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Abstract

A key dilemma in global health is how to allocate funds between disease-specific “vertical 

projects” on the one hand and “horizontal programmes” which aim to strengthen the entire health 

system on the other. While economic evaluation provides a way of approaching the prioritisation 

of vertical projects, it provides less guidance on how to prioritise between horizontal and vertical 

spending. We approach this problem by formulating a mathematical program which captures the 

complementary benefits of funding both vertical projects and horizontal programmes. We show 

that our solution to this math program has an appealing intuitive structure. We illustrate our model 

by computationally solving two specialised versions of this problem, with illustrations based on 

the problem of allocating funding for infectious diseases in sub-Saharan Africa. We conclude by 

reflecting on how such a model may be developed in the future and used to guide empirical data 

collection and theory development.
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1. Introduction

The notion of health system strengthening (HSS) has become increasingly important in 

global health discourse in recent years, manifest for example in a declaration at the 2008 G8 

Toyako Summit (Takemi and Reich, 2009). This focus of attention arises from a recognition 

that attempts to implement disease-specific vertical projects often founder in the face of 

weak health systems: for example, a donor might purchase malaria medications or 

insecticide treated bednets for a low-income country, but the Ministry of Health as the 

implementing in-country partner is unable to deliver the medications before they expire or 

the bednets to the at-risk population before the end of the rainy season. Thus, the reasoning 

goes, funding for such vertical projects has to be complemented with funding for 

“horizontal” programmes which aim at strengthening the health system as a whole.
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As Ellner et al. (2011) remark, although the label health systems strengthening is relatively 

recent, the dialectic between proponents of vertical and horizontal approaches is a defining 

feature of global health debate through much of its history. The eradication of smallpox in 

the 1960s and 70s is an example of a “vertical project” (as were the earlier, failed, attempts 

to eliminate malaria). On the other hand, the Alma-Ata declaration (WHO, 1978), with its 

stress on the role of primary healthcare, presents a holistic vision of health services and is 

often taken as a statement of the philosophy and principles of the horizontal approach. 

Hafner and Shiffman (2013) describe how the focus on HSS marks a renewed interest and 

engagement in horizontal approaches on the part of key actors, including international 

organisations such as the WHO, World Bank, and other international agencies and donors.

Evidence of the importance of HSS is provided by the wide variations in health system 

performance amongst Low and Middle Income Countries (LMICs). Balabanova et al. (2013) 

highlight six countries and regions – Bangladesh, Ethiopia, Kyrgyzstan, Thailand, and the 

Indian state of Tamil Nadu, which have achieved good health at low cost and stress the vital 

role of systems-level elements in delivering success in what can be extremely challenging 

environments. The achievements of these countries cannot be explained by increased 

funding alone and can to some extent be attributed to the strength of the health systems. 

Chowdhury et al. (2013) describe how Bangladesh, for example, has higher life expectancy 

and lower infant, under-5 and maternal mortality than its South Asian neighbours, India, 

Pakistan and Nepal, despite lower per head expenditure.

In this paper, we discuss a problem faced by donors who have a primary mandate to deliver 

vertical projects targeted at particular diseases, but at the same time, recognise the 

importance of (and seek to fund) HSS. Statements on the websites of the Global Fund, 

Global Alliance for Vaccines and Immunizations (GAVI) and President’s Emergency Plan 

for AIDS Relief (PEPFAR) indicate that many prominent donors meet this description. One 

problem such donors face is that of seeking an optimal balance of funding between disease 

specific programmes and HSS. Our paper attempts to address that question.

We organise our paper as follows. In Section 2, we provide an overview of the concept of 

HSS. In Section 3, we introduce our model through a motivating example. Section 4 presents 

our general model and shows how to efficiently solve a special case. In Section 5, we 

provide worked examples, based on the allocation of funds to infectious disease programmes 

in sub-Saharan Africa. Section 6 summarises our contributions and discusses implications 

for research and practice in this area.

2. Conceptual background

In this section to give the reader a clearer picture of what is captured in the concept of HSS, 

we present the WHO framework (WHO, 2007), which has played a key role in framing 

discussions of HSS. In this conception, the health system has six building blocks. These 

building blocks and the associated priorities are cited below.

1. Service delivery: packages; delivery models; infrastructure; management; safety 

and quality; demand for care;
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2. Health workforce: national workforce policies and investment plans; advocacy; 

norms, standards and data;

3. Information: facility and population based information and surveillance systems; 

global standards, tools;

4. Medical products, vaccines, and technologies: norms, standards, policies; reliable 

procurement; equitable access; quality;

5. Financing: national health financing policies; tools and data on health 

expenditures; costing

6. Leadership and governance: health sector policies; harmonization and alignment; 

oversight and regulation (WHO, 2007).

This framework has been used by Warren et al. (2013) to track Global Fund expenditures, 

and similar frameworks have been suggested and used for expenditure tracking by 

Shakarishvili et al. (2011) and Goeman et al. (2010). Such expenditure tracking is clearly 

informative but limited. For example, it is impossible to infer whether funds are or are not 

optimally allocated across the building blocks without further information about cost-

effectiveness. Note that a focus on HSS recognizes the importance of economies of scope 

that exist within any health system. In particular, resources such as service delivery 

platforms and information systems are shared by many interventions, and their nature and 

effectiveness will therefore be important determinants of cost structures within the system.

Investing in HSS presents a significant philosophical challenge from the point of view of 

economic appraisal. Of course, the difficulties of performing a sound economic analysis of 

the costs and benefits of a vertical project – delivering a course of TB treatment, or rolling 

out rotavirus vaccination – should not be underestimated. Obtaining reliable and useable 

empirical studies and transferring findings to a new setting with a different population, 

disease pattern, and service infrastructure requires considerable analytic capacity.

Nevertheless, appraisal of vertical projects falls squarely within the standard paradigm of 

economic analysis as it has developed over the last several years, and so can take place in a 

well developed theoretic framework according to clear standards (Drummond et al., 2005; 

Gold et al., 1996; Tan-Torres Edejer et al., 2003). In particular, because health benefits – 

whether measured in reduced number of infections, avoided mortality or gains in QALYs or 

decreases in DALYs – can be ascribed to a specific project, it is possible to assess their cost-

effectiveness. The well-established decision rule of cost-effectiveness is to rank 

interventions in decreasing order of their benefit to cost ratios and proceed down the list 

from most to least cost-effective until the budget is exhausted (Weinstein and Zeckhauser, 

1973; Weinstein, 2012).

Investments in HSS cannot be easily accommodated within this framework. Unlike funding 

vertical projects, funding HSS interventions such as policy development or information 

systems does not contribute to health directly, but is instead complementary to existing 

delivery systems. To take a concrete example, according to WHO (2007), in over 60 

countries, less than a quarter of deaths are recorded by vital registration systems. Of course, 

vital registration by itself does not save lives. However, in such countries, if a system of vital 
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registration existed, the ability of planners to target such medical resources as do exist on 

those in most needs may be massively improved. Yet such qualitative considerations do not 

help a decision maker with a mandate focused on (say) malaria control and elimination in 

deciding how much to invest in upgrading the system of vital registration.

Frenk (2010) has called for a “diagonal” approach to thinking about health systems, which 

recognises the complementarity between horizontal and vertical programmes. In this paper, 

we respond to that challenge. The way we think about this is as follows. We conceptualise 

the effect of a weak health system in terms of the gap between efficacy and effectiveness. In 

principle, one could estimate the effect which a treatment will have on a population by 

taking efficacy data from a laboratory study and multiplying up at the population level. In 

practice, of course, in all health systems, effectiveness in the field never attains the level of 

efficacy in the laboratory. In actual clinical practice, many of the population in need may not 

be able to secure access to medical care; they may be diagnosed wrongly or treated 

inappropriately; or they may refuse care, fail to comply with the treatment regime or 

terminate the course before completion – all of which may be consequences of a weak or 

failing health system. In other words, we conceptualise the impact that a weak health system 

has on the delivery of a vertical project as one of dilution of the health benefits.

3. Motivating example

In this section, we present a motivating example of a decision problem for a donor looking 

to allocate resources between different HIV prevention projects (with data based on Hutton 

et al., 2003). In Table 1 we present data for nine vertical projects on the total cost of full 

implementation, the number of infections averted and incremental cost-effectiveness ratios, 

ranked in descending order of cost-effectiveness.

Assuming the projects are independent, the standard cost effectiveness rule for approaching 

this problem is to proceed down the table funding interventions until the budget b is 

exhausted. For example, if the donor has $2m, the optimal solution is to implement 

interventions 1–4 completely and then intervention 5 fractionally. This rule is the optimal 

solution to an implied mathematical program, the linear knapsack problem, (LK).

In (LK), I is the index set of projects (typical member denoted i); the ci terms are the 

monetary costs, the vi terms are the health benefits, i.e. the number of infections averted and 

the xi are the decision variables, indicating the proportion of project i implemented.

However, let us consider a variation on this problem (HV1) where the donor may also spend 

its money on health system strengthening as well as on vertical projects.
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Compared to the previous decision problem, this program introduces a new decision variable 

y, representing the chosen expenditure on HSS. The effect of spending $y on health system 

strengthening is to scale the effectiveness of the HIV prevention projects by a dilution factor 

of yγ. For example in this context, health system strengthening may take the form of 

destigmatising HIV among health service workers, resulting in more effectively delivered 

interventions across the board. We enforce upper (P) and lower (p) bounds on the amount of 

expenditure that goes to health system strengthening. In practice, there may be reasons for 

limits on y, for example, policy limits set by a donor on the amount of budget which they are 

prepared to invest in HSS.

The chosen parameters γ > 0 allows us to model diminishing returns to HSS, as illustrated in 

Fig. 1 for three different values of γ, namely γ = 0.25, γ = 0.5, and γ = 0.75. For these 

values of γ the function is concave, reflecting that the first incremental dollar has greater 

impact on improving the health system than the last incremental dollar. As γ increases 

towards 1, the function becomes progressively more linear. A value of γ > 1 implies 

increasing returns to HSS.

Intuitively, what is the solution to this mathematical program? For a given value of y = y0, 

the answer seems clear: we have a remaining budget of b − y0, and we should prioritise this 

budget by ranking the projects in descending order of cost-effectiveness and spending until 

we run out of money. The problem is that we do not know the optimal value of y. There is 

nevertheless a relatively simple way to identify an optimal solution, which is as follows.

1. Set y0 = p, rank the projects by cost-effectiveness, and proceed down the list until 

the residual budget b − y0 is exhausted. Calculate the value of this solution.

2. Set y0 = P, rank the projects by cost-effectiveness, and proceed down the list 

until the residual budget b − y0 is exhausted. Calculate the value of this solution.

3. Consider implementing project 1 completely and devote the residual budget to 

health systems strengthening; projects 1 and 2 completely and devote the residual 

budget to health systems strengthening; projects 1 to 3 completely and devote the 

residual budget to health systems strengthening; and so on. Eliminate infeasible 

solutions identified by this procedure (e.g. those in which the residual budget is 

negative) and calculate the value of the solutions which remain.

4. Consider implementing project 1 fractionally and devote the residual budget to 

health systems strengthening; project 1 completely and project 2 fractionally and 

devote the residual budget to health systems strengthening; projects 1 and 2 

completely and project 3 fractionally and devote the residual budget to health 
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systems strengthening; and so on. Eliminate infeasible solutions identified by 

this procedure and calculate the value of the solutions which remain.

5. Compare the values of the solutions identified by all the above four procedures 

and choose the one with the highest value.

The algorithm as outlined above is incompletely specified, as in step 4 there are multiple 

(actually infinite) possible fractions which can be chosen at each stage. In the ensuing 

technical discussion, we show how to specify this fraction so that we can guarantee that this 

algorithm does indeed return the optimal solution to problem (HV1).

4. Towards a more general model

4.1. The model (HV)

In this section, we develop a mathematical model that seeks to reflect the search for an 

optimal balance between vertical and horizontal programmes. By introducing more than one 

potential target of HSS, this model generalises the model of the previous section and 

provides a framework for analysing and discussing it.

In contrast to (HV1), we introduce the additional requirement that the projects can be 

clustered into programmes that rely on a common infrastructure, which may comprise 

factors such as workforce, capital, or information systems. These are indexed as j, so that we 

are considering a set of projects, clustered within programmes, which are referenced as (i, j). 
The important observation is that all projects i within a programme j benefit from the extent 

and quality of the common infrastructure, which can be thought of as the health system for 

that programme j. Thus, an investment in strengthening the programmes system will benefit 

all projects within the programme, without being assigned specifically to any one project.

As discussed in the previous section, the conventional decision maker’s problem is to decide 

which projects to fund. However, our reformulation extends the scope of decision making to 

include a choice of how much to invest in each programme’s infrastructure, in other words, 

strengthening elements of its health system. Such strengthening imposes costs, but also 

yields benefits, in the form of improved effectiveness of a range of projects. The model 

seeks an optimal balance between such strengthening and the direct expenditure on 

individual projects, subject to an overall budget constraint.

Our model requires the same estimates of project costs and benefits as conventional cost-

effectiveness analysis. However, while CEA conventionally considers projects 

independently, our key additional information requirement is an estimate of the extent to 

which an investment in health system j will improve the effectiveness of each of the projects 

(i, j) within that programme. This allows us to model the impact of the health system on 

projects. Such information is traditionally not available. However, we argue that estimates of 

such impact are essential if informed decisions about health system strengthening are to be 

made.

Generalising the one-dimensional concept of the health system discussed in the previous 

section, our model is as follows:
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The interpretation of this model is as follows:

• J = {1, …, m} is an index set of programmes of projects, clustered according to 

whether they share the same underlying delivery system (for example countries 

may have highly integrated programmes for particular diseases which are 

separate from the rest of the healthcare system; the same vaccination programme 

may contain diphtheria, pertussis and measles projects; or in health systems with 

a strong regional tier, it may make sense to cluster disease projects by region).

• I(j) = {1, …, nj} are a family of index sets of health projects at the population 

level within each programme j (e.g. a project to provide ACTs for malaria, a 

project to provide ART for HIV).

• yj, j ∈ J are decision variables representing investment in health system 

strengthening within each programme j.

• The functions , j ∈ J model the effectiveness of the health system for 

programme j given an investment of yj. This is a weighted power term: wj is a 

scaling factor and γ is an exponent. In terms of interpretation, wj may 

incorporate two elements: one is a normalisation to ensure that  is less than 

1 and hence can still be interpreted as a dilution of health benefits, and another is 

a weighting term which reflects the relative priority given to the programme j by 

the funder.

• xi,j, j ∈ J, i ∈ I(j) are decision variables, indicating the extent to which the project 

i ∈ I(j) is funded with 0 indicating no funding and 1 indicating full funding.

• ci,j, j ∈ J, i ∈ I(j) are (positive) coefficients representing the costs of the projects 

in the current planning period assuming full implementation. B is the overall 

budget.

• vi,j, j ∈ J, i ∈ I(j) are (positive) coefficients representing the health benefits of the 

projects assuming full implementation and perfect operating conditions.

•
B represents a monetary budget. We assume that  to ensure feasibility. 

We refer to  as the “discretionary budget”.

This model makes the following major assumptions.

• Vertical projects are characterised by constant returns to scale for a given 
level of HSS. Investment in HSS exhibits varying returns to scale as captured by 

Morton et al. Page 7

J Health Econ. Author manuscript; available in PMC 2017 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the power function. This assumption is less strong than it might appear in that it 

is possible to break down projects into arbitrarily fine pieces (rather than 

“bednets in Mozambique”, one could have “bednets in Cabo Delgado”, “bednets 

in Nampula”, “bednets in Zambezia” and so on, or even down into the county 

level) – assuming that the data will allow such fine discrimination.

• Vertical projects are independent for a given level of HSS. Vertical projects 

are assumed to have been selected from amongst mutually exclusive alternatives 

in a “competing choice” framework. The vertical projects can be seen as 

analogous to Weinstein’s shopping spree paradigm – where a decision maker 

with a fixed budget must choose to allocate funds amongst a set of interventions 

in a way that maximises health gains. Independence means that for a given level 

of HSS, there are well-defined costs and benefits which can be associated with a 

project, irrespective of what other projects are implemented. Failures of mutual 

exclusivity can be handled by augmenting the model with logical constraints 

which enforce relations of exclusion or precedence between alternatives for 

vertical projects. Failure of independence can be handled by augmenting the 

existing formulation by including “dummy” projects to represent the positive 

synergies or negative dis-synergies, and adding logical constraints to the model 

to enforce that if two projects are chosen, then their interaction is chosen also.

• Costs can be disaggregated into project costs and system costs. This is a 

somewhat different cost definition to that usually used in applications, where the 

project costs used are often fully loaded unit costs. Fortunately over the last few 

years, costing data in global health is becoming better and more consistent across 

countries; thanks to greater use of tools such as the One health tool endorsed by 

the World Health Organization (WHO, 2015).

• Costs are assumed to fall within a single time period. The time period is 

meant to be representative of national strategic plans of countries or funding 

agencies, typically around 3 to 5 years over which countries receive a fixed 

budget for implementation of vertical projects and HSS. The intertemporal trade-

offs and associated uncertainties of irreversible investments that are characteristic 

of HSS expenditures and some vertical projects (such as life-long antiretroviral 

treatment for HIV positive individuals) are not explicitly modelled. However, the 

current assumption is often representative of the reality faced by either donors or 

countries who cannot make provision for financing for more than a few years due 

to uncertain revenue streams and have to make implementation decisions without 

explicit consideration of future uncertainties.

We make the following minor assumptions, which we label so we can refer to them later.

Assumption 1. Within each programme jo, projects are indexed in order of decreasing 
vi,jo/ci,jo.

Assumption 2. Within a given programme jo, all projects i differ in their cost-
effectiveness ratio vi,jo/ci,jo.

Assumption 3.
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Assumption 4.

Assumption 5.

Assumptions 1–5 are not material assumptions and are made for presentation and 

computational convenience. In the case of Assumption 1, we can label the projects how we 

like. In the case of Assumption 2, if we have more than one project with identical cost 

effectiveness ratio we can bundle these projects together in a single project. Assumption 3 

reflects the notion that it is necessary to spend something (at least one cent) on health 

systems before delivering vertical projects. Assumption 4 requires that we do not have 

enough money to implement all the vertical projects. Assumption 5 requires that investing in 

the health system has a positive impact on health system performance, but still admits 

considerable generality, e.g. it does not specify whether the function which models the 

efficacy of a given funding level is convex or concave.

The model (HV) thus captures the notion that the total health benefit is composed of health 

benefits from multiple health projects grouped in programmes. For each of these 

programmes, the health benefits arise from the combination of individual funded projects 

and the “health systems strengthening” investments in the programme as a whole. If no 

interventions are funded in some particular programme j, then there will be no health 

benefits, irrespective of whether there is investment in the health system: there is no point 

investing extensively in building a network of community health workers for finding TB 

cases if there are no funds for TB medication after cases are identified.

Math programming models have enjoyed some popularity in health economics in recent 

years as a way of providing a framework to discuss issues such as concerns about budgets, 

divisibility, and equity (Anand, 2003; Birch and Gafni, 1992; Birch and Gafni, 1993; Cleary 

et al., 2010; Earnshaw and Dennett, 2003; Epstein et al., 2007; Johannesson and Weinstein, 

1993; Morton, 2014; Stinnett and Paltiel, 1996). The model (HV) is a quite different and 

specifically more complex model than any we have seen in the literature hitherto: as shown 

in Appendix A, it has a highly nonlinear and in fact nonconvex objective function. Our 

model is nevertheless developed according to the principles underlying the standard cost-

effectiveness model in widespread use in health economics. The intention is to demonstrate 

the modelling implications of incorporating HSS into that model, and the feasibility of 

deriving optimal solutions.

While HV does echo some aspects of the Cobb–Douglas production function, it is 

mathematically more complicated (the Cobb–Douglas function is a product of powers; the 
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function in HV is a sum of products, one of which is a power, but the other is a sum). In 

terms of economic interpretation, our model can be seen as capturing the concept of 

economies of scope (Panzar and Willig, 1981). This fundamental economic concept has 

been surprisingly neglected in health economics. Unlike the existing health economic 

literature on economies of scope (see Wholey et al., 1996 and Preya and Pink, 2006), we 

take a primarily theoretic rather than empirically driven approach in this paper. In Panzar 

and Willigs formulation, the concept is expressed through superadditivity of the cost 

function: the cost of saving x lives through an optimal mix of TB treatment and malaria 

treatment saving y lives from TB and z lives from malaria is less than the sum of the costs of 

saving y lives from TB plus the costs of saving z lives from malaria (see also Morris et al., 

2007). In our analysis, we model the complementarity between different healthcare projects 

arising from the shared health system which is necessary for the delivery of both projects. 

This complementarity can be easily seen to imply the superaddivity of the cost function as 

described by Panzar and Willig.

Our problem is also reminiscent of certain models in the production optimisation literature 

where (in terms of the context of this model), there is a fixed charge (e.g. due to 

administrative overheads) associated with operating a disease programme, irrespective of 

what projects are implemented under that programme. In this setting, one has to decide both 

which programme to set up (and hence which fixed charges are incurred) and what is 

implemented under each programme. The structure of such models is well-understood 

(Hooker, 2012). However, these models are not really relevant in modelling investment in 

health system strengthening. Such investment is best understood as an investment in quality 

of the existing programmes of delivery (e.g. investing in education about the transmission 

mode of a disease may result in greater effectiveness of prevention activities across the 

board) rather than a precondition for investment in vertical programmes to take place.

Despite the complexity of this program (HV), it is possible to gain some insights into the 

structure of the optimal solution. Full details of the model and the proof of the optimization 

conditions are given in Appendix B. In particular, Theorem 6 in the appendix indicates that, 

at the optimum, there is within each programme a single critical project that is implemented 

wholly or in part. Projects with higher cost-effectiveness ratios than the critical project are 

rejected while projects with lower cost-effectiveness ratios are implemented in full. Thus, 

despite the additional complexity of our model, within each programme the core insight of 

Weinstein and Zeckhauser (1973) still holds – there is a unique “critical” intervention that 

separates the funded and unfunded interventions.

5. Examples

5.1. Preventing HIV infections: an algorithmic solution of (HV1)

The analysis of Appendix B also suggests an algorithmic solution to (HV1), the version of 

(HV) with just a single health system programme, as has already been sketched in Section 3. 

In this section, we present an example in which the optimal solution can be computed in this 

manner. Theorem 9 presents the technical details of calculating the optimal solution. The 

approach is summarized in the box Algorithm 5.1, yielding a set of ‘candidate solutions’ to 

the optimization problem. Those that do not satisfy the constraints on xi and y are deleted, 
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and the remainder are chosen so as to maximise the value function. Note that computation 

time for the algorithm is a function of n the number of projects, so the algorithm is capable 

of yielding an exact optimal solution, even when n is large. Optimizing the general problem 

(HV) requires more complex solution concepts, and therefore we resort to a generic 

optimization routine, as discussed in the next section.

Here, we present a worked example of (HV1) as a decision problem for a donor looking to 

allocate resources between different HIV prevention projects (with data based on Hutton et 

al., 2003). We use Table 1 where we presented data for nine projects on total cost of full 

implementation, the number of infections averted, and the incremental cost-effectiveness 

ratios and ranked the projects in descending order of cost-effectiveness. In Table 2, we 

present values for the other inputs in our worked example.

Algorithm 5.1 can be applied in the case of a single programme (disease) to recover the 

optimal solution. In the online supplementary materials, we demonstrate an application of 

the algorithm using data presented in the tables above. We begin by applying the four 

procedures presented in Algorithm 1 to calculate all candidates for the optimal solution (y*, 

). Assuming a budget of approximately $2.8 million and a value of 0.5 for γ (later in this 

section we discuss sensitivity analysis around γ).

Algorithm 1

Find candidate solutions.

1: procedure A. Find y minimal candidate solution

2:   for i ∈ I do

3:

     

4:   ℐ ← 0

5:

  while  do

6:

     

7:     ℐ ← ℐ + 1

8:

   

9: procedure B. Find y maximal candidate solution

10:   for i ∈ I do

11:

     

12:   ℐ ← 0

13:

  while  do
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14:

     

15:     ℐ ← ℐ + 1

16:

   

17: procedure C. Find whole number candidate solutions

18:   for i″ ∈ I do

19:     for i′ ∈ I do

20:       if i′ ≤ i″ then

21:
         

22:       else

23:
         

     

24: procedure D. Find fractional candidate solutions

25:   for i″ ∈ I do

26:     for i′ ∈ I do

27:       if i′ ≤ i″ − 1 then

28:

         

29:       if i′ ≥ i″ + 1 then

30:

         

31:

     

32:

     

Table 3 gives the level of expenditure in each of the projects in our optimal solution. In this 

example, the donor will spend approximately $1.46 million on health system strengthening 

and choose to implement interventions in order of cost-effectiveness until the remainder of 

the budget is spent. Following Theorem 6 in Appendix B, there is only one intervention 

(mass media and social marketing of condoms) in which there is fractional implementation 

and projects with higher vi/ci are fully implemented (vi′/ci′ > vi*/ci*) while projects with 

lower values receive no spending (vi*/ci* > vi″/ci″).

In our example, we model the maximum output from spending in HSS through the γ 
parameter. γ influences the shape of the production function for HSS by altering its 
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concavity. The health economics literature offers little evidence or insight on what the 

production function for HSS spending might look like. In our worked example above, we 

chose an arbitrary value of 0.5 for γ.

For illustration purposes, we simulate changes in the optimal solution and the expenditure on 

HSS by varying γ between 0.2 and 0.8. The results are presented in Figs. 2 and 3. Fig. 2 

shows the optimal level of health system strengthening as a function of γ. Fig. 3 shows the 

optimal level of spending on each of the projects for different values of γ. Fig. 2 clearly 

shows nondecreasing expenditure on HSS as γ rises. Two things stand out in this graph. The 

first is the upper bound for expenditure on HSS occurs at γ = 0.5. In principle, the optimal 

level of expenditure on HSS will be either the level above which it is no longer efficient for a 

donor to increase expenditure in HSS for a given level of gamma or the upper bound of y, 

i.e. P, whichever is reached first. Second, at γ = 0.3, we see a plateau in the function values. 

Investigating this further in Fig. 3 shows that at this point peer group education for high risk 

men drops out of the optimal solution. In our simulation as γ increases, the optimal solution 

involves increasing levels of HSS while cutting spending on the least cost-effective projects.

Our example highlights the importance of understanding the returns to spending on HSS and 

its effectiveness. Our data allow us to identify specific patterns for expenditure on HIV 

prevention and HSS, however we emphasize that the shape of the investment function for 

HSS is specific to the data we have used and the relationship between the optimal solution 

and γ might be different in other cases.

5.2. Balancing expenditures on HIV, TB, and malaria

In this section, we present a worked example of (HV) for a donor who wishes to support 

HIV, TB, and malaria vertical projects and also in HSS for these three diseases. (This is 

exactly the situation faced by, for example, the Global Fund). The data for our example is 

given in Table 4. In Table 5, we present two sets of input parameters (default and extreme) 

which we use in our example below. The data for vertical projects is notional but realistic, 

based on our consulting work (Thomas et al., 2013). The handling of the effects of HSS on 

outcomes is necessarily somewhat more sketchy, considering the lack of relevant 

quantitative evidence: in our model, for each of the three diseases, the funder has the 

opportunity to spend up to $10m in that disease and such spending will double the 

effectiveness of the vertical projects for that disease.

As Algorithm 1 only solves (HV1) rather than the more general (HV), we use the MATLAB 

nonlinear optimisation algorithm MultiStart (Ugray et al., 2007). We conducted preliminary 

testing which revealed that MultiStart performed consistently as well as or better than other 

nonlinear optimisation algorithms available for the MATLAB environment. In particular, 

optimisation algorithms that rely on techniques suitable (and indeed efficient) for convex 

problems such as those based on hill-climbing principles do not perform well on this 

problem due to the significant nonconvexities of the objective function. Such algorithms 

typically become trapped in a local optimum and give a misleading picture of the optimal 

solution. Our MATLAB code is provided in the supplementary online material to this paper.
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To give a sense of the performance of the model, we vary the discretionary budget between 0 

and $110m and solve the model for increments of $2m. We track the optimal horizontal and 

vertical spending for the default parameter values in Fig. 4. Data points associated with HIV 

are marked with a square, TB with a triangle, and malaria with a diamond. The marker is 

empty for horizontal HSS and solid for vertical projects. The interpretation here is: first the 

decision maker should first fund ACTs (a malaria vertical project); then malaria health 

systems strengthening; then HIV testing and around the same time in IPT for malaria; once a 

testing project is in place, fund HIV HSS alongside scaling up testing; then around the 

$60m–$70m mark the decision maker should start funding the TB interventions, TB HSS 

and finally ARTs for HIV.

The graph presented in Fig. 4 shows expenditure on both horizontal and vertical 

programmes increasing as the budget increases. Because of the nonconvexity in the objective 

function, this behaviour, although intuitively sensible, will not always be exhibited. Consider 

the following example, with data as shown in the right hand column of Table 5 (the data are 

contrived to make a theoretical point about model behaviour – there is no suggestion that the 

following represents an actual policy recommendation). In this set up, being able to fund at 

scale in a programme is critically important, because by funding HSS we can radically scale 

up the effectiveness of a programme. When we run the algorithm for discretionary budgets 

between $0 and $350m we get results as shown in Fig. 5.

The logic of the results is as follows: as long as the decision maker has a limited budget, she 

should fund malaria projects, because she can get health gains without a large outlay. But 

once the budget reaches about $20m, it is optimal to switch some expenditure from malaria 

to HIV, which is where the big gains are in this model (there are more DALYs to be gained 

from the vertical projects than for any other disease category). Intuitively, at this point she 

has the funds to build an HIV organisation which will have a transformative effect on a 

disease that has a massive associated burden of illness. Then, eventually at very high budget 

levels, the demand for HIV services is exhausted (since the entire HIV positive population is 

on ART) and it is optimal to start funding malaria again. Funding TB services is not optimal 

for any budget level in this model in the range considered here.

6. Conclusion

In this paper, we have shown how economic analysis of horizontal programmes – of Health 

Systems Strengthening – can be brought within the scope of analysis using principles that 

are consistent with standard cost-effectiveness analysis. We show that our models are 

computationally tractable and can provide insights that may not be immediately obvious. 

They illustrate the complexity of the task of prioritising HSS funding and underline that the 

choice of best distribution of expenditure for a given country is likely to be highly context 

dependent. Also in our formulation of the problem, the cost effectiveness ordering of 

projects is invariant with respect to global rescaling of assessments of benefits to reflect 

health system frailty. Our paper can be seen as an exploration of the neglected economic 

concept of economies of scope to better understand a key policy concept in the global health 

setting.
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All health systems are different, and have different frailties. In some health systems, the 

priority should be on providing training for community health workers, in others on 

implementing hospital regulation, in others on providing data and analysis tools for local 

managers. We believe that the functional relationship between monetary investment and the 

strength of the health system will always have to be judgmentally assessed by local planners 

and policy makers based on their understanding of the particularities of their health system. 

However, we also believe that their task would be massively aided if there were a body of 

high quality and comparable empirical studies that show how particular spending on health 

systems have has improved the realised health gains from vertical projects. If one interprets 

the multiplicative rescaling of health benefits in our model as an efficacy – effectiveness gap, 

as we propose in the introduction, this suggests a possible approach to the empirical 

question: by calculating the ratio of health benefits from field studies and from clinical trials 

of the same interventions one could in principle assess the extent to which health system 

frailties (broadly conceived) dilute the maximum clinically realisable benefits.

In a recent book chapter (2012),Weinstein has reminded us that the linear knapsack problem, 

on which the models of this paper are based, requires restrictive assumptions, in particular 

on the absence of interdependencies between projects and multiple resource constraints, and 

the divisibility of projects. The models of the current paper suffer from some of the same 

limitations. But as explained by Weinstein (2012), some of these restrictions can be relaxed 

without abandoning the framework by redefining the vertical projects as combinations of 

projects or as different levels of individual vertical projects. Indeed, it is rather easy to 

formulate and (with today’s optimisation solvers) computationally solve still more general 

models which relax even the restrictions which remain. However, the models we present in 

the current paper are simple enough to have relatively easily characterised solutions, but also 

sufficiently complex to exhibit surprising and counterintuitive behaviour.

These limitations aside, we hope that our current paper will help focus and direct further 

empirical research in this area. Although as we note above, there are to our knowledge no 

current estimates to the parameter γ in our model, yet knowing this seems critical for 

making sensible decisions. Fortunately the availability, comparability, and quality of data in 

global health has been steadily improving over recent years, both in terms of relevant 

outcome measures (such as treatment completion rates) and in terms of detailed costings. We 

hope that it should soon be possible to make first-cut estimates of γ using standard 

econometric techniques for estimating productivity and growth.

We also consider that there are several interesting theoretic issues which could be usefully 

studied within an expanded version of the framework presented in this paper. For example, 

expenditure on HSS is a way of building sustainability into the health system: many of the 

assets that are created through horizontal programmes will persist over time. In a country 

that is making rapid (but hard-to-predict) progress through the development cycle, there is a 

real question about how best to frame the intertemporal tradeoff and handle the associated 

uncertainties. Another interesting and related issue is the alignment or non-alignment of 

donor and country objectives, particularly in the case where these two parties have different 

time preferences. Further, in a multi-donor environment, there is uncertainty about who 

should be the donor providing the funding for HSS – one can easily envisage a situation 

Morton et al. Page 15

J Health Econ. Author manuscript; available in PMC 2017 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where a stand-off between donors may lead to underinvestment in HSS. However, 

addressing these questions would take us beyond the scope of this paper, and we leave them 

open for future investigators in this area.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

A Nonconvexity of HV

To see why HV is nonconvex, consider the following specialisation (HVQ).

In this new formulation (HVQ), γ is set to 1: thus each currency unit that is allocated to HSS 

for programme j within the prescribed limits improves the effectiveness of the health system 

by wj. (HVQ) is a quadratic program but its objective function is nonconcave, and so the 

Karush–Kuhn–Tucker conditions are necessary but not sufficient for a feasible point to be 

optimal. To see this, consider Example A.1.

Example A.1

Recall that for a function F(z) to be concave it must be the case that F (zα) ≥ αF (z′) + (1 − 

α)F (z″) where zα = αz′ + (1 − α)z″ for all points z′ and z″ in the domain of F and α ∈ 
[0,1]. Consider an instance of (HVQ) with J = {1} and I (1) = {1, 2} and w1 = v1,1 = v2,1 = 

1. Consider the point defined by : the value of the objective 

function of (HVQ) for this point is 1 × 1/10 + 1 × 2/10 = 3/10. Consider the point defined by 
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: the value of the objective function of (HVQ) for this point is 2 

× 4/10 + 2 × 3/10 = 14/10. The average of the objective function values of these two points 

is thus 17/20. However, , and so the value of the objective 

function of (HVQ) for this point is 3/2 × 5/20 + 3/2 × 5/20 = 15/20. Since 15/2 < 17/2, the 

objective function of (HVQ) cannot be concave.

B Technical Appendix

Theorem 6

(i) For each jo ∈ J, there is at most one ij
o
 ∈ each I (jo): xij

o
,jo ∈ (0, 1) (i.e. at most one 

intervention is fractionally implemented) – all other  either = 0 or = 1. Moreover, (ii) 

vi′, jo /ci′, jo > vi″, jo /ci″, jo ∀i′ ∈ Ī (jo) and ∀i″ ∈ I̲ (jo) and if , then 

vi′, jo /ci′, jo > vij
o
,jo / ciij

o
,jo > vi″, jo / ci″, jo ∀i′ ∈ Ī (jo) and ∀i″ ∈ I̲ (jo).

We demonstrate this theorem through the proof of two Lemmata. To state the first Lemma, 

we introduce a formulation of a subproblem of (HV), which is the restriction of (HV) to a 

single programme jo. Note that we write this program as being parametric in the budget 

constraint b.

Now we are able to state our first Lemma.

Lemma 7

Given  is an optimal solution to (HV), for each jo there exists a bjo such that 

 is an optimal solution of (HVjo(bjo)).

Proof of Lemma 7

For given jo let b* be the value of . We claim that b* is the desired bjo of 

the statement of Lemma. To demonstrate this, suppose the contrary. In this case, there must 

be a solution  which is feasible with respect to the constraints of (HVjo(b*)) such 

that . But then, we can define a new 

solution to the constraints of (HV) called  which has  and  as defined above 

and  and . This solution is guaranteed 

feasible in (HV) but must have strictly higher objective function value that that associated 

with the solution , which contradicts the assumed optimality of . Hence the 

claim is proved.
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To formulate our second Lemma, we will find it useful to rewrite (HVjo (b)) as (HV1) to 

eliminate the now-redundant j subscript. This makes it less cumbersome to present the proof 

of the Lemma. We also take this opportunity to separate out the constraints representing the 

bounds on y and associate dual variables with the constraints.

(HV1) modifies (HV) by simply dropping the j subscripts (we presume it is not necessary to 

explain the notation again).

Analogously to (HV) we denote the values of an optimal solutions of (HV1) as (y*, ) and 

define  and .

Lemma 8

(i) There is at most one i*:  (i.e. at most one intervention which is fractionally 

implemented) – all other  either = 0 or = 1. Moreover, (ii) vi′ / ci′ > vi″ / ci″ ∀i′ ∈ Ī and 

∀i″ ∈ I̲ and if , then vi′ / ci′ > vi* / ci* > vi″ / ci″.

Proof of Lemma 8

The Lagrangean of problem (HV1) is as follows: 

.

The Karush–Kuhn–Tucker conditions for a local maximum are as follows (Jensen and Bard, 

2003):

(1)

(2)

(3)
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(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

with all of xi, y, λ, θ, Φ, μi non-negative ∀i ∈ I. A useful way to make these conditions 

easier to interpret is to rewrite constraints (1) to (6) using non-negative slack variables υ, χi, 
σ, Π, π, ζi, respectively, which case we get the following.

(1’)
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(2’)

(3’)

(4’)

(5’)

(6’)

(7’)

(8’)

(9’)

(10’)

(11’)

(12’)

with all of xi, y, λ, θ, Θ, μi, υ, χi, σ, Π, π, ζi non-negative ∀i ∈ I.

Suppose in contradiction to part (i) of the Lemma, there were two projects i′ and i″ for 

which xi′ and ζi′ (resp. xi″ and ζi″) both ≠ 0. If there were such projects, then χi′ = μi′ = 
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χi″ = μi″ = 0 (from (8’) and (12’)). But in this case, it follows from (2’) that , 

and this cannot be the case (as it contradicts Assumption 2). So there it is indeed the case 

that at optimality there is only one  which is part (i) of the Lemma.

Forpart (ii)of the Lemma, observe that ∀i′ ∈ Ī, (8’) gives us χi′ = 0 and (2’) gives us wyγ 

vi′ − ci′ λ − μi′ = 0 ⇒ wyγ vi′ − ci′ λ ≥ 0 ⇒ vi′ / ci′ ≥ λ / wyγ. Similarly ∀i″ ∈ I̲, (12’) 

gives us μi″ = 0 and (2’) gives us wyγ vi″ − ci″ λ + χi″ = 0 ⇒ wyγ vi″ − ci″ λ ≤ 0 ⇒ vi″ / 
ci″ ≤ λ/wyγ. Hence, vi′ / ci′ ≥ vi″ / ci″ and Assumption 2 ensure that this inequality is strict. 

This gives us part (ii) of the Lemma.

The proof of Theorem 6 follows from Lemmata 7 and 8 in a straightforward way.

Theorem 9

The optimal solution can be identified by checking whether each of the candidate solutions 

identified by Algorithm 1 satisfies the constraints on the decision variables 0 ≤ xi ≤ 1 and p ≤ 

y ≤ P, deleting those which do not, and of the remainder selecting the candidate(s) which 

maximise(s) .

Now we make clear the utility of Algorithm 1. Recall that since we have a nonconvex 

program, the KKT conditions are necessary but not sufficient for optimality. We refer to 

such solutions as “candidate solutions” as they are candidates for optimality. We claim that 

the solutions identified by Algorithm 1 include all candidate solutions. We begin by 

recalling Assumption 1 (that projects are indexed in order of decreasing vi / ci) and making a 

couple of observations.

Observation 10

Assumption 4 in conjunction with constraint (3’) ensures that σ = 0 (otherwise we could 

reach a level of expenditure less than the budget constraint but with respect to which no 

further expenditure would yield additional value).

Observation 11

Assumption 3 in conjunction with constraint (7′) implies that υ = 0.

We now consider four cases.

Case 1: The candidate solution where y = p. Since we know the value of y (by 

assumption), σ (by Observation 10), constraint (3’) gives us an equality budget 

constraint on the xis. But Lemma 8 part (ii) also tells us that the xis of higher 

numbered projects cannot be made non-zero until the xis of all lower numbered 

projects have been made 1. Denote as io the minimal element of 

. Every project from 1 to io−1 must be implemented at 

optimum, or projects will have been chosen out of sequence and Lemma 8 will have 

been contradicted. No project with index higher than io can be implemented, 
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otherwise the budget constraint would be broken; and io itself must be implemented 

fractionally in order that the budget constraint it met. The candidate solution 

characterised in this way is computed by procedure A.

Case 2: The candidate solution where y = P. By reasoning here exactly parallel to 

that of the previous case, procedure B. yields this candidate solution.

Case 3: The candidate solutions where y ∈ (p, P) and ∄i ∈ I : xi ∈ (0, 1). By Lemma 

8 part (ii) the candidate solutions satisfying this condition are those where the lower 

indexed projects are 1 and the higher indexed projects are made 0. Constraint (3′) 

gives us the value of y for each of the candidate solutions which can be characterised 

in this way. Procedure C explicitly enumerates these solutions and computes the 

corresponding value of y.

Case 4: y ∈ (p, P) and ∃i ∈ I : xi ∈ (0, 1). Again by Lemma 8 part (ii) the candidate 

solutions are those where the projects indexed lower than the critical project are 1 and 

those indexed higher are 0. The problem here is we have two unknowns: we do not 

know the value of decision variable associated with the critical project, and we do not 

know the value of y. Fortunately, we are able to form two equations in these two 

unknowns. Call the index of the critical project i*. Now, because π and Π are both 

nonzero, (10’) and (11’) require that θ and Θ are zero, which means that (1’) gives us 

equation  and since xi* ∈ (0, 1), (8”) and (12”) give us μi* and 

χi* = 0, hence yγ vi*/ci* = λ. Substituting out λ gives us 

 and rearranging gives us 

. This is our first equation in y and xi*. The budget 

constraint (3’) gives us our second equation. According to this constraint 

 (using Observation 10 again). Eliminating the ci*xi* terms, 

we can get  and we can then solve 

the budget constraint equation for the value of xi*. Procedure D supposes that each 

project in turn is the critical project and then proceeds to compute corresponding 

values of y and xi*.

Since the KKT conditions are necessary for optimality (though not sufficient) and the above 

four cases are exhaustive, the solutions identified above include all solutions satisfying the 

KKT conditions and making the remaining feasibility checks against p ≤ y ≤ P and 

identifying the highest valued solution from the list remaining will produce an optimal 

solution to problem (HV1) (since the budget constraint is satisfied by construction).
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Fig. 1. 
Dilution of health benefits as a function of y for three different values of γ.
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Fig. 2. 
Investment in HSS as function of γ.
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Fig. 3. 
Optimal solutions by gamma.
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Fig. 4. 
Investment in different diseases for different budget levels with default parameters.
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Fig. 5. 
Funding in different diseases for different budget levels with extreme parameters.
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Table 1

Data for HIV prevention projects.

Intervention Total
cost (US$)

Number of
infections

averted

Incremental
cost-effectiveness
ratio

1 2 3

1. Peer group education – sex workers 39,575 2473 0.0625

2. Safe blood transfusion 50,000 595 0.0119

3. Peer group education – young people 423,500 799 0.00189

4. Mass media and social marketing of condoms 1,300,000 2434 0.00187

5. Peer group education – high-risk men 500,000 862 0.0017

6. Targeted AZT to pregnant women 300,000 319 0.0011

7. Voluntary counselling and testing 310,000 261 0.0008

8. Targeted advice for breast feeding 150,000 62 0.00041

9. Targeted treatment of STIs 560,000 204 0.00036
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Table 2

HV1 Inputs.

Value

b $2,816,537.5

γ 0.5

p $250,000

P $1,500,000
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Table 3

Optimal solution for HV1.

Peer group education – sex workers 1

Safe blood transfusion 1

Peer group education – young people 1

Mass media and social marketing of condoms 0.65

Peer group education – high-risk men 0

Targeted AZT to pregnant women 0

Voluntary counselling and testing 0

Targeted advice for breast feeding 0

Targeted treatment of STIs 0
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Table 5

HVQ inputs.

Default parameters Extreme parameters

γ 1 1

B $0 to $108,000,000 $0 to $336,000,000

p HIV: $10,000,000 HIV:$ 0

TB: $10,000,000 TB: $ 0

Malaria $10,000,000 Malaria: $ 0

P HIV: $20,000,000 HIV: $ 56,880,000

TB: $20,000,000 TB: $ 3,451,340

Malaria: $20,000,000 Malaria: $ 2,086,700

w HIV: 0.6 HIV: 0.6

TB: 0.7 TB: 0.7

Malaria: 0.5 Malaria: 0.5

J Health Econ. Author manuscript; available in PMC 2017 October 19.


	Abstract
	1. Introduction
	2. Conceptual background
	3. Motivating example
	4. Towards a more general model
	4.1. The model (HV)

	5. Examples
	5.1. Preventing HIV infections: an algorithmic solution of (HV1)

	Algorithm 1
	5.2. Balancing expenditures on HIV, TB, and malaria

	6. Conclusion
	Appendix
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

