predators as a standard

for consumer feeding on genetically differentiated prey. Predator

numbers were counted after 48 h, and differences in predator den-

sities compared with predators grown on naive prey were taken as

an estimate for the prey defence level D. Prey defence trait values

were calculated as relative fitness by D ¼ 1� ðpreyevo= preyancÞ,
where preyevo is the predator density after feeding on evolved

prey, and preyanc is the predator density after feeding on ancestral

prey. Ciliate coevolution was measured by comparing ancestor cili-

ates and populations isolated at the end of the experiment. These
were fed with sympatric bacterial populations evolved with ciliates

in the experiment. However, we did not observe any ciliate coevo-

lution in our experiment (detailed methods and data in the

electronic supplementary material).

We also estimated the bacterial phage resistance of 16 clones

from each population using a modified version of a streak test

commonly used in bacterial phage studies (e.g. [23,24,37]). We

first cultured each clone overnight in a liquid medium (PPY

medium in 96-well plates, each well containing one clone) and

then used a multichannel pipette to inoculate 10 ml samples

into a Petri dish containing PPY agar and a thin layer of soft

agar with a high concentration of the coevolved phage isolated

from the same time point as the host clones (cf. [24]). The ability

to form visible colonies (indicating resistance) was evaluated

for each clone after 24 h.

(e) Data analyses
We used generalized estimating equation models (geeGLMs) to

compare the frequency of P. fluorescens, bacteria densities, ciliate

densities, D for E. coli and P. fluorescens, phage f2 and phage T4

numbers, as well as average resistance against the phages as data

were distributed non-normally and to account for the temporal

autocorrelation of the time series. We used the function geeglm
from R package geepack [40–42] with the family Gamma (for the

comparison of the frequency of P. fluorescens and phage resistance,

we added 0.01 to all data in order to have only positive values; we

added 1 to all phage number values in order to have only positive

values). We used Kruskal–Wallis rank sum tests to test for differ-

ences in the coefficient of variation of defence level as CV data were

non-normal. We used, for each bacteria species, Kruskal–Wallis

rank sum tests to test for differences between resource use at the

start and end between treatments (non-normal data). All analyses

were performed in R [43].

( f ) Eco – evo contribution
We tested how the community composition affected the contri-

bution of ecology and evolution in the change in the frequency of

the bacteria using the Geber method [14] described in [34]. More

details and an example are shown in the electronic supplementary

material. Specifically, we asked how the change in the frequency

of P. fluorescens is explained by ciliate and E. coli densities (i.e. ecol-

ogy) and defence traits (i.e. evolution) or phage densities (i.e.

ecology) and resistance trait (i.e. evolution) over time. We calculated

the contributions of ecology and evolution for all time points for

which we had density and P. fluorescens defence and/or resistance

data and used the data specific to these time points. Since we use

species frequencies, the results are qualitatively identical to the

results that would be obtained using E. coli as a focal competitor.

As we found no evidence for evolutionary change in the predator

and resource use of the bacteria (see above and electronic sup-

plementary material), we did not include these evolutionary

processes in our analysis. Furthermore, we were not able to consider

evolution of the phage separately for this as our resistance mea-

surements with only contemporary phage did not allow detection

of phage coevolution.

We tested for differences in the contribution of ecology and

evolution (Eco, Evo) between treatments (Ciliate, Phage, All)

and time (Sampling day) using geeGLM models. To further

disentangle differences in the ecological and evolutionary contri-

bution of the ciliate and phage in the ‘All’ treatment, we used

geeGLM models with consumer (Ciliate, Phage), contributor

(Eco, Evo) as an explanatory variable.
3. Results
Population and evolutionary dynamics differed significantly

depending on community structure (figure 1). Most
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line indicates equal proportions. (c) Phage densities ( plaque forming unit, PFU ml21): f2 (orange line), T4 ( purple line) (mean+ s.e.). (d ) Pseudomonas fluorescens
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importantly, increasing community complexity, in the presence

of ciliates, facilitated coexistence of the bacteria P. fluorescens and

E. coli over time (geeGLM, treatment: x2 ¼ 521, d.f.¼ 3, p , 2 �
10216, treatment � days: x2 ¼ 22, d.f. ¼ 3, p , 5.2 � 1025;

figure 1b(i–iv); for additional statistical results, see electronic

supplementary material, table S2), with the lowest average fre-

quency of P. fluorescens over time when there was no

consumer and the highest frequencies when all consumer

types were present. Overall bacterial densities were also

lowest in the ‘All’ and highest in the ‘Bacteria-only’ treat-

ments (geeGLM, treatment: x2 ¼ 507, d.f.¼ 3, p , 2 � 10216;

figure 1a(i–iv); electronic supplementary material) and changed

over time depending on the treatment (geeGLM, treatment �
days: x2 ¼ 11, d.f.¼ 3, p ¼ 0.013). Ciliate densities were similar

between treatments (geeGLM: x2 ¼ 0, d.f. ¼ 1, p ¼ 0,

figure 1a(i)) and changed over time (geeGLM: days: x2 ¼

173.6, d.f. ¼ 1, p , 2 � 10216) depending on the treatment

(treatment� days: x2 ¼ 3.9, d.f. ¼ 3, p ¼ 0.049). Phage f2 num-

bers differed significantly between treatments and over time

between treatments (geeGLM, treatment: x2 ¼ 49.2, d.f. ¼ 1,

p , 2.4*212, treatment � days: x2 ¼ 4.3, d.f. ¼ 1, p ¼ 0.039)

with lower f2 densities in the presence of the ciliate. Phage T4

numbers were not different between the ‘All’ and ‘Phage’ treat-

ments (geeGLM: treatment x2 ¼ 2.87, d.f. ¼ 1, p¼ 0.09). Even

though phage densities became very low in some populations,

extinctions were not observed.
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To follow the evolutionary response to ciliate predation, we

measured the fitness of the ancestral predator when grown on

ancestral and evolved bacteria isolated from different time

points. From this, we calculated the defence level D, with 0

meaning that the evolved bacteria had the same level of defence

as the ancestor and values close to 1 signifying a very high level

of defence compared with the ancestor. We performed this

assay separately for each bacterium. Both bacteria evolved

defence against consumption by the ciliate (associated with

notable increase in cell aggregation) within the first two to

four transfers (approx. 10–20 generations, figure 1f(i,ii)). Over-

all, we found no difference in the levels of defence between E.
coli and P. fluorescens (geeGLM for bacterial species: x2 ¼ 0.42,

d.f.¼ 1, p ¼ 0.52). The defence levels of E. coli and P. fluorescens
did not differ between treatments (geeGLM: E. coli x2 ¼ 1,

d.f.¼ 0.15, p ¼ 0.68: P. fluorescens: x2 ¼ 1, d.f. ¼ 0.28, p ¼ 0.6).
However, we observed significantly lower temporal stability

of the defence level D compared with E. coli (measured as coef-

ficient of variation: CV mean+ s.d.; ciliate: E. coli 0.19+0.03,

P. fluorescens 0.62+0.31; all: E. coli 0.31+0.10, P. fluorescens
0.44+0. 13; Kruskal–Wallis test for bacteria: x2 ¼ 8.04, d.f.¼ 1,

p¼ 0.005) and independent of treatment (Kruskal–Wallis:

x2¼ 0.17, d.f.¼ 1, p¼ 0.67).

In the treatments with phages, E. coli rapidly evolved

resistance against the phage and this depended on the pres-

ence of ciliates (geeGLM: treatment x2 ¼ 1.27 � 1016, d.f. ¼ 1,

p , 2 � 10216; days: x2 ¼ 1 � 1029, d.f.¼ 1, p , 2 � 10216,

treatment � days: x2 ¼ 1. 37� 1012, d.f.¼ 1, p , 2 � 10216;

figure 1e(i,ii)). We also found significant differences between

treatments for the evolution of resistance of P. fluorescens
against its phage f2, with lower levels of resistance in the pres-

ence of the predator (geeGLM: treatment x2 ¼ 6.52, d.f. ¼ 1,

p ¼ 0.011; days: x2 ¼ 16.33, d.f.¼ 1, p ¼ 5.3 � 1025;

figure 1d(i,ii)).

There were no evolutionary changes in bacterial resource

use based on the growth of P. fluorescens in an E. coli filtrate

from the start and endpoint of the experiment; the same

applied to E. coli growth in a P. fluorescens filtrate (see elec-

tronic supplementary material, methods; Kruskal–Wallis

rank test E. coli: treatment x2 ¼ 1.23, d.f. ¼ 3, p ¼ 0.75;

time: x2 ¼ 0.75, d.f. ¼ 1, p ¼ 0.39; P. fluorescens: treatment:

x2 ¼ 4.72, d.f. ¼ 3, p ¼ 0.19; time: x2 ¼ 0.01, d.f.¼ 1, p ¼ 0.92).

We tested how the consumer affected the roles of evolution

and ecology in the frequency of P. fluorescens and compared the

contributions of evolutionary and ecological change between

the ‘Ciliate’, ‘Phage’ and ‘All’ treatments (figure 2). We found

that the contributions of ecology and evolution to the change

in the frequency of P. fluorescens differed between treat-

ments (geeGLM treatment: x2 ¼ 10.69, d.f. ¼ 2, p ¼ 0.005).

Specifically, the contribution of ecology was greater than the

evolutionary contribution in the ‘Ciliate’ and ‘Phage’

treatments, whereas both had equal contributions in the ‘All’

treatment. We further found differences in contributions

between treatments with ciliates (‘Ciliate’ and ‘All’ treatments:

geeGLM treatment: x2 ¼ 4.83, d.f. ¼ 1, p ¼ 0.028). Within the

‘All’ treatment, the ciliate and phage had significantly different

contributions to the changes in P. fluorescens frequency

(geeGLM, interaction between consumer and contribu-

tion: x2 ¼ 5.98, d.f. ¼ 1, p ¼ 0.015) with very low overall

contributions by the phage.
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4. Discussion
Consumer-mediated coexistence is a highly important and

classic notion in ecology. However, little is known about

whether rapid evolutionary changes in traits affecting species

interactions contribute to the diversity and whether and how

the presence of multiple consumers plays a role. Here, we

tested how rapid trait evolution affects the frequencies of

two bacterial species, E. coli and P. fluorescens, as a proxy

for coexistence, using bacterial communities with none, one

generalist, two specialists, or all three consumers together.

Frequency of P. fluorescens was lowest in the treatment with-

out consumers, and the generalist consumers allowed a

higher frequency of P. fluorescens than the specialist consu-

mers. Furthermore, we observed the strongest consumer

effect on coexistence when both specialist and the generalist

consumers were present in the communities. However, tem-

poral changes in the frequency of the two bacterial species

were explained not solely by changes in consumer densities

over time (ecology) but also by changes in consumer-avoidance

traits (evolution). Interestingly, the role of trait evolution

differed across the treatments: the strongest alteration of

competition by adaptive evolution was observed in the

treatments with a generalist consumer (‘Ciliates’, ‘All’).

In the community without consumers, E. coli was the domi-

nant species (figure 1b(iv)). The frequency of P. fluorescens
decreased very rapidly, suggesting that neither stabilizing nor

equalizing processes were present for ancestral bacteria. Pseudo-
monas fluorescens frequencies continued to decline until the end

of the experiment. As we found no evidence for the evolution of

resource use over time, rapid evolution did not lead to equaliz-

ing or stabilizing effects in this treatment. It is possible that the

transfers between microcosms led to low competition for

resources after the transfer to a new vial and before growing

to the stationary phase. This might have allowed P. fluorescens
to be maintained in the systems at low frequencies.

Phages as specialist consumers had only a small effect

on the outcome of competition between the bacteria. Both

E. coli and P. fluorescens populations evolved almost complete

resistance to their contemporary phages after approximately

10–20 generations and we did not observe any cost of resist-

ance in our resource use measurements. On the basis of these

results, we conclude that because both species reacted similarly

to specialist consumers they had no or a minor effect on the

coexistence pattern over time. We, however, also acknowledge

that the resource use is potentially not the only form of cost of

resistance. The role of resistance evolution was thus important

only during the initial bacterial generations (figure 2). Changes

in the frequency of P. fluorescens were later mostly driven by

changes in phage densities (ecology). Bacteria and phage

most likely continued coevolving through arms race dynamics

(for P. fluorescens, see [25]) and fluctuating selection (for E. coli,
see [44]), but we did not investigate this further. Because there

was no difference in resource use over time and both bacterial

populations evolved resistance very rapidly and seemingly at a

similar pace, there were no stabilizing evolutionary effects

for coexistence. Differences in the frequency of P. fluorescens
compared with the communities without consumers are

most probably the result of reduced overall bacterial

population sizes and thus reduced competition for resources.

Compared with specialist parasites, the generalist predator

had a more substantial effect on the coexistence of the two bac-

teria. However, as opposed to the ‘Phage’ treatment, evolution
played a significant role in coexistence as the frequency of

P. fluorescens changed continuously through temporal changes

in the defence trait (figure 2). Pseudomonas fluorescens frequen-

cies dropped initially to comparably low frequencies with the

‘Bacteria’ and ‘Phage’ treatments, suggesting that the presence

of the predator alone did not change the conditions for coexis-

tence. Frequencies only started to increase again when the

bacteria evolved a defence (figures 1 and 2), suggesting that

the evolutionary change in both bacteria augmented the initial

differences in growth and defence (electronic supplementary

material, figures S1 and S2) and had a stabilizing effect.

The highest frequency of P. fluorescens was observed when

both the specialist and the generalist consumers were present

in the community and temporal changes in frequencies were

mainly driven by ecology, i.e. changes in the densities of the

ciliate and the phages. The role of evolution (defence and resist-

ance) was only important during the initial transfers when

bacteria evolved resistance against phage and defence against

the ciliate. Interestingly, the frequency of phage-resistant

P. fluorescens was significantly lower in the ‘All’ treatment com-

pared with the ‘Phage’ treatment, and resistance levels

decreased over time. A likely explanation for the lower levels

of resistance in P. fluorescens is the reduced bacterial population

size compared with the ‘Phage’ treatment. Lower population

sizes reduce encounter rates and can limit the supply of

mutations within a population in a given number of gener-

ations, restraining coevolutionary dynamics of the bacteria

and phage [32] and generally slowing down adaptive evol-

ution in consumer–resource systems [45]. Moreover, the

evolution of costly anti-predator defences might hinder the

evolution of costly resistance against viral parasites. Further-

more, the generalist consumer is able to consume resistant

cells as long as there is no positive correlation between phage

resistance and anti-predator defence [46] directly affecting the

frequency of resistant types in the population.

An examination of the relative contribution of evolution

to changes in the frequencies of the two different bacteria

demonstrates that the relative contributions of evolution

and ecology vary, as indicated by earlier findings [17,35].

Interestingly, this means that the relative roles of ecology

and evolution depend not only on the complexity of the

food web but also other factors, a finding that requires further

consideration in future studies.

The Geber method allowed us to disentangle the effects of

ecology and evolution over time, but the relative speed of eco-

logical and evolutionary changes cannot be predicted from this.

The speed of evolution compared with ecological change has

been shown in theory to be decisive for the outcome of eco-evol-

utionary dynamics [47,48]. In our experiment, we found that the

evolution of phage resistance was much faster than defence

against ciliate grazing. The rate of evolution of resistance and

defence generally depends on mutation rate, population size,

generation time and the number of mutations that are required.

Concerning the last of these, phage resistance might require

only a single mutation, for example one that alters cell-surface

receptors (for P. fluorescens SBW25, see [49]), whereas defence

against grazing by the ciliate might require several mutations

(e.g. for the production of mucus in P. fluorescens, see [50]).

Another difference between resistance and defence evolution,

we observed here and elsewhere [21], is that the bacteria popu-

lation can evolve lower levels of defence than the ancestor at

certain time points, most probably as a result of eco-evolution-

ary dynamics, which favour fast growing but highly
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undefended prey types at low predator densities. Further

studies are needed to explore whether and how differences in

the speed of evolution and the presence of coevolution alter

the contributions of ecology and evolution.

We observed no changes in the resource use of bacteria

when comparing the growth of the other species in the

medium used (filtrate). This finding contrasts with a study

where adaptive evolution in bacterial communities with

five species led to differential resource use over time [51].

Potential explanations for this different observation include

differences in properties of species used, a higher number of

species (i.e. more potential for metabolic products), differences

in growth media and the presence of consumers.

In summary, we find that coexistence is promoted in the

presence of multiple consumers, which is in line with other

studies (e.g. [28,52–54]). Previous theoretical work has already

shown that eco-evolutionary dynamics can alter coexistence,

for example, by reversing apparent competition, through

neighbour-dependent selection [54] or trait adjustments in

response to selection that enables a temporally variable conver-

gence and divergence of species traits [59]. We further show

that rapid evolution can alter the co-occurrence over time,

but that the role of evolution might depend on the consumer

types and their combination. Most importantly, our findings
show that eco-evolutionary feedback is also crucial with

increasing community complexity. This is in agreement with

other studies on coexistence at one trophic level [51]. The

results of our study indicate also that making predictions

based on findings from single-interaction studies by extrapol-

ation might not be possible when exploring eco-evolutionary

dynamics in communities with higher complexity and multiple

simultaneous interactions. Finally, these findings can be con-

sidered important for understanding eco-evolutionary

dynamics in natural communities.
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32. Gómez P, Buckling A. 2011 Bacteria-phage
antagonistic coevolution in soil. Science 332, 106 –
109. (doi:10.1126/science.1198767)

33. Rainey PB, Travisano M. 1998 Adaptive radiation in
a heterogeneous environment. Nature 394, 69 – 72.
(doi:10.1038/27900)

34. Hairston NG, Ellner SP, Geber MA, Yoshida T, Fox JA.
2005 Rapid evolution and the convergence of
ecological and evolutionary time. Ecol. Lett. 8,
1114 – 1127. (doi:10.1111/j.1461-0248.2005.
00812.x)

35. Ellner SP, Geber MA, Hairston NG. 2011 Does rapid
evolution matter? measuring the rate of
contemporary evolution and its impacts on
ecological dynamics. Ecol. Lett. 14, 603 – 614.
(doi:10.1111/j.1461-0248.2011.01616.x)

36. Rainey PB, Bailey MJ. 1996 Physical and genetic
map of the Pseudomonas fluorescens SBW25
chromosome. Mol. Microbiol. 19, 521 – 533. (doi:10.
1046/j.1365-2958.1996.391926.x)

37. Brockhurst MA, Morgan AD, Rainey PB, Buckling A.
2003 Population mixing accelerates coevolution.
Ecol. Lett. 6, 975 – 979. (doi:10.1046/j.1461-0248.
2003.00531.x)

38. Brockhurst MA, Rainey PB, Buckling A 2004 The
effect of spatial heterogeneity and parasites on the
evolution of host diversity. Proc. R. Soc. Lond. B
271, 107 – 111. (doi:10.1098/rspb.2003.2556)

39. Kassen R, Buckling A, Bell G, Rainey PB. 2000
Diversity peaks at intermediate productivity in a
laboratory microcosm. Nature 406, 508 – 512.
(doi:10.1038/35020060)

40. Halekoh U, Højsgaard S, Yan J. 2006 The R package
geepack for generalized estimating equations.
J. Stat. Softw. 15, 1 – 11. (doi:10.18637/jss.v015.i02)

41. Yan J, Fine J. 2004 Estimating equations for
association structures. Stat. Med. 23, 859 – 874.
(doi:10.1002/sim.1650)

42. Yan J. 2002 Geepack: yet another package for
generalised estimating equations. R-News 2/3,
12 – 14.

43. Bohannan BJ, Lenski RE. 2000 Linking genetic
change to community evolution: insights from
studies of bacteria and bacteriophage. Ecol. Lett. 3,
362 – 377. (doi:10.1046/j.1461-0248.2000.00161.x)

44. Mellard JP, de Mazancourt C, Loreau M. 2015
Evolutionary responses to environmental change:
trophic interactions affect adaptation and
persistence. Proc. R. Soc. B 282, 20141351 (doi:10.
1098/rspb.2014.1351)
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