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ABSTRACT Complex mathematical models of interaction networks are routinely used for prediction in systems biology.
However, it is difficult to reconcile network complexities with a formal understanding of their behavior. Here, we propose a simple
procedure (called f) to reduce biological models to functional submodules, using statistical mechanics of complex systems com-
bined with a fitness-based approach inspired by in silico evolution. The f algorithm works by putting parameters or combination
of parameters to some asymptotic limit, while keeping (or slightly improving) the model performance, and requires parameter
symmetry breaking for more complex models. We illustrate f on biochemical adaptation and on different models of immune
recognition by T cells. An intractable model of immune recognition with close to a hundred individual transition rates is reduced
to a simple two-parameter model. The f algorithm extracts three different mechanisms for early immune recognition, and auto-
matically discovers similar functional modules in different models of the same process, allowing for model classification and
comparison. Our procedure can be applied to biological networks based on rate equations using a fitness function that quantifies
phenotypic performance.
INTRODUCTION
As more and more systems-level data are becoming avail-
able, new modeling approaches have been developed to
tackle biological complexity. A popular bottom-up route
inspired by ‘‘-omics’’ aims at exhaustively describing and
modeling parameters and interactions (1,2). The underlying
assumption is that the behavior of systems taken as a whole
will naturally emerge from the modeling of its underlying
parts, leading scholars to propose the ‘‘hairball’’ as the
contemporary dominant image of biology (3). Although
such approaches are rooted in biological realism, there are
well-known modeling issues. By design, complex models
are challenging to study and to use. More fundamentally,
connectomics does not necessarily yield clear functional
information of the ensemble, as recently exemplified in
neuroscience (4). Big models are also prone to overfitting
(5,6), which undermines their predictive power. It is thus
not clear how to tackle network complexity in a predictive
way, or, to quote Gunawardena (7), ‘‘how the biological
wood emerges from the molecular trees.’’
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More synthetic approaches have actually proved success-
ful. Biological networks are known to be modular (8), sug-
gesting that much of the biological complexity emerges
from the combinatorics of simple functional modules. Spe-
cific examples from immunology to embryonic develop-
ment have shown that small and well-designed phenotypic
networks can recapitulate most important properties of com-
plex networks (9–11). A fundamental argument in favor of
such phenotypic modeling is that biochemical networks
themselves are not necessarily conserved, whereas their
function is. This is exemplified by the significant network
differences in segmentation of different vertebrates despite
very similar functional roles and dynamics (12). It suggests
that the level of the phenotype is the most appropriate one
and that a too-detailed (gene-centric) view might not be
the best level to assess systems as a whole.

The predictive power of simple models has been theoret-
ically studied by Sethna and co-workers (13–16), who
argued that even without complete knowledge of parame-
ters, one is able to fit experimental data and predict new
behavior. These ideas are inspired by recent progress in sta-
tistical physics, where parameter space compression natu-
rally occurs, so that dynamics of complex systems can
actually be well described with few effective parameters
(17). Methods have further been developed to generate
parsimonious models based on data fitting that are able to
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make new predictions (18,19). However, such simplified
models might not be easily connected to actual biological
networks. An alternative strategy is to enumerate (20,21)
or evolve in silico networks that perform complex biological
functions (22), using predefined biochemical grammar, and
allowing for a more direct comparison with actual biology.
Such approaches typically give many results. However,
common network features can be identified in retrospect,
and as such, are predictive of biology (22). Nevertheless,
as soon as a microscopic network-based formalism is cho-
sen, tedious labor is required to identify and study underly-
ing principles and dynamics. If we had a systematic method
to simplify/coarse-grain models of networks while preser-
ving their functions, we could better understand, compare,
and classify different models. This would allow us to extract
dynamic principles underlying given phenotypes with
maximum predictive power.

Inspired by a recently proposed boundary manifold
approach (23), we propose a simple method to coarse-grain
phenotypic models, focusing on their functional properties
via the definition of a so-called fitness. Complex networks,
described by rate equations, are then reduced to much
simpler ones that perform the same biological function.
We first reduce biochemical adaptation, then consider the
more challenging problem of absolute discrimination, an
important instance being the early immune recognition
(24). In particular, we succeed in identifying functional
and mathematical correspondence between different models
of the same process. By categorizing and classifying them,
we identify general principles and biological constraints
for absolute discrimination. Our approach suggests that
complex models can indeed be studied and compared using
parameter reduction, and that minimal phenotypic models
can be systematically generated from more complex ones.
This may significantly enhance our understanding of biolog-
ical dynamics from a complex network description.
MATERIALS AND METHODS

An algorithm for fitness-based asymptotic
reduction

Transtrum and Qiu (23,25) studied the problem of data fitting using cellular

regulatory networks modeled as coupled ordinary differential equations.

They proposed that models can be reduced by following geodesics in

parameter space, using error fitting as the basis for the metric. This defines

the manifold boundary approximation method (MBAM) that extracts the

minimum number of parameters compatible with data (23).

Although simplifying models to fit data is crucial, it would also be useful

to have a more synthetic approach to isolate and identify functional parts of

networks. This would be especially useful for model comparison of pro-

cesses where abstract functional features of the models (e.g., the qualitative

shape of a response) might not correspond to one another, or where the un-

derlying networks are different although they perform the same overall

function (12). We thus elaborate on the approach of (23) and describe in

the following an algorithm for FItness Based Asymptotic parameter Reduc-

tion (FIBAR, abbreviated with f). The f algorithm does not aim at fitting
1894 Biophysical Journal 113, 1893–1906, October 17, 2017
data, but focuses on extracting functional networks, associated to a given

biological function. To define a biological function, we require a general

fitness (symbolized by f) to quantify performance. Fitness is broadly

defined as a mathematical quantity encoding biological function in an

almost parameter independent way, which allows for a much broader search

in parameter space than traditional data fitting (examples are given in the

next sections). The term ‘‘fitness’’ is inspired by its use in evolutionary al-

gorithms to select for coarse-grained functional networks (22). We then

define ‘‘model reduction’’ as the search for networks with as few parameters

as possible optimizing a predefined fitness. There is no reason, a priori, that

such a procedure would converge for arbitrary networks or fitness func-

tions: it might simply not be possible to optimize a fitness without some pre-

existing network features. A more traditional route to optimization would

rather be to increase the number of parameters to explore missing dimen-

sions, rather than decrease them (see discussions in (18,19)). We will

show how f reveals network features in known models that were explicitly

designed to perform the fitness of interest.

