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Redox Signaling in Diabetic Wound Healing Regulates
Extracellular Matrix Deposition
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Abstract

Significance: Impaired wound healing is a major complication of diabetes, and can lead to development of chronic
foot ulcers in a significant number of patients. Despite the danger posed by poor healing, very few specific
therapies exist, leaving patients at risk of hospitalization, amputation, and further decline in overall health.
Recent Advances: Redox signaling is a key regulator of wound healing, especially through its influence on the
extracellular matrix (ECM). Normal redox signaling is disrupted in diabetes leading to several pathological
mechanisms that alter the balance between reactive oxygen species (ROS) generation and scavenging. Im-
portantly, pathological oxidative stress can alter ECM structure and function.
Critical Issues: There is limited understanding of the specific role of altered redox signaling in the diabetic
wound, although there is evidence that ROS are involved in the underlying pathology.
Future Directions: Preclinical studies of antioxidant-based therapies for diabetic wound healing have yielded
promising results. Redox-based therapeutics constitute a novel approach for the treatment of wounds in diabetes
patients that deserve further investigation. Antioxid. Redox Signal. 27, 823–838.

Keywords: diabetes, wound healing, reactive oxygen species, extracellular matrix, collagen

Introduction

D iabetes is widespread in the United States, and its
complications have devastating effects on health and

quality of life (1, 2, 174). One of the most serious complica-
tions of diabetes is impaired wound healing, which leads to
the development of chronic wounds in the lower extremities
in 15–25% of diabetes patients (27, 28, 30, 167, 194). Chronic
wounds significantly decrease mobility, social functioning,
and overall health, and are the leading cause of hospitalization
and limb amputation in diabetes patients (28, 144, 167, 174).
In addition, management of diabetic wounds is a major eco-
nomic burden, generating $13 billion in healthcare costs per
year in the United States (28, 194). Conventional wound care
practices can be effective in diabetes patients, but a large
fraction of diabetic ulcers still persist (10–15%) or lead to
amputation (5–24%) 6–18 months after diagnosis (8, 27, 119,
128). Novel therapeutic strategies must focus on the patho-
logical mechanisms underlying impaired healing in diabetes
to improve patient outcomes.

Aberrant redox signaling and increased oxidative stress are
widely accepted contributors to the development of diabetic
complications, including cardiovascular disease, nephropa-
thy, and retinopathy (12, 33, 68, 112, 145, 161). Oxidative
stress also plays a significant role in regulating normal wound
healing by facilitating hemostasis, inflammation, wound
closure, and development and maturation of the extracellular
matrix (ECM) (53, 149, 152–154, 156). The ECM is an im-
portant mediator of healing—it provides structure, coordi-
nates cell–matrix and cell–cell interactions, and facilitates
signal transduction in the wound. This review will examine
the role of oxidative stress in the etiology of impaired healing
in diabetes, with a particular focus on the ECM, and discuss
the development of treatment strategies based on these
principles.

Wound Healing in Diabetes

Dermal wound healing [reviewed extensively in Refs. (19,
72, 160, 185)] is a highly coordinated process that occurs in
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three overlapping phases: (i) inflammation, which includes
hemostasis, inflammatory cell recruitment, and cytokine and
growth factor secretion; (ii) proliferation, which is charac-
terized by formation of the provisional matrix, angiogenesis,
and re-epithelialization; and (iii) remodeling, in which
granulation tissue is reorganized and the mature scar is
formed (Fig. 1). In the diabetic wound, each of these phases is
compromised, disrupting and delaying the orderly progres-
sion of healing (Fig. 2) (26, 59, 167). The bulk of controlled
studies involving diabetic wounds have been performed in
animal models. It is widely accepted that these do not fully
recapitulate the human disease, so researchers often employ
multiple animal models to study wound healing (91). This
review is largely based on studies of diabetic wound healing
in animals, coupled with data from controlled human studies
when available.

The inflammation phase in diabetic wound healing is
prolonged but ineffective (3, 163, 167, 183). Diabetes is
characterized by chronic systemic inflammation, evidenced
by increased baseline expression of inflammatory markers,
including macrophage chemoattractant protein-1, tumor ne-
crosis factor (TNF), interleukin-6 (IL-6), and soluble P- and
E-selectins, in blood collected from diabetes patients (87,
125, 181). This pattern of expression of proinflammatory
factors influences inflammation in response to injury, and is
characteristic of chronic ulcers in a variety of settings (52,
195). After injury in diabetes, neutrophils and macrophages
are slowly recruited to the wound, but remain in the wound
bed in large numbers for an extended period of time (3, 65,
106, 182, 183). This creates an environment that is particu-
larly enriched in proinflammatory cytokines (such as IL-1b,
IL-6, and TNF-a) and reactive oxygen species (ROS), which
further damage the tissue and stall proliferation of fibroblasts
and keratinocytes essential for the later phases of healing (3,

167, 183). Macrophages in diabetic wounds also exhibit re-
duced phagocytic capacity, which allows bacteria and debris
to accumulate and decreases expression of growth factors,
such as vascular endothelial growth factor (VEGF) (26, 59,
88, 167). These defects limit angiogenesis and progression to
the proliferation phase (3, 167, 183).

In diabetic wounds, the proliferation phase is characterized
by impaired granulation tissue formation. Granulation tissue
comprises an ECM produced by fibroblasts and new blood
vessels formed by invading endothelial cells and serves as a
scaffold for keratinocyte migration and wound closure. De-
creased expression of growth factors (such as VEGF and
TGF-b) diminishes the proliferation, migration, and differ-
entiation of fibroblasts, endothelial cells, and keratinocytes
(26, 78). Diabetic wound fibroblasts also have abnormal
morphology, decreased adhesion, diminished response to
growth factors and cytokines, and decreased production of
collagens and fibronectin (FN) (9, 71, 94, 189). This results in
abnormal ECM structure and composition (Fig. 3) (163).
Moreover, the ECM is damaged by overexpression of matrix
metalloproteinases (MMPs) and decreased expression of
their inhibitors (tissue inhibitors of metalloproteinases
[TIMPs]) (26, 29, 102, 103). The MMP/TIMP imbalance also
leads to growth factor degradation, which interrupts signaling
vital to endothelial cell and keratinocyte migration, and
therefore impairs angiogenesis and re-epithelialization (15,
26, 37, 59, 81).

The remodeling phase is similarly impaired by the pro-
teolytic environment in diabetic wounds. Excessive break-
down of ECM proteins and the formation of abnormal
protein–protein bonds disrupt normal formation of the mature
collagen matrix and permanent scar (11, 26, 117, 167). This
can lead to decreased scar thickness (depth), as is observed in
the type 2 diabetic Zucker rat and other animal models; such

FIG. 1. Redox control of
dermal wound healing.
Normal wound healing oc-
curs in three overlapping
phases: inflammation, prolif-
eration, and remodeling.
Progression through these
phases is highly regulated
and coordinated by several
mechanisms, including redox
signaling. Both generation
and scavenging of ROS,
particularly H2O2, are critical
to normal healing. The major
processes regulated by redox
signaling in each phase of
healing are indicated in italics.
ECM, extracellular matrix;
H2O2, hydrogen peroxide;
ROS, reactive oxygen spe-
cies. To see this illustration
in color, the reader is re-
ferred to the web version of
this article at www.liebertpub
.com/ars
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changes in ECM deposition in the scar may reduce tensile
strength and make the skin more susceptible to damage and
reinjury (117, 150, 163). Decreased wound contraction dur-
ing remodeling also contributes to reinjury risk; in the Zucker
rat, a greater portion of healed skin is composed of scar tissue,
which is significantly weaker than normal skin (163). Chronic
wound development in diabetes is influenced by myriad de-
fects in signaling, cell function, and ECM structure throughout
the healing process.

ECM in Diabetic Wound Healing

ECM is a critical facilitator of wound healing, from its
beginnings as a fibrin clot through remodeling into granula-
tion tissue and a permanent scar [reviewed in Refs. (4, 64,
139, 170)]. Wound ECM not only provides structure and
support to the tissue, but also serves as a reservoir for growth
factors and mediates cell–cell, cell–matrix, and matrix–protein
interactions. Through these interactions, ECM influences cell
behavior and function (including adhesion, proliferation,
migration, differentiation, and gene expression), and thus its
own remodeling and maturation. The importance of ECM is

reflected in the diabetic wound, where its irregularity has
numerous effects on wound fibroblasts, keratinocytes, and
endothelial cells, as already described. In diabetes, the
structure and function of ECM is marred by fibroblast dys-
function, changes in protein deposition, degradation, and
remodeling, and post-translational modification by advanced
glycation end products (Fig. 4).

Fibroblast function in diabetes

Fibroblasts are key to ECM production and remodeling in
wound healing, but several of their essential functions are
compromised in diabetes. For example, fibroblasts isolated
from diabetic wounds proliferate more slowly than fibro-
blasts isolated from uninjured skin and nondiabetic chronic
wounds (79). Diabetes also induces fibroblast apoptosis;
there are increased TUNEL and caspase-3 positive fibroblasts
in diabetic gingival wounds than in normal controls (49).
Similarly, hyperglycemia has been shown to inhibit prolif-
eration and induce apoptosis in dermal fibroblasts in vitro
(78, 189). Migration is similarly reduced; fibroblasts derived

FIG. 2. Wound healing in diabetes. In contrast to normal healing, wound healing in diabetes is uncoordinated and
spatiotemporally disorganized. Chronic diabetic wounds do not progress smoothly through inflammation, proliferation, and
remodeling; they are instead characterized by an extended inflammation phase, a limited proliferation phase, and irregular
remodeling. The critical changes in each phase of healing in diabetes are identified. Healing processes that involve ECM, a
critical facilitator of healing because of its role as structural support and a mediator of cellular interactions, are indicated by
asterisk (*). IGF-1, insulin-like growth factor-1; IL-6, interleukin-6; MCP-1, macrophage chemoattractant protein-1; MMP,
matrix metalloproteinase; PDGF, platelet-derived growth factor; TGF-b1, transforming growth factor-b1; TIMP, tissue
inhibitors of metalloproteinase; TNF-a, tumor necrosis factor-a; VEGF, vascular endothelial growth factor. To see this
illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars

FIG. 3. ECM deposition is re-
duced in diabetes. Reduced depo-
sition of ECM is characteristic of
wound healing in diabetes. Mas-
son’s trichrome staining of mouse
granulation tissue of healthy
C57BL/6 mice (A) and diabetic db/
db mice (B) reveals significantly
reduced collagen deposition and
maturation (blue). Wounds were
explanted 14 days postinjury.
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from the db/db mouse exhibit decreased invasion in Boyden
chamber assays, and high glucose impairs migration of nor-
mal fibroblasts by suppressing c-Jun n-terminal kinase ( JNK)
phosphorylation in vitro (97, 189). Moreover, fibroblasts
isolated from diabetic wounds respond abnormally to TGF-
b1, a growth factor that induces collagen and ECM synthesis,
and retain collagen intracellularly (110). All together, these
defects in fibroblast function result in poor ECM deposition,
which is discussed in detail below.

ECM deposition in diabetes

The deposition of collagen, the most abundant ECM pro-
tein in normal tissue and the healing wound, is significantly
altered in diabetes (Fig. 3). At baseline, skin biopsies from
diabetes patients exhibit lower expression of collagens I and
III, as detected by Western blot and immunohistochemistry
(22, 192). The ratio of collagen I to collagen III, which is
correlated with ECM tensile strength, is also reduced (22).
Moreover, the ECM in diabetic skin is more disorganized,
with increased spacing between collagen fibrils (123, 192).
Diabetes may also impact collagen fibril diameter, but it re-
mains unclear whether fibril thickness is increased or de-
creased (123, 192). Similar decreases in collagen I and
collagen III levels have been reported in diabetic rodent
models, and histological analysis reveals degeneration of
collagen fibers and disorganized epithelial structure as shown
in human skin (39, 92, 93, 146). Real-time PCR analysis has
shown increased Col1a2, Col3a1, and Col5a1 gene expres-
sion in patients with low skin collagen levels, which suggests
post-transcriptional regulation of collagen in diabetes, but
most studies report only protein or hydroxyproline content
(22, 123, 192). In addition, gene expression levels of colla-
gens I, III, IV, V, VI, XIV, and XVII are decreased in diabetic

rats, which is consistent with the collagen protein levels in
other diabetic rodent models (146, 163).

The collagen levels in diabetic wounds are also signifi-
cantly decreased, as determined from hydroxyproline assay
and Masson’s trichrome staining of diabetic human and
mouse wounds (25, 74, 80, 120). Specifically, collagen I and
III levels are decreased compared with those in nondiabetic
wounds, although Col1a1 and Col3a1 gene expression was
elevated in diabetic wounds in one study (34, 163). Notably,
diabetic wounds exhibit increased expression of miR-29a, a
key negative regulator of collagen I and collagen III ex-
pression, which is a potential mechanism of post-
transcriptional regulation of collagen in diabetes (34, 114).
Despite the major deficits in collagen deposition in diabetic
wounds, few studies have addressed mechanisms that medi-
ate changes in transcription or post-transcriptional regulation
of collagen in this environment, such as decreased TGF-b1
signaling and microRNA regulation (6, 24, 55, 75, 110).

FN is another major component of granulation tissue and
an essential antecedent of collagen I deposition. FN is ele-
vated in the dermis of chronic diabetic ulcers analyzed by
immunohistochemistry (and persists 12–18 months post-
wounding), but has also been reported to be highly fragmented
in wounds and diseased gums in diabetes patients (106, 165).
FN is overrepresented in ECM produced by diabetic ulcer-
derived fibroblasts, but the same fibroblasts exhibit dampened
FN expression in response to TGF-b1 stimulation (110). One
study reported a threefold decrease in FN RNA expression in
diabetic ulcers, but this was in comparison with normal unin-
jured skin, which complicates interpretation (61). Although
further study is required to fully understand FN expression in
diabetic wounds, multiple studies have shown that treatment
with exogenous FN improves healing rate and hydroxyproline
content in diabetic wounds (73, 138).

FIG. 4. Changes in ECM
in diabetes. The structure
and function of the ECM are
altered in diabetes via chan-
ges in fibroblast function,
post-translational modifica-
tion by glucose (glycation),
and an imbalance of ECM
deposition and remodeling.
These changes influence ma-
trix composition and assem-
bly, cell–matrix interactions,
and development of granula-
tion tissue, and ultimately
contribute to delayed wound
healing in diabetes. Changes
described in this figure have
been found in human diabetic
tissues and wounds. TIMP,
tissue inhibitors of metallo-
proteinase. To see this illus-
tration in color, the reader is
referred to the web version of
this article at www.liebertpub
.com/ars
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ECM remodeling in diabetes

MMPs, which cleave collagen, FN, and other components
of the ECM, are highly active in diabetes (175). Skin biopsy
samples from diabetes patients exhibit increased expression
of active MMP-1, MMP-2, and MMP-9, as determined by
ELISA and gelatin zymography (95, 192). Similarly, MMP-2
and MMP-3 are elevated in the skin in rat models of diabetes
(92, 93). Wound tissue homogenates from diabetes patients
have significantly elevated levels of MMP-2, MMP-3, MMP-8,
and MMP-9 compared with nondiabetic controls, and
analysis of diabetic wound exudate also demonstrates ele-
vated MMP-2 and MMP-9 (102, 177). Moreover, fibroblasts
derived from diabetic wounds secrete more MMP-2 and
MMP-3 in culture (178). Comparably, MMP-2, MMP-3, and
MMP-13 expression is increased in wounds of the diabetic
Zucker rat, and MMP-9 activity is increased in granulation
tissue of diabetic mice (C57BL/6-db) (146, 163). One study
has indicated that MMP-2 and MMP-9 are actually decreased
in diabetic mouse wounds, but these conclusions were based
on RNA expression data rather than protein quantification
(177). Diabetic wounds also typically contain high levels of
bacterial proteases, which can activate human proteases, in-
cluding MMP-2 (116).

Elevated MMP activity in diabetes is compounded by
decreased expression of TIMPs, which bind to and inhibit
activated MMPs. TIMP-1 and TIMP-2 levels are decreased at
baseline in skin biopsy samples from diabetes patients and
rodent models (92, 93, 192). TIMP-2 is also reduced in dia-
betic wound homogenates (102). An increase in MMP/TIMP
ratio disrupts the normal balance of ECM synthesis and
degradation, which impacts ECM composition and frag-
mentation. Specifically, high MMP-9/TIMP ratio is predic-
tive of poor healing in diabetes patients (99). Because of
this, there is significant interest in targeting MMP activity to
treat diabetic wounds; one recent study demonstrated that
MMP-9 knockout or inhibition improved healing in diabetic
mice (66).

ECM glycation in diabetes

In diabetes, ECM structure and function is also changed by
glycation, a nonenzymatic reaction between glucose and
proteins (39, 123, 124). Glycation leads to the formation of
intermolecular crosslinks, which significantly alter the bio-
mechanical properties of ECM (69). For example, in vitro
glycation of skin biopsy samples increases direction-
dependent stiffness of the tissue (143). Similarly, glycated
collagen matrices are less flexible and more rigid than non-
glycated collagen matrices, which impairs their contrac-
tion by myofibroblasts, an essential aspect of scar formation
(100, 134). Glycation of collagen side chains alters the
overall charge of the molecule, which interferes with its in-
teraction with other matrix components and disrupts normal
matrix assembly (67, 69). Glycated collagen is also more
resistant to MMP-mediated degradation, which disrupts
matrix remodeling (45, 69).

ECM glycation also alters cell–matrix interactions and cell
behavior (14, 134). For example, contact with glycosylated
matrix induced cell cycle arrest and apoptosis in cultured
human dermal fibroblasts, an effect mediated by activation of
the receptor for advanced glycation end products (RAGE)
(39, 124). This increase in apoptosis is consistent with the

increased TUNEL staining observed in histological sections
of human diabetic wounds (123, 124). Furthermore, fibro-
blasts cultured on glycated collagen exhibit decreased mi-
gration because of poor integrin binding and reduced
expression of collagen, FN, elastin, and MMP-1 (100, 123,
170). Keratinocytes and endothelial cells similarly exhibit
reduced migration and adhesion on glycated ECM (134).
Multiple studies have attempted to improve wound healing
in diabetes by inhibiting ECM glycation; however, treatment
with aminoguanidine, which decreases the formation of ad-
vanced glycation end products (AGE), has yielded mixed
results, although differences may be related to the diabetes
models used (21, 191).

Redox Signaling in Wound Healing

ROS, including superoxide (O2
-), hydrogen peroxide

(H2O2), hydroxyl radical, and other reactive oxygen deriva-
tives, are produced in the cell as an unavoidable byproduct of
oxidative phosphorylation. ROS can damage cells by oxi-
dizing lipids and proteins, so levels are tightly controlled by
the presence of ROS scavenging enzymes and small molecule
antioxidants. Despite the potential harm posed by ROS,
signaling through these molecules is essential for many cel-
lular processes (154).

Redox signaling regulates several wound healing pro-
cesses (Fig. 1) [reviewed in Refs. (53, 149, 154, 156)]. H2O2,
a reactive species produced by dismutation of O2

-, acts as the
principal secondary messenger in wound healing and is
present at low concentrations (100–250 lM) in normal
wounds (53, 149). The critical role of ROS in healing has
been shown in systems with NADPH oxidase (Nox) defi-
ciency or antioxidant overexpression; wounds with low lev-
els of ROS because of these defects exhibit impaired
angiogenesis, abnormal remodeling, and delayed closure in
patients and mouse models (62, 98, 147).

Redox regulation of wound healing begins in the inflam-
mation phase, when ROS levels peak (130). Platelet aggre-
gation in response to collagen induces production of O2

- and
H2O2, which facilitate further aggregation and platelet re-
cruitment (46, 135, 156). O2

- and H2O2 also modulate
platelet aggregation in response to various stimuli in vitro,
including collagen, adenosine diphosphate (ADP), and ara-
chidonic acid (10, 173). ROS generated during hemostasis
may also contribute to inflammatory cell recruitment to the
wound by stimulating chemotaxis and adhesion molecule
expression (105, 154). High levels of O2

- and H2O2 are
generated by neutrophils and macrophages via Nox, which is
rapidly expressed after wounding, and subsequent dismuta-
tion (53, 149, 154, 156). This ‘‘oxidative burst’’ serves as the
primary mechanism of bacterial killing and prevention of
wound infection, and is accompanied by a temporary
downregulation of some ROS scavenging enzymes (148,
156). ROS also stimulate release of cytokines and growth
factors, including macrophage colony-stimulating factor,
platelet-derived growth factor (PDGF), and TNF-a.

Redox signaling is also critical for the proliferation phase.
ROS promote fibroblast proliferation and migration, and
mediate TGF-b1 signaling, which results in migration, col-
lagen and FN production, and basic fibroblast growth factor
(bFGF) expression (7, 176, 193). ROS also facilitate angio-
genesis; H2O2 stimulates VEGF expression by macrophages,
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keratinocytes, and fibroblasts independent of hypoxia in-
ducible factor, and is required for signaling downstream of
VEGF receptor binding (35, 40, 147, 155, 156). Furthermore,
exogenous H2O2 induces endothelial cell migration, and low
levels of exogenous H2O2 increase angiogenesis in mouse
wounds (56, 105). H2O2 also stimulates keratinocyte prolif-
eration and migration, facilitating re-epithelialization (104).

ROS generated in wounds are tightly regulated by ROS
scavenging enzymes, such as superoxide dismutases (Cu/
ZnSOD, MnSOD, and SOD3), peroxidases (catalase [CAT],
phospholipid hydroperoxide glutathione peroxidase), and
peroxiredoxins, as well as small molecule antioxidants, such
as vitamin E and glutathione (149, 166). Many of the en-
zymes are upregulated in healing wounds, whereas levels of
the small molecule antioxidants drop as they are depleted by
ROS (149). Disrupting the redox balance provided by these
antioxidant enzymes is sufficient to make wounds chronic, as
does overwhelming the antioxidant mechanisms by adding
exogenous H2O2 (50, 105, 147). A balance of ROS genera-
tion and scavenging is required for efficient and timely
wound healing.

Redox Signaling in Diabetes

ROS levels are elevated in various tissues in diabetes
patients through a combination of mechanisms that increase
ROS production and reduce antioxidant defenses (Fig. 5)
(68, 112). Thus, diabetic wounds are characterized by high
levels of ROS, particularly O2

- and H2O2 (50, 126, 179,
189). Several pathological mechanisms contribute to the
accumulation of ROS in diabetic wounds, all of them sec-
ondary to hyperglycemia (33, 57, 68, 133). When consid-
ered with the central role of redox signaling in wound repair,
the redox imbalance in diabetic wounds described hereun-
der has major implications for the pathogenesis of delayed
healing in diabetes.

Mitochondrial superoxide production

High glucose significantly increases O2
- levels in cells and

skin in vitro through the mitochondrial electron transport
chain (42, 109, 133, 157). Superoxide is an unavoidable by-
product of oxidative phosphorylation, but under normal
conditions, <10% of all oxygen consumed in aerobic me-
tabolism is reduced to O2

- (68, 133). Hyperglycemia in-
creases O2

- production by increasing the amount of pyruvate
oxidation in the TCA cycle and consequently the availability
of electron donors NADH and FADH2. Increased electron
flux then increases the proton gradient across the inner mi-
tochondrial membrane, which at a critical threshold disrupts
electron transport through complex III (68). Then, electron
transport is largely mediated by coenzyme Q, which transfers
only one electron to oxygen, producing excess O2

- and H2O2

(Fig. 6) (68, 122).
Excessive superoxide production in the mitochondria

further impacts ROS levels by altering the flux through
several intracellular pathways (33, 67, 68, 122). ROS leads to
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) inhi-
bition by poly(ADP-ribose) modification, which increases
levels of glycolysis intermediates upstream of GAPDH. This
provides increased substrate levels for the polyol, protein
kinase C (PKC), and hexosamine pathways (68, 122, 129).
Activation and interaction of these pathways ultimately alter
gene expression, deplete antioxidant resources, and favor
the production of advanced glycation end products (60, 68,
122, 133).

Advanced glycation end products

AGE are formed through nonenzymatic reactions between
glucose or other reducing sugars and proteins. The carbonyl
group of the sugar reacts with the free amino group of an
amino acid, such as lysine or arginine, to form a Schiff base
(69). Then, rearrangement leads to the formation of a stable

FIG. 5. Sources of oxidative
stress in diabetic wounds. Several
mechanisms contribute to increased
ROS levels in diabetes (indicated
by stars). These include increased
mitochondrial superoxide produc-
tion, formation of advanced glyca-
tion end-products, increased activity
of ROS-generating enzymes such as
NADPH oxidase, and decreased ex-
pression of antioxidant enzymes and
small molecules. AGE, advanced
glycation end products; CAT, cata-
lase; GLUT, glucose transporter;
GSH, glutathione; RAGE, receptor
for advanced glycation end products;
SOD, superoxide dismutase. To see
this illustration in color, the reader is
referred to the web version of this
article at www.liebertpub.com/ars
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Amadori product, which may be further rearranged, con-
densed, oxidized, or dehydrated to form new AGE or cross-
links and adducts with additional proteins (68, 69). AGE
accumulate more rapidly in high glucose cell culture as well
as diabetic patients and animal models (67, 127, 159, 188).

AGE increase intracellular ROS levels by several mecha-
nisms, even in normal glucose conditions (38, 42, 115, 159).
AGE binding with the RAGE produces O2

- and H2O2

through activation of Nox and by increasing the expression of
Nox subunits, including Nox4 and p22phox (38, 107, 159, 163,
188). This ROS production has been shown to exacerbate
excessive mitochondrial superoxide production in diabetes;
cytosolic H2O2 produced after RAGE binding decreases the
activity of complex I, resulting in increased superoxide
leakage in diabetic conditions (42). ROS produced by the
mitochondria, in turn, increase RAGE expression, perpetu-
ating further ROS generation (18). There is also evidence that
AGE induce ROS production through a1b1 integrin binding
and Nox activation independent of RAGE and under UVA
radiation, which is particularly relevant in the skin (107, 131).
AGE-induced ROS production in endothelial cells has been
inhibited by treatment with an anti-RAGE antibody, but
further research must be done to address RAGE-independent
mechanisms of ROS generation by AGE (18).

Increased ROS-generating enzymes

ROS production by several ROS-generating enzymes is
elevated in diabetic wounds. As already discussed, expres-
sion and activity of Nox, the major source of ROS in many
cell types, are increased in response to RAGE binding (132).
Nox activity is also increased downstream of hyperglycemia-
induced PKC activation in smooth muscle and endothelial
cells (82). PKC phosphorylates the p47phox subunit of Nox,
which induces its translocation to the cell membrane and
assembly of the functional Nox complex (133). Similarly,
hyperglycemia-induced angiotensin II type 1 receptor (AT1)
activation increases expression of p47phox and enhances ROS

production by Nox (136). AT1 is expressed by several cell
types in the wound, including myofibroblasts and keratino-
cytes (169). In addition, expression of Rac2, an activator of
Nox, is elevated in the Zucker rat model, but the mechanism
of its upregulation has not been determined (163).

Expression and activity of H2O2-producing enzymes
xanthine oxidase (XO) and p66Shc are significantly in-
creased in diabetic mouse wounds, and healing is improved
when either protein is knocked down (58, 180). XO and
p66Shc are also elevated in fibroblasts cultured in high glu-
cose, but the mechanisms mediating their increased expres-
sion remain unknown (58, 180). Deeper understanding of the
molecular mechanisms underlying increased activity of
ROS-generating enzymes in diabetic wounds is needed.

Decreased ROS-scavenging mechanisms

Increased production of ROS in diabetes is coupled with a
reduction in antioxidant defenses, which intensifies the redox
imbalance (67, 164, 179). Levels of glutathione, a free radical
scavenger, are significantly reduced in wound tissue from
diabetic patients and mouse models (13, 121). Nitric oxide
(NO), which can neutralize O2

-, is also reduced in diabetic
wounds, but its role in the redox balance of diabetic wounds
remains unclear (109, 112).

The expression of antioxidant enzymes is also reduced in
diabetes. CAT levels are low in diabetic mice at baseline, and
lymphocytes isolated from diabetes patients exhibit de-
creased CAT activity (13, 141). Analysis of blood collected
from diabetes patients showed reduced SOD, CAT, and
glutathione peroxidase activity, and an overall decrease in
antioxidant status (172). There is conflicting evidence re-
garding MnSOD expression and activity in diabetes; studies
in mice have demonstrated decreased expression and activity
in diabetes, whereas analysis of human samples has indicated
increased MnSOD activity in diabetic wounds (13, 113, 172).
Further characterization of chronic wounds in diabetes must
be performed to fully understand the antioxidant activity.

FIG. 6. Excess mitochon-
drial superoxide production
in diabetes. Hyperglycemia
induces excess superoxide
production by increasing the
number of electron donors
available to the electron
transport chain. This increases
the proton gradient past a
critical level, and allows
electron leakage (indicated by
dashed lines) at complex I
and CoQ. CoQ, coenzyme Q.
To see this illustration in
color, the reader is referred
to the web version of this
article at www.liebertpub
.com/ars
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A significant factor that influences antioxidant enzyme
levels in diabetes is impaired signaling through the tran-
scription factor nuclear factor erythroid 2-related factor 2
(Nrf2), a master regulator of antioxidant gene expression (23,
164). The expression and nuclear translocation of Nrf2 are
decreased in diabetic dermal fibroblasts, which leads to de-
creased expression of CAT, NADPH dehydrogenase quinone
1 (NOQ1), glutathione reductase, and glutathione s-transferase
in response to oxidative stress (23). In fibroblasts cultured in
high glucose, Nrf2 is retained in the cytoplasm by its regulator
Keap1, and transcription of MnSOD and NOQ1 is reduced
(164). The activity of other transcription factors is similarly
altered in hyperglycemia, including AP-1 and NF-jB, which
also regulate transcription of antioxidant enzymes (118, 145,
196). The role of these transcription factors in the diabetic
environment should be further explored.

Redox Modulation of ECM

Oxidative stress in diabetic wounds has major implications
for the ECM, and thus the progression of wound healing.
Excessive ROS can alter ECM structure and composition
through modulation of wound fibroblast function, direct ox-
idative damage, and changes in gene expression and matrix
remodeling (Fig. 7).

Fibroblast function

Redox signaling is an essential mediator of fibroblast
functions critical to wound healing, including proliferation,
migration, ECM production, and contraction. Treatment with
low levels of ROS (i.e., 100 lM H2O2) stimulates fibroblast
proliferation through activation of JNK and p38 MAPK; a
similar effect is observed with partial inhibition of Cu/
ZnSOD, indicating that intracellular ROS also influence cell
proliferation (89). ROS production is also required for TGF-
b1-induced ECM expression and fibroblast migration in re-
sponse to bFGF stimulation (36, 158, 193). In fact, siRNA
knockdown of the Nox2 subunit of NADPH inhibits prolif-
eration, migration, and expression of collagen I, FN, bFGF,

and PAI-1 in human dermal fibroblasts (193). In addition,
Nox4 expression is required for the differentiation of fibro-
blasts to myofibroblasts, a transition that facilitates ECM
expression and contraction (36, 83, 193).

Conversely, high levels of ROS have negative effects on
fibroblast function. Fibroblasts treated with 500 lM H2O2

proliferate at a lower rate than untreated fibroblasts, as do
fibroblasts lacking SOD3, which exhibit higher levels of in-
tracellular ROS than control cells (63, 89). Oxidative stress
can induce apoptosis in fibroblasts and particularly affects
those stimulated to proliferate in wound healing assays (41,
152, 168). Increases in intracellular ROS can also lead to
cellular senescence in fibroblasts, which prevents fibrosis in
normal healing but may be detrimental in diabetes (85, 90).
Furthermore, fibroblast migration in wound healing assays is
inhibited by increased mitochondrial production of O2

-, and
is correspondingly increased with antioxidant treatment
(84, 111). High ROS can also interfere with fibroblast con-
tractile function, evidenced by reduced collagen gel con-
traction in cells treated with curcumin (151). Although these
ROS-mediated changes in fibroblast function have been
identified, the underlying mechanisms remain poorly under-
stood. Further research could inform the development of cell-
based therapeutics to improve wound healing in high-ROS
environments.

ECM production

Although low levels of ROS facilitate ECM synthesis, a
redox imbalance as is observed in diabetes can interfere with
normal ECM production. Treatment with high concentrations
of H2O2 (>150 mM) reduces the amount of connective tissue,
and particularly collagen levels, in mouse wounds and retards
wound closure (105). Similarly, treatment of fibroblasts with
H2O2 or the SOD inhibitor diethyldithiocarbamic acid de-
creases both fibrillar and nonfibrillar collagen synthesis
in vitro (162). Moreover, high levels of ROS can interfere with
rather than support TGF-b1 signaling by reducing expression
of the type II TGF-b receptor and Smad3 transcription factor
in dermal fibroblasts (77). ROS exposure also increases

FIG. 7. Redox modulation
of ECM. Redox signaling
regulates ECM structure dur-
ing normal wound healing, and
excess ROS can cause patho-
logical changes in ECM struc-
ture and function. TGF-b1,
transforming growth factor-b1.
To see this illustration in color,
the reader is referred to the
web version of this article at
www.liebertpub.com/ars
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expression of cysteine-rich protein 61 (CCN1), a negative
regulator of collagen I production, in dermal fibroblasts and
human skin (137).

Direct oxidative damage

The ECM is particularly susceptible to oxidative damage,
even in normal conditions, because of low levels of antioxi-
dant enzymes in the intercellular space (142). ROS-mediated
protein damage is a result of oxidation of amino acid side
chains, and most amino acids are easily modified by radical
ROS, particularly cysteine and methionine (142). Oxidation
of these amino acids can result in the formation of disulfide
bridges and protein adducts, which interfere with protein
structure and function (142). ROS can also significantly
damage proteoglycans present in the ECM (86).

Oxidation of collagen disrupts its triple helical structure and
induces inappropriate inter- and intramolecular crosslinking
(54, 142). Such crosslinking can cause the formation of col-
lagen aggregates and increase resistance to degradation by
MMPs (69, 142). Oxidation can also cause protein cleavage at
proline residues, leading to fragmentation of collagen, FN, and
glycosaminoglycans (43, 44, 51, 138). Most studies of ECM
oxidation focus solely on individual components, so the effects
on overall ECM structure are not well understood.

ROS also mediate AGE accumulation in the ECM (20, 86,
127, 142). Elevated ROS in diabetes favor the formation of
AGE by inhibiting GAPDH activity, and causing the accu-
mulation of glyceradehyde-3-phosphate (G3P), a glycolysis
intermediate upstream of GAPDH. G3P can be none-
nzymatically converted to methylglyoxal, a highly reactive
and abundant intracellular AGE precursor. ROS also con-
tribute to the formation of AGE through both glycation and
oxidation reactions; these glycoxidation products include
pentosidine and carboxymethyllysine, which are among the
best studied AGE. These species can further glycate collagen,
elastin, and FN in the ECM (69). Like direct oxidative
damage to the ECM, glycation alters mechanical proteins and
cellular interactions, as already discussed (see ECM glycation
in diabetes section).

MMP expression

Redox signaling also regulates the expression of MMPs,
and thus influences ECM remodeling. ROS generation is
required for the expression of MMP-1, MMP-2, and MMP-3
in human dermal fibroblasts exposed to UV light, but does not
influence the expression of TIMPs (32, 76). Direct treatment
with H2O2 also induces expression of MMP-1 in human fi-
broblasts in vitro; a similar effect is achieved by inhibition of
CAT or glutathione peroxidase, enzymes that detoxify H2O2

(31). Notably, no change in MMP-1 was observed when Cu/
ZnSOD was inhibited, indicating that H2O2 exerts a specific
effect on the signaling pathway (31). Similarly, H2O2 treat-
ment increases MMP-8 expression in granulation tissue in
diabetic wounds, although the mechanism of this effect is
unknown (105).

Redox-Based Wound Therapy

Treatment of diabetic wounds is largely limited to standard
wound care practices, including surgical debridement, anti-
biotic treatment, moisture dressing, and pressure off-loading,

as well as close management of blood glucose levels (171).
Recent advances have focused on specific defects in the di-
abetic wound environment, including topical application of
growth factors, introduction of bone marrow-derived endo-
thelial and epithelial cells, and collagen-based tissue-
engineered grafts (171). Notably, research has also focused
on modulating the redox environment of the diabetic wound;
such approaches will be reviewed hereunder.

The efficacy of altering ROS levels to improve healing in
diabetes has been well established in a variety of preclinical
studies. Many of these target ROS-generating mechanisms.
For example, decreasing the activity of XO by topical ap-
plication of an siRNA targeting its precursor, xanthine de-
hydrogenase (XDH), significantly improves healing in db/db
diabetic mice (180). Wounds treated with siXDH exhibited a
dramatic reduction in ROS levels and healed 7 days sooner
than those treated with scramble siRNA control (180). Si-
milarly, genetic deletion of the H2O2-generating enzyme
p66Shc in diabetic mice decreased concentration of ni-
trotyrosine (a marker of oxidative stress) and improved
healing rate, with increased granulation tissue thickness and
collagen deposition as well as reduced apoptosis in the wound
bed (58). Notably, topical treatment with galectin-1, which
increases ROS generation through Nox, improved healing
in a diabetic mouse model (101). However, diabetic wounds
were not the focus of the study, and, therefore, were not
extensively characterized.

Increasing antioxidant capacity has also proven to be an
effective strategy; in vivo transfer of MnSOD improved
healing rate by nearly 15% in streptozotocin (STZ)-induced
diabetic mice (109). These mice exhibited increased MnSOD
activity and decreased levels of O2

- in addition to the rapid
reduction of wound area (109). This study also demonstrated
that increased NO availability further improved healing, but
this is difficult to interpret in the context of redox signaling
because NO has both oxidant and antioxidant properties
[reviewed in Refs. (108, 184, 186)]. Analogously, restoration
of signaling through Nrf2 accelerated healing in db/db dia-
betic mice (164). Nrf2 signaling was improved through top-
ical application of siRNA for Keap1, the regulatory protein
that sequesters Nrf2 in the cytoplasm. This treatment im-
proved expression of Nrf2 target antioxidant genes, includ-
ing NQO1, HO-1, glutathione reductase, and glutathione
s-transferase, in the wound and improved healing time by
9 days (164). Even supplemental growth factor treatment
may influence healing through ROS; topical PDGF was re-
cently shown to increase levels of small-molecule antioxi-
dants in the diabetic wounds, although the mechanisms must
be studied more in depth (70).

Nonspecific methods of reducing ROS have also been
explored recently. Topical treatment with vitamin C, a die-
tary antioxidant, improved wound closure at days 7 and 14
postwounding in STZ diabetic rats (96). The wounds ex-
hibited increased collagen deposition, based on Masson’s
trichrome staining and hydroxyproline assays, as well as re-
duced apoptosis (96). Topical application of 0.3% bilirubin
ointment, which scavenges ROS at low concentrations, has
also been shown to improve closure rate and collagen de-
position in diabetic wounds (140). Bilirubin-treated wounds
also had lower MMP-9 expression and increased TGF-b1
expression relative to controls (140). Similar effects were
observed with oral administration of antioxidant; 12 weeks of
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treatment with the mitochondria-targeted antioxidant SkQ1
improved granulation tissue deposition—the collagen was
more mature and organized and blood vessel density signif-
icantly increased (48). SkQ1-treated mice also had a greater
number of a-smooth muscle actin-positive fibroblasts (48).
Comparable improvements in healing were observed with
SkQ1 treatment in aged mice (47). Systemic treatment with
antioxidant (N-acetyl cysteine) also improved healing in an
incisional wound model (5).

Antioxidant-based therapy is just beginning to be tested in
the clinic. For example, oral administration of the polyphenol
antioxidant resveratrol (RSV) was used in diabetes patients
with newly diagnosed ulcers in addition to standard wound
management techniques (17, 187). Patients treated with RSV
showed significant improvement in ulcer size relative to the
control group after 60 days, and there is evidence that RSV
may decrease MMP expression and increase fibroblast pro-
liferation in vitro (16, 17). However, the study was small
(only 24 patients) and ECM-related parameters were not
measured, so few conclusions about the efficacy of the
treatment or its mechanism of action can be drawn. When
combined with the successful preclinical models already
described, this promising clinical data demonstrate the value
of redox-based therapeutics for wound healing in diabetes.
There must be further development of current antioxidant
treatment strategies and evaluation of new targets to address
imbalances in redox signaling in diabetes.

Conclusions

It has been recently demonstrated that ROS are critical to
wound healing, and redox imbalance significantly influences
ECM production and remodeling. Oxidative stress is also a
critical cause of diabetic complications, including impaired
wound healing. Comparison of the literature on these topics
reveals several overlapping pathological mechanisms, in-
cluding fibroblast dysfunction, reduced collagen deposition,
oxidative damage, and dysregulated remodeling by MMPs.
Given this intersection, attention must be paid to the role of
ROS in diabetic wound healing. Further study of the sources
and consequences of oxidative stress in the diabetic wound,
with particular focus on the ECM, may allow for the
development of ROS-based therapies for chronic diabetic
ulcers. Based on the success of preclinical studies on anti-
oxidant treatment, this may represent a novel and effective
strategy to improve healing and prevent limb loss in diabetes
patients.
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AGE¼ advanced glycation end products
AP-1¼ activator protein 1
bFGF¼ basic fibroblast growth factor
CAT¼ catalase

CCN1¼ cysteine-rich protein 61
ECM¼ extracellular matrix

FN¼ fibronectin
G3P¼ glyceradehyde-3-phosphate

GAPDH¼ glyceraldehyde 3-phosphate dehydrogenase
GSH¼ glutathione

IL-1b¼ interleukin-1
IL-6¼ interleukin-6
JNK¼ c-Jun n-terminal kinase

MAPK¼mitogen-activated protein kinase
MMP¼matrix metalloproteinase

NF-jB¼ nuclear factor kappa-light-chain-enhancer
of activated B cells

NO¼ nitric oxide
NOQ1¼NADPH dehydrogenase quinone 1

Nox¼NADPH oxidase
Nrf2¼ nuclear factor erythroid 2-related factor 2

PDGF¼ platelet-derived growth factor
PKC¼ protein kinase C

RAGE¼ receptor for advanced glycation end products
ROS¼ reactive oxygen species
RSV¼ resveratrol
SOD¼ superoxide dismutase
STZ¼ streptozotocin

TGF-b1¼ transforming growth factor-b1
TIMP¼ tissue inhibitor of metalloproteinase

TNF¼ tumor necrosis factor
TUNEL¼ terminal deoxynucleotidyl transferase

dUTP nick end labeling
VEGF¼ vascular endothelial growth factor
XDH¼ xanthine dehydrogenase

XO¼ xanthine oxidase

838 KUNKEMOELLER AND KYRIAKIDES


