Table 1.
Algorithm/Property | Input data | Model/approach | CNA | Phylogenetic inference | Multiple samples |
---|---|---|---|---|---|
Clomial 4 | DTS1 | non-Bayesian generative Binomial | N2 | N | Y3 |
SciClone 5 | DTS | Bayesian Beta mixture | Y | N | Y |
PyClone 6 | DTS | Dirichlet process, Beta-Binomial | Y | N | Y |
PhyloWGS 7 | WGS4 and DTS | Tree-stick-breaking process, Binomial | Y | Y | Y |
TrAp8 | CP5 | deterministic search under constraints | I6 | Y | N |
LICHeE9 | VAF7, CP | perfect phylogeny model | I | Y | Y |
Rec-BTP10 | VAF, CP | binary tree partition | I | Y | N |
CITUP11 | VAF, CP | combinatorial algorithm | I | Y | Y |
SubCloneSeeker12 | CP | exaustive tree enumeration | I | Y | Y |
PhyloSub13 | DTS | predecessor of PhyloWGS without phylogenic correction for CNA | Y | Y | Y |
CloneHD14 | WGS | HMM8, variational bayes | Y | N | Y |
1Deep-targeted sequencing; 2no; 3yes; 4whole genome sequencing; 5celular prevalence; 6indirectly via CP; 7variant allele frequency; 8hidden Markov model.