Due to the absence of an explicit cost function to fit data, there is no

equivalence in f to the metric in parameter space in the MBAM allowing

us to incrementally update parameters. However, upon further inspection,

it appears that most limits in (23) correspond to simple transformations

in parameter space: single parameters disappear by putting them to 0 or

N, or by taking limits in which their product or ratio is constant, whereas

individual parameters go to 0 orN. In retrospect, some of these transforma-

tions can be interpreted as well-known limits such as quasi-static assump-

tions or dimensionless reduction, but there are more subtle transformations,

as will appear below.

Instead of computing geodesics in parameter space, we directly probe

asymptotic limits for all parameters, either singly or in pairs. Practically,

we generate a new parameter set by multiplying and dividing a parameter

by a large enough rescaling factor f (which is a parameter of our algorithm;

we have taken f ¼ 10 for the simulations presented here), keeping all other

parameters constant, or doing the same operation on a couple of parameters.

At each step of the algorithm, we compute the behavior of the network

when changing single parameters, or any couple of parameters by factor f

in both directions. We then compute the change of fitness for each of the

new models with changed parameters. In most cases, there are parameter

modifications that leave the fitness unchanged or even slightly improve

network behavior. Among this ensemble, we follow a conservative

approach and select (randomly or deterministically) one set of parameter

modifications that minimizes the fitness change.We then implement param-

eter reduction by effectively pushing the corresponding parameters to 0 or

N, and iterate the method until no further reduction enhances the fitness or

leaves it unchanged, or until all parameters are reduced. The evaluation of

these limits effectively removes parameters from the system while keeping

the fitness unchanged or incrementally improving it. There are technical

issues we have to consider: for instance, if two parameters go to N,

some numerical choices have to be made about the best way to implement

this. Our choice was to keep the reduction simple: in this example, instead

of defining explicitly a new parameter, we increase both parameters to a

very high value, freeze one of them, and allow variation of the other one

for subsequent steps of the algorithm. Another issue with asymptotic limits

for rates is that corresponding divergence of variables might occur. To

ensure proper network behavior, we thus impose overall mass conservation

for some predefined variables, e.g., total concentration of an enzyme (which

effectively adds fluxes to the free form of the considered biochemical spe-

cies). We also explicitly test for convergence of differential equations and

discard parameter modifications leading to numerical divergences. Details

on the implementation of the reduction rules for specific models are pre-

sented in the Supporting Material and can be automatically implemented

for any model based on rate equations.

These iterations of parameter changes alone do not always lead to

simpler networks. This is also observed in the MBAMwhen it is sometimes

no longer possible to fit all data as well upon parameter reduction. However,

with the goal to extract minimal functional networks, we can circumvent
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this problem by implementing what we call ‘‘symmetry breaking’’ of the

parameters (Fig. 1, B and C): in most networks, different biochemical

reactions are assumed to be controlled by the same parameter. An example

is a kinase acting on different complexes in a proofreading cascade with the

same reaction rate. However, an alternative hypothesis is that certain steps

in the cascade are recognized to activate specific pathways, or targeted for

removal (e.g., in limited signaling models, the signaling step is specifically

tagged, thus having dual specificity (11)). So to further reduce parameters,

we assume that those rates, which are initially equal, can now be varied

independently by f (Fig. 1 C). Symmetry breaking in parameter space

allows us to reduce models to a few relevant parameters/equations, and

as explained below is necessary to extract simple descriptions of network

functions. Note that symmetry breaking transiently expands the number

of parameters, allowing for a more global search for a reduced model

in the complex space of networks. Fig. 1 A summarizes this asymptotic

reduction.

We have implemented f in the software MATLAB (The MathWorks,

Natick, MA) for the specific cases described here, and samples of code

used are available as Supporting Material.
Defining the fitness

To illustrate the f algorithm, we apply it to two different biological

problems: biochemical adaptation and absolute discrimination. In this sec-

tion we briefly describe those problems and define the associated fitness

functions.

The first problem we study is ‘‘biochemical adaptation’’, a classical,

ubiquitous phenomenon in biology in which an output variable returns to

a fixed homeostatic value after a change of input (see Fig. 2 A). We apply

f on models inspired by (20,25), expanding Michaelis-Menten approxima-
tions into additional rate equations, which further allows us to account for

some implicit constraints of the original models (see details in the Support-

ing Material). We use a fitness that was first detailed in (26): we measure the

deviations from equilibrium at steady state DOss, and the maximum devia-

tion DOmax after a change of input, and aim at minimizing the former while

maximizing the latter. Combining both numbers into a single sum DOmax þ
ε/DOss gives the fitness we are maximizing (see more details in the Support-

ing Material). This simple case study illustrates how f works and allows us

to compare our findings to previous works such as (25).

The second problem is ‘‘absolute discrimination’’, defined as the sensi-

tive and specific recognition of signaling ligands based on one biochem-

ical parameter. Possible instances of this problem can be found in

immune recognition between self and not self for T cells (24,27) or

mast cