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Puttick et al. (2017 Proc. R. Soc. B 284, 20162290 (doi:10.1098/rspb.2016.2290))

performed a simulation study to compare accuracy among methods of infer-

ring phylogeny from discrete morphological characters. They report that a

Bayesian implementation of the Mk model (Lewis 2001 Syst. Biol. 50, 913–

925 (doi:10.1080/106351501753462876)) was most accurate (but with low res-

olution), while a maximum-likelihood (ML) implementation of the same

model was least accurate. They conclude by strongly advocating that Bayesian

implementations of the Mk model should be the default method of analysis for

such data. While we appreciate the authors’ attempt to investigate the accuracy

of alternative methods of analysis, their conclusion is based on an inappropri-

ate comparison of the ML point estimate, which does not consider confidence,

with the Bayesian consensus, which incorporates estimation credibility into

the summary tree. Using simulation, we demonstrate that ML and Bayesian

estimates are concordant when confidence and credibility are comparably

reflected in summary trees, a result expected from statistical theory. We there-

fore disagree with the conclusions of Puttick et al. and consider their

prescription of any default method to be poorly founded. Instead, we rec-

ommend caution and thoughtful consideration of the model or method

being applied to a morphological dataset.
1. Comparing point estimates to consensus summaries
Puttick et al. [1] (hereafter PEA) report that ML tree inference under the Mk model

results in higher topological error than Bayesian implementations. However, this

result is driven precisely by the comparison of maximum-likelihood point esti-

mates (MLE) to Bayesian majority-rule (BMR) consensus trees. MLE topologies

are fully resolved, but this stems from the standard binary tree searching algo-

rithms employed and not from an explicit statistical rejection of unresolved

nodes. Therefore, individual MLEs may contain edges with negligible statistical

support. On the other hand, consensus summaries, independent of phylogenetic

method, may have reduced resolution as a product of uncertainty arising by sum-

marization across conflicting sampled topologies. Thus, a direct comparison

between a consensus tree (i.e. BMR) and a point estimate (i.e. MLE) is inappropri-

ate. BMR topologies of PEA are more accurate simply because poorly supported

conflicted edges were collapsed, while MLE topologies were fully resolved, even

if poorly supported. While contrasting MLE and Bayesian maximum a posteriori
(MAP) or maximum clade credibility (MCC) trees would be a more appropriate

comparison of optimal point estimates, the incorporation of uncertainty is an inte-

gral part of all phylogenetic analysis. Therefore, comparison of consensus trees

from Bayesian and ML analyses hold more practical utility for systematists. For

these reasons, we argue that the results of PEA are an artefact of their comparison

between fundamentally incomparable sets of trees.
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2. Confidence and credibility are fundamental to
inference

To avoid drawing untenable conclusions, it is de rigueur of

any statistical analysis to explicitly assess the robustness of an

inference. Non-parametric bootstrap sampling [2] is the over-

whelming standard in phylogenetic confidence estimation.

PEA did not assess edge support in their ML estimates, stating

that morphological data do not meet an underlying assump-

tion of the bootstrap statistical procedure that ‘phylogenetic

signal is distributed randomly among characters’, but provide

no references to support the assertion. Non-parametric

bootstrapping has been a staple of phylogenetic reconstruc-

tion for decades, including for the analysis of discrete

morphological characters. Like Bayesian credibility estimation,

bootstrapping estimates confidence by assuming that empirical

data are a representative sample from an underlying distri-

bution of characters evolving independently under a shared

process [2]. As PEA note, the assumption of independence

may often be violated. However, this violation is fundamen-

tally problematic to model-based phylogenetics in general.

Contrary to PEA, Bayesian and frequentist approaches

to confidence estimation are similar in the sense that both

provide distribution-based summaries of uncertainty; the

sole distinguishing factor of Bayesian approaches is the incor-

poration of prior densities. Many of the concerns raised in

relation to the bootstrap can thus also be shared by Bayesian

approaches and should not preclude its use more generally.

While there are concerns about the use and interpretation of

the bootstrap [3], genetic datasets are routinely bootstrapped.

Without additional information, it may be reasonable to

assume that individual characters in a morphological matrix

would be more independent than adjacent sites from the

same gene (for which the interdependence among characters

is far better understood). We thus dispute the assertion that

bootstrapping is uniquely problematic for morphological data.

While Bayesian approaches estimate credibility intervals

during parameter sampling, confidence assessment is equally

fundamental to likelihood analyses. In addition to the boot-

strap, alternatives such as jackknifing and the SH-like test [4]

are also implemented in popular software packages such as

RAxML [5], one of the programs used by PEA. ML packages

also frequently offer an option to collapse edges on an MLE

tree that fall below some minimum threshold length. Use of

any of these options would enable a more sensible comparison

of likelihood and Bayesian reconstructions.
3. Maximum likelihood and Bayesian
comparisons incorporating uncertainty

To measure the effect of comparing BMR and MLE trees, we

used the simulation code from PEA to generate 1000 character

matrices, each of 100 characters on a fully pectinate tree of 32

taxa, as these settings generated the most discordant results

in PEA. Each matrix was analysed in both Bayesian and ML

frameworks using the Mk þ G model [6]. Bayesian reconstruc-

tions were performed using MRBAYES v. 3.2.6 [7], using the

same settings as PEA: two runs, each with 5 � 105 generations,

sampling every 50 generations, and discarding the first 25% of

samples as burnin. Like PEA, we summarized each analysis

with a BMR consensus tree (i.e. only edges with greater than

or equal to 0.5 posterior probability are represented).
Likelihood analyses were performed in RAxML v. 8.2.9 [5].

For each simulated matrix, we inferred both the MLE tree

and 200 non-parametric bootstrap trees. Accuracy in topologi-

cal reconstruction was assessed using the Robinson–Foulds

(RF) distance [8], which counts the number of unshared bipar-

titions between trees. We measured the following distances

from the true simulated tree: dBMR, the distance to the Bayesian

majority-rule consensus; dMLE, the distance to the MLE tree;

dML50, the distance to the MLE tree which has had all edges

with less than 50% bootstrap support collapsed. Finally, for

each matrix we calculate DMLE ¼ dMLE 2 dBMR, and DML50 ¼

dML50 2 dBMR. These paired distances measure the relative effi-

cacy of ML and Bayesian reconstructions: values of D greater

than 0 indicate that ML produces less accurate estimates (that

is, with a greater RF distance from the true generating tree).

As demonstrated by PEA, MLE trees are indeed less accu-

rate than BMR trees (figure 1; DMLE), with MLE trees on

average having an RF distance 17.6 units greater than the

analogous Bayesian consensus distance. However, when col-

lapsing MLE edges with less than 50% bootstrap support,

Bayesian and ML differences are normally distributed

around 0 (figure 1; DML50), indicating that when standardiz-

ing the degree of uncertainty in tree summaries there is no

difference in topology reconstruction accuracy. These results

support the argument that the original comparisons made

in PEA of MLE and BMR trees are inappropriate. Depending

on the level of uncertainty involved, an optimal point esti-

mate from a distribution (e.g. MLE or MAP) may be

arbitrarily distant from a summary of the same distribution.

The differences in MLE versus BMR are therefore not

expected to be consistent.

(a) The expected concordance of Bayesian and
maximum-likelihood results

Our results reveal much greater congruence between Bayesian

and ML estimates than suggested by PEA. This is to be expected

and is reassuring. ML and Bayesian tree construction methods

should yield similar results under the conditions in which they

are often employed. While Bayesian tree reconstruction differs

from ML by incorporating prior distributions, the methods

share likelihood functions. In phylogenetics, researchers typi-

cally adopt non-informative priors, with a few exceptions

(e.g. priors on divergence time parameters). Arguments can

be made for pseudo-Bayesian approaches when care is taken

to ensure that priors used are truly uninformative, which

result in posterior probabilities that mirror the likelihood and

are therefore congruent with ML [9,10]. If prior distributions

are formulated thoughtfully, as with [11] in shaping the Mk

model using hyperpriors to accommodate character change

heterogeneity, Bayesian methods can outperform ML. Alter-

natively, inappropriate priors can positively mislead [10].

Generally, when informative prior distributions are known

or can be estimated using hierarchical approaches, Bayesian

reconstruction methods may be strongly favoured over ML.

It is unclear whether PEA intend to draw the comparisons

discussed above as they do not describe any reasons to prefer

Bayesian over ML in principle.

Although our results demonstrate general concordance

between ML and Bayesian approaches when uncertainty is

represented, further simulation work is needed to determine

the extent and conditions of this concordance. Issues sur-

rounding the application of Bayesian methods are
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Figure 1. Topological accuracy of ML versus Bayesian reconstructions for the
most discordant comparison identified by PEA (see the text). D measures how
much larger ML distances are from the true tree (dML) than are Bayesian dis-
tances (dBMR). MLE trees are indeed less accurate than BMRs (DMLE; mean ¼
17.63), but when conventional bootstrap thresholds are employed the
difference in efficacy disappears (DML50; mean ¼ 0.43).
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particularly important in palaeontology, where researchers

often conduct inference upon very limited data. In these

cases, it may be desirable to construct informative prior dis-

tributions when conducting Bayesian analyses [10]. The

questions posed by PEA are sensible in the light of current

enthusiasm for statistical morphological phylogenetics. How-

ever, the relative performance of the implementations of the

Mk model remain unresolved due to the authors’ misaligned

treatment of confidence. This lack of resolution extends to

their treatment of parsimony, which is invalid for the same

reason as their ML comparison.
We do not advocate any one method for morphological

phylogenetic reconstruction. Methods differ in model (Mk

versus parsimony), inferential paradigm (parsimony versus

ML/Bayesian), assumptions (prior distributions, model ade-

quacy), interpretation and means to incorporate uncertainty

(ML/parsimony versus Bayesian). We therefore recommend

caution and thoughtful consideration of the biological question

being addressed and then choosing the method that will best

address that question. All inferential approaches possess

strengths and weaknesses, and it is the task of researchers to

determine the most appropriate given available data and the

questions under investigation. The excitement of new morpho-

logical data sources and new means for analysing these data

should not overshadow the obligation to apply methods

thoughtfully.
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