Skip to main content
. 2017 Oct 18;7:13467. doi: 10.1038/s41598-017-13338-8

Table 1.

Algorithms to infer clonal/cluster composition and their properties/assumptions.

Algorithm/Property Input data Model/approach CNA Phylogenetic inference Multiple samples
Clomial 4 DTS1 non-Bayesian generative Binomial N2 N Y3
SciClone 5 DTS Bayesian Beta mixture Y N Y
PyClone 6 DTS Dirichlet process, Beta-Binomial Y N Y
PhyloWGS 7 WGS4 and DTS Tree-stick-breaking process, Binomial Y Y Y
TrAp8 CP5 deterministic search under constraints I6 Y N
LICHeE9 VAF7, CP perfect phylogeny model I Y Y
Rec-BTP10 VAF, CP binary tree partition I Y N
CITUP11 VAF, CP combinatorial algorithm I Y Y
SubCloneSeeker12 CP exaustive tree enumeration I Y Y
PhyloSub13 DTS predecessor of PhyloWGS without phylogenic correction for CNA Y Y Y
CloneHD14 WGS HMM8, variational bayes Y N Y

1Deep-targeted sequencing; 2no; 3yes; 4whole genome sequencing; 5celular prevalence; 6indirectly via CP; 7variant allele frequency; 8hidden Markov model.