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Abstract

Previous functional magnetic resonance imaging (fMRI) investigations suggest that the intrinsically organized large-
scale networks and the interaction between them might be crucial for cognitive activities. A triple network model,
which consists of the default-mode network, salience network, and central-executive network, has been recently
used to understand the connectivity patterns of the cognitively normal brains versus the brains with disorders.
This model suggests that the salience network dynamically controls the default-mode and central-executive net-
works in healthy young individuals. However, the patterns of interactions have remained largely unknown in healthy
aging or those with cognitive decline. In this study, we assess the patterns of interactions between the three networks
using dynamical causal modeling in resting state fMRI data and compare them between subjects with normal cog-
nition and mild cognitive impairment (MCI). In healthy elderly subjects, our analysis showed that the salience net-
work, especially its dorsal subnetwork, modulates the interaction between the default-mode network and the central-
executive network (Mann—Whitney U test; p < 0.05), which was consistent with the pattern of interaction reported in
young adults. In contrast, this pattern of modulation by salience network was disrupted in MCI (p <0.05). Further-
more, the degree of disruption in salience network control correlated significantly with lower overall cognitive per-
formance measured by Montreal Cognitive Assessment (r=0.295; p <0.05). This study suggests that a disruption of
the salience network control, especially the dorsal salience network, over other networks provides a neuronal basis
for cognitive decline and may be a candidate neuroimaging biomarker of cognitive impairment.

Keywords: dorsal and ventral salience networks; dynamical causal modeling; functional magnetic resonance im-
aging; large-scale network; mild cognitive impairment; normal aging

Introduction

NEUROIMAGING INVESTIGATIONS, including those using
resting state functional magnetic resonance imaging
(rsfMRI; Biswal et al., 1995; Raichle, 2015), in normal and
diseased population have elucidated a set of large-scale, intrin-
sically organized brain networks (Deco et al., 2011; Power
et al.,, 2011). Among them, the default-mode and central-
executive networks have consistently been reported to have
antagonistic activity in resting state or during task performing
in healthy individuals (Chen et al., 2013; Fox et al., 2005;
Fransson, 2005). Default-mode network is suggested to be
more activated during internally directed cognitive activities,

including self-monitoring and social functions, while the
central-executive network is widely reported to be more acti-
vated for externally directed higher-order cognitive functions,
such as attention, working memory, and decision-making
(Bressler and Menon, 2010; Uddin, 2015). How the switch be-
tween these two networks is controlled dynamically is an ac-
tive area of research.

A triple network model, comprising of these two antago-
nistic networks and the third network called the salience net-
work (Chand and Dhamala, 2016b; Seeley et al., 2007;
Uddin, 2015), has been recently proposed to understand the
connectivity patterns of cognitively normal brain and the al-
tered patterns in cognitive impairments (Chand et al., 2017;
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Menon, 2011). In cognitively normal young brains, the sa-
lience network was found to play a role in the dynamic
switching of antagonistic activity between the default-
mode and central-executive networks (Chand and Dhamala,
2016a; Goulden et al., 2014; Sridharan et al., 2008). How-
ever, whether such dynamic switching retains in normal
aging and/or alters in mild cognitive impairment (MCI) is
unknown.

Recent studies further subdivide the salience network into
the dorsal and ventral salience networks (Touroutoglou et al.,
2012, 2016). Dorsal salience network is implicated to be im-
portant in attention and switching between cognitive re-
sources, while the ventral system is suggested to be crucial
during affections or emotions (Kurth et al., 2010; Tourouto-
glou et al., 2012, 2016). Whether the dorsal or ventral sa-
lience network subsystem controls over the default-mode
and central-executive networks is largely unknown. Evaluat-
ing the network interactions in diseased or aging population
could help test the hypothesis already mentioned and provide
insights into the relationship between network interactions
and cognitive functions. Despite a large body of literature
evaluating single network activity that reported reduced
default-mode network activity in MCI and Alzheimer’s dis-
ease (Brier et al., 2014; Greicius and Kimmel, 2012; Greicius
et al., 2004), the patterns of interactions between the triple
networks have remained largely underinvestigated in normal
healthy aging and MCI. Studying network interactions may
provide insight into the neural mechanism in the progression
of MCI to dementia or Alzheimer’s disease (Hajjar et al.,
2016; Iadecola, 2014; Oveisgharna and Hachinski, 2010).

Therefore, our objectives were to investigate the salience
network control over the default-mode and central-executive
networks in a group of patients with MCI using rsfMRI data
in comparison to normal subjects and correlate the degree of
disruption of this interaction with their global cognitive scores
as measured by Montreal Cognitive Assessment (MoCA). As
the salience network control is argued to be involved in main-
taining task-related cognitive performance and/or resting state
in cognitively healthy individuals (Menon, 2011; Sridharan
et al., 2008), we hypothesized that this control will retain in
normal cognitive aging, whereas the MCI group will demon-
strate disruption in the control of salience network over the
default-mode and central-executive networks and that the de-
gree of disruption correlates with cognitive performance.

Materials and Methods
Participants

The study protocol was approved by the Institutional
Review Board of Emory University, Atlanta, Georgia. The
rsfMRI data from 54 MCI individuals were obtained. The
MCI participants inclusion criteria were as follows: (1) age
255 years, (2) systolic blood pressure =140 mm Hg or diastolic
blood pressure 290 mm Hg or receiving antihypertensive med-
ications, and (3) executive MCI assessed by cognitive testing:
MoCA <26, cognitive performance at the 10th percentile or
below in trail-mark or stroop interference or verbal fluency
or abstractions, and minimal functional limitation as reflected
by the functional assessment questionnaire <7. The partici-
pants exclusion criteria were as follows: (1) systolic blood
pressure >200 mm Hg or diastolic blood pressure >110 mm
Hg, (2) renal disease or hyperkalemia, (3) active medical or
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psychiatric problems, (4) uncontrolled congestive heart failure
(shortness of breath at rest or evidence of pulmonary edema on
examination), (5) history of stroke in the past 3 years, (6) in-
eligibility for MRI (metal implants or cardiac pacemaker), (7)
inability to complete cognitive test and MRI scan, (8) women
of childbearing potential, and (9) diagnosis of dementia (self-
reported or caregiver reported).

The MRI data from 20 normal participants were included
based on the following criteria: age =250 years, MoCA 226,
clinical dementia rating scale (CDR)=0, and normal logical
memory subscale defined as >11 for 16 or more years of ed-
ucation, 29 for 8-15 years of education, and =6 for <7 years
of education. The exclusion criteria were history of stroke in
the past 3 years, ineligibility for MRI (metal implants or car-
diac pacemaker), inability to complete cognitive test and
MRI scan, and diagnosis of dementia of any type Abnormal
thyroid-stimulating hormone (>10) or B12 (<250). All sub-
jects were scanned on the same MRI scanner using the
same imaging sequences. A written informed consent was
collected from each participant before data collection.

MRI acquisition

MRI data were acquired on a SIEMENS Trio 3-Tesla scan-
ner available at Center for Systems Imaging (CSI) of Emory
University, Atlanta, Georgia. Foam padding and ear forms
were used to limit head motion and reduce scanner noise to
the subjects. High-resolution three-dimensional anatomical
images were acquired using TI1-weighted magnetization-
prepared rapid gradient echo (MP-RAGE) sagittal with repeti-
tion time (TR)=2300ms, echo time (TE)=2.89 ms, inversion
time =800 ms, flip angle (FA)=8, resolution=256x256 ma-
trix, slices=176, thickness=1mm. Blood oxygenation level
dependent images for rsfMRI were collected axially using an
echo-planar imaging sequence with TR =2500 ms, TE=27 ms,
FA =90, field of view =22 cm, resolution =74 X 74 matrix, sli-
ces=48, thickness=3mm, and bandwidth=2598 Hz/Pixel.
The subjects were instructed to hold still, keep their eyes
open, and think nothing during the rsfMRI scan.

Image preprocessing

We preprocessed the MRI data using SPM12 (Wellcome
Trust Centre for Neuroimaging, London, United Kingdom;
www. fil.ion.ucl.ac.uk/spm/software/spm12). The preprocess-
ing steps included slice-timing correction, motion correction,
co-registration to individual anatomical image, normalization
to the Montreal Neurological Institute (MNI) template, and
finally spatial smoothing of the normalized images with a
6 mm isotropic Gaussian kernel. Out of 54 MCI subjects, one
subject was not included in the final analysis due to normal-
ization failure. Among the remaining 53 MCI subjects, 51
subjects had motion <3 mm, and two subjects had motion
~3.5mm.

Independent component analysis

We used constraint independent component analysis (ICA)
to extract temporal signal for subsequence dynamical causal
modeling (DCM) analysis. ICA has been widely used to inves-
tigate the functional brain network activities (Damoiseaux
et al., 2012). A spatially constrained ICA approach has been
introduced (Lin et al., 2010), which overcomes the difficulties
in identifying components of interest and in determining the
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optimum number of components of conventional ICA. Con-
strained ICA has been highlighted as a useful tool, particularly
if one is interested in specific brain areas or network(s).
We used the Group ICA of fMRI Toolbox (GIFT; http://
mialab.mm.org/software/gift) to compute ICA components.

We used the templates of each network (default-mode, sa-
lience, and central-executive networks) reported in a previous
study (Shirer et al., 2012). For the dorsal and ventral salience
networks, the coordinates from previous studies (Chand and
Dhamala, 2016a; Sridharan et al., 2008; Touroutoglou et al.,
2012) were used in the MarsBaR package (http://marsbar
.sourceforge.net) to create the masks. We defined spherical
regions with 6 mm radius based on MNI coordinates centered
at the left dorsal anterior insula (—36, 21, 1), right dorsal an-
terior insula (36, 21, 1), and dorsal anterior cingulate cortex (4,
30, 30) for the dorsal salience network. Similarly, for the
ventral salience network we took spherical regions with 6 mm
radius centered at the left ventral anterior insula (—28, 17,
—15), right ventral anterior insula (28, 17, —15), and dorsal
anterior cingulate cortex (4, 30, 30). We then computed the
network specific ICA components. This approach has been
previously suggested to render better representations of net-
works compared to choosing the average or first eigenvariate
of a template (Craddock et al., 2012; Goulden et al., 2014;
Shirer et al., 2012; Smith et al., 2011). We then used the time
courses (components) produced by the constrained ICA for
subsequent DCM analysis.

Dynamical causal modeling

We used DCM to evaluate the dynamic interaction between
the three networks. DCM analysis (Friston et al., 2003)
assesses the directed connectivity between different brain
areas or networks. In DCM analysis, several hypothesized
possible models are specified, and Bayesian model selection
(BMYS) is then used to infer the model that best fits the mea-
sured data (Stephan et al., 2010). Recent methodological ad-
vances in DCM facilitate the implementation of random
effects (RFX) for model selection (Stephan et al., 2009),
which allows the specification of nonlinear modulations to in-
vestigate how a brain area (or network) influences connection
strengths between other brain areas (or networks; Li et al.,
2011; Stephan et al., 2008) and make use of stochastic models
(Daunizeau et al., 2012). The stochastic model accounts for
noise more accurately and, therefore, allows the application
of DCM to rsfMRI data (Daunizeau et al., 2012; Friston
et al., 2014). We carried out DCM analysis using SPM12
(Wellcome Trust Centre for Neuroimaging).

We specified three models for each subject with fully con-
nected intrinsic connections (Friston et al., 2003, 2014) be-
tween the networks (Fig. 3). Model 1 specified nonlinear
modulation by the default-mode network on both reciprocal
connections between the salience and central-executive net-
works. Model 2 specified nonlinear modulation by the sa-
lience network on both connections between the default-
mode and central-executive networks. Finally, model 3 spec-
ified nonlinear modulation by the central executive on both
connections between the default-mode and salience networks.
In this study, we used nonlinear differential equation based
stochastic DCM already described to estimate the models.
For both MCI and control groups, we identified the model
with the highest probability using both the fixed effects
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(FFX) and the RFX-BMS methods, respectively. Both meth-
ods provide complementary information, but differ on the un-
derlying assumptions. The FFX-BMS assumes that the
optimal model is homogeneous across subjects and uses the
group log-evidence, which measures the balance between fit
and complexity of models and quantifies the relative good-
ness of models. In contrast, the REX-BMS accounts for het-
erogeneity of model structure across subjects. The RFX-
BMS provides posterior model probability, which measures
how likely a specific model generated the data of randomly
selected subject, and exceedance probability, which measures
how one model is more likely than any other model, in the
group data (Stephan et al., 2010).

Statistical analysis

Baseline factors were compared between the normal control
(NC) and MCT groups using Mann—Whitney U test. Pearson’s
correlation analysis was performed to assess the association
between connectivity strength of network modulations with
MoCA for each model in MCI subjects only. We limited
this analysis to MCI because all subjects in the control sub-
jects had normal MoCA. All data were analyzed using MAT-
LAB (Natick, MA; https://www.mathworks.com).

Results

Fifty-three MCI and 20 normal subjects were included in
the analysis. Sample characteristics are provided in Table 1.
In the MCI group, mean age was 66.9 years (standard devia-
tion [SD] 8.1), 60% were African American, 52.8% were
women, mean education was 15 years (SD 2.4), mean systolic
blood pressure 150.7 mm of Hg (SD 21.3), and mean diastolic
blood pressure 90.9 mm of Hg (SD 13.5). In normal group,
mean age was 65.8 years (SD 8.8), 20% were African Amer-
ican, 70% were women, and eight had hypertension. The
mean education was 16 years (SD 2.9), mean systolic blood
pressure 128.8 mm of Hg (SD 23.1), and mean diastolic
blood pressure 71.7mm of Hg (SD 11.7). Figure 1 shows

TABLE 1. CHARACTERISTICS OF THE MILD COGNITIVE
IMPAIRMENT AND NORMAL CONTROL SAMPLES

MCI total NC total
Characteristic sample sample p
n 53 20
Age, years 66.9 (8.1) 65.8 (8.8) 0.776
Sex, women 28 (52.8%) 14 (70%) 0.186
Race
Black 32 (60%) 4 (20%)
White 19 (36%) 16 (80%)
Other 2 (4%)
Education, 15 (2.4) 16 (2.9) 0.284
years
Systolic BP, 150.7 (21.3) 128.8 (23.1) <10
mm Hg
Diastolic BP, 90.9 (13.5) 71.7 (11.7) <107°
mm Hg

Number represents mean (SD) or count (%); p-value represents
MCI versus NC using Mann—Whitney U test or chi-square test;
and p <0.05 is considered statistically significant.

BP, blood pressure; MCI, mild cognitive impairment; NC, normal
control; SD, standard deviation.
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The t-value maps of (A) the DMN, (B) the SN, and (C) the CEN from the constrained ICA overlaid on mean BOLD

images in MCI. BOLD, blood oxygenation level dependent; CEN, central-executive network; DMN, default-mode network;
ICA, independent component analysis; MCI, mild cognitive impairment; SN, salience network. Color images available

online at www.liebertpub.com/brain

the results of the constrained ICA for the (Fig. 1A) default-
mode network, (Fig. 1B) salience network, and (Fig. 1C)
central-executive network components for MCI. Figure 2 dis-
plays the results of constrained ICA for normal group.

Three network connection models were considered and
compared statistically and are illustrated in Figure 3. For
model 1 (Fig. 3A), the default-mode network extends modu-
lations over the connections between the salience network
and the central-executive network; for model 2 (Fig. 3B),
the salience network extends modulations over the connec-
tions between the default-mode network and the central-
executive network suggesting controlling/switching role of
the salience network; for model 3 (Fig. 3C), the central-
executive network extends modulations over the connection
between the default-mode network and the salience network.

We carried out the RFX-BMS analysis (Fig. 4). The first
column (Fig. 4A, B) shows the expected posterior model

probability and exceedance probability for normal group.
Similarly, the second column (Fig. 4C, D) shows the
expected posterior probability and exceedance probability
for MCI group. The RFX analysis revealed that model 2 has
higher probability value than other models in normal
group. It also revealed that model 2 no longer has higher prob-
ability in MCI group, instead the overall probability values
shifted toward model 3. The three models were further com-
pared within the normal control, MCI, and between the normal
control and MCI groups, respectively (Fig. 5). In normal con-
trol (Fig. 5A), we found that model 2 had significantly higher
probability than model 1 (p=0.046; Mann—Whitney U test)
and model 3 (p=0.002), but there was no significant differ-
ence between models 1 and 3 (p=0.531). In MCI group,
we found that model 3 had significantly higher probability
than model 1 (p=8.53x10""") and model 2 (p=7.81x
107'®), and model 2 has higher probability than model 1



DEFAULT-MODE, SALIENCE, AND CENTRAL-EXECUTIVE NETWORKS

A DMN

17

Jﬁ&#ﬂwi»}u‘

) 00 69 69

a0 289 00 W W

nee d J J

& W W

o o) L R
! -"--"I-.”-?» '?-10 {

405

B SN

W W wrwwwwu

FIG. 2. The t-value maps of (A) the DMN, (B) the SN, and (C) the CEN from the constrained ICA overlaid on mean BOLD
images in NC. NC, normal control. Color images available online at www.liebertpub.com/brain

(p=1.91x10"%). Comparison between normal and MCI
groups demonstrated a significant difference between two
groups in each model (Table 2).

To validate our findings, the FFX analysis was also per-
formed and we found similar patterns of network interactions
that model 2 had higher probability in normal controls and
model 3 in MCI group (Supplementary Fig. S1; Supplemen-
tary Data are available online at www .liebertpub.com/brain).
To evaluate whether the observation was related to hyper-
tension status or cognitive impairment itself, we further
compared the network models between two groups of cog-
nitively normal subject, one hypertensive (n=8) and the
other normotensive (n=12). No significant difference related
to hypertension status was found (Supplementary Fig. S2).

We further investigated the interactions of the salience
network subsystems—the dorsal salience network and ven-
tral salience network—with the default-mode and central-

executive networks. We observed that the dorsal salience
network exhibits control over the default-mode and central-
executive networks in the normal group, but not in the
MCI group (Fig. 6 for RFX results; Supplementary Fig. S3
for FFX results). In contrast, we also found that the ventral
salience network does not exhibit control over the default-
mode and central-executive networks in neither the normal
group nor the MCI group (Fig. 7 for RFX results; Supple-
mentary Fig. S4 for FFX results).

rsfMRI-cognition relation

We investigated the association between connectivity
strength and MoCA score in patients with MCI (since normal
group all had normal scores). Lower modulation strength from
salience network on the other two networks derived from
DCM analysis was associated with worse performance on



406

A

A A

Model 2: SN Modulations

Model 1: DMN Modulations

CHAND ET AL.

—) & .—ﬁ——®

Model 3: CEN Modulations

FIG. 3. Model representation: (A) Model 1 specifies nonlinear modulation by the DMN on both connections between the SN
and CEN, (B) model 2 specifies nonlinear modulation by the SN on both connections between the DMN and CEN, and (C)
model 3 specifies nonlinear modulation by the CEN on both connections between the DMN and SN. Color images available

online at www liebertpub.com/brain

cognitive testing as reflected by the MoCA scores (p=
0.034; r=0.295). These results are presented in Figure 8.

Discussion

The present study showed that MCI is associated with a dis-
rupted interaction among the default-mode, salience (dorsal
salience), and central-executive networks, whereas it is main-
tained in cognitively normal elderly subjects. Interactions be-

tween the networks have been argued to be important for
effective maintenance of normal cognitive status (Bressler
and Menon, 2010; Chand and Dhamala, 2016a; Menon,
2015; Uddin, 2015). It is consistently reported that the salience
network drives the default-mode and central-executive net-
works during both resting state and tasks in healthy younger
population (Chand and Dhamala, 2016a; Goulden et al., 2014;
Sridharan et al., 2008). Our results for healthy older (normal)
group are consistent with those findings, suggesting that the
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dynamic switching role of salience network is intact in healthy
aging. In addition, a comparison between hypertensive and nor-
motensive cognitively normal individuals showed that there is
no significant difference in the DCM model probability (Supple-
mentary Fig. S1). We also found significant correlation between
the modulation strength of the salience network over the other
two networks and the neuropsychological test. These findings
suggest that the difference in network interaction found in our
MCI group is likely primarily driven by neuronal changes asso-
ciated with cognitive impairment rather than vascular contribu-
tions due to hypertension in the MCI group.

Previous research has established that the default-mode
network activity is impaired in MCI and Alzheimer’s disease
(Brier et al., 2014; Greicius and Kimmel, 2012; Greicius
et al., 2004). Our results for MCI further demonstrated im-
paired control of the salience network over the default-

TABLE 2. MODEL COMPARISON BETWEEN
THE NORMAL CONTROL AND THE MILD
COGNITIVE IMPAIRMENT GROUPS

NC mean MCI mean NC vs.
(SD) (SD) MCI p-value
Model 1 0.329 (0.045)  0.135 (0.065) 8.61x 107!
Model 2 0.356 (0.045)  0.191 (0.114)  8.26x 107
Model 3 0.315 (0.040)  0.677 (0.146)  4.08x 10~ '°

I NC
[ MCI

NC and MCI in each model.
*Indicates p <0.05; FDR-
corrected. n.s., not signifi-
cant; FDR, false discovery
rate. Color images available
online at www.liebertpub
.com/brain

2 3
Models

mode and central-executive networks in this population,
which may underlie reduced default-mode network activity.
Our study was inspired by several studies that implemented
network analysis in aging research. Recent study by Tsve-
tanov et al. (2016) reports the directed connectivity within
and between the salience, dorsal attention, and default-
mode networks. Our study consisted of central-executive
network instead of dorsal attention network and tested a dif-
ferent hypothesis that whether the salience network is re-
sponsible in switching between the default-mode and
central-executive networks, which was tested for healthy
younger adults in previous studies (Goulden et al., 2014,
Sridharan et al., 2008). In addition, we included the nonlin-
ear modulations in interactions as implemented in prior in-
vestigations (Goulden et al., 2014; Li et al., 2011; Stephan
et al., 2008).

It is interesting to note that the salience network-based
control feature might be facilitated by unique cytoarchitec-
ture of its key regions, the anterior insula and the dorsal an-
terior cingulate cortex (Bonnelle et al., 2012). These regions
consist of von Economo neurons. These specific types of
neurons are present in larger number in humans than in
great apes, but not at all in other primates, and are suggested
to relay information processed in these regions to the other
parts of the brain (Allman et al., 2005, 2010; Watson et al.,
2006). Whether these neurons are specific to the switching
function of the salience network remains to be established.
Previous studies have consistently reported co-activation of
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these regions (Chand and Dhamala, 2016b, 2017; Dosenbach
et al., 2006; Seeley et al., 2007). The anterior insula is func-
tionally connected to the networks responsible for adaptive
behavior, including the salience network (Seeley et al.,
2007) and the frontoparietal control network (Vincent
et al., 2008). This area has direct white matter connections
to other key regions, including the dorsal anterior cingulate
cortex (Jilka et al., 2014), the inferior parietal lobe (Uddin
et al., 2010), and the temporoparietal junction (Kucyi
et al., 2012), making the insula well placed to perform its pu-
tative role of evaluating the environment and the cognitive
state (Uddin et al., 2010), reorienting of attention (Ullsperger
et al., 2010), and switching between cognitive resources
(Uddin and Menon, 2009).

The dorsal anterior insula—a key node of the dorsal sa-
lience network—is reciprocally connected with multiple re-
gions in prefrontal cortex, precentral operculum, parietal,
and temporal cortices (Cerliani et al., 2012; Mesulam and

Mufson, 1982a, b; Mufson and Mesulam, 1982) and is impli-
cated to be important in attention and switching between
cognitive resources (Sridharan et al., 2008; Touroutoglou
et al., 2012). In contrast, the ventral anterior insula—a
key node of the ventral salience network—is reciprocally
connected with multiple limbic and paralimbic structures
(Cerliani et al., 2012; Mesulam and Mufson, 1982a, b; Muf-
son and Mesulam, 1982) and is suggested to be crucial dur-
ing affections or emotions (Kurth et al., 2010; Touroutoglou
etal., 2012, 2016). The activity in the dorsal anterior cingu-
late cortex is known to signal the need for enhanced cogni-
tive control and to implement behavioral changes (Egner,
2009). Our results for normal elderly control therefore pro-
vide strong evidence for the neural basis of the control fea-
ture of the salience network (Allman et al., 2005, 2010;
Watson et al., 2006), consistent with previous reports in
normal young subjects (Chand and Dhamala, 2016a; Goul-
den et al., 2014; Sridharan et al., 2008). Emerging evidence
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shows atypical engagement of the salience network in sev-
eral neuropsychiatric disorders, such as in autism spectrum
disorder, schizophrenia, and frontotemporal dementia
(Menon, 2015; Uddin, 2015).

Prior studies report that the default-mode network activity
decreases in MCI and/or with progression of Alzheimer’s
disease (Brier et al., 2014; Greicius and Kimmel, 2012; Grei-
cius et al., 2004). Decreased probability of model 1 (i.e.,
modulations by default-mode network) in MCI compared
to that of NC might indicate such changes as suggested
by those studies. Dorsolateral prefrontal cortex—a key
node of the central-executive network—has rich connections
with several areas in the brain such as visual, somatosen-
sory, and auditory areas and receives the information from
occipital, parietal, and temporal cortices and is shown to be
important in several cognitive functions, including execu-
tive function (Chand and Dhamala, 2017; Chand et al.,
2016; Miller and Cohen, 2001; Petrides and Pandya, 1999).

Models

The central-executive network activity has been conflicted
with disease (Diener et al., 2012). These works suggest
this network, especially the dorsolateral prefrontal cortex
node, to hypoactivate or hyperactivate with disease. Our re-
sults in MCI suggested that the probability of model 3 (i.e.,
modulations by central-executive network) is greater in
MCI compared to that of NC implying hypermodulations
by central-executive network. Our findings and existing
literature taken together thus suggest that the salience net-
work’s control mechanism over default-mode and central-
executive networks is achieved in healthy aging; however,
this control is impaired and the network modulations are
altered in MCI.

In conclusion, this study evaluated the resting-state patterns
of directed interactions among the default-mode, salience,
and central-executive networks in aging population with
normal cognition and those with MCI. We found that the
salience network, especially the dorsal salience network,
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played causal control over the default-mode and central-
executive networks for normal control and that this feature
was disrupted in MCI. These findings advance our current un-
derstanding of how the default-mode, salience, and central-
executive networks coordinate neural information in healthy
aging and in MCIL.
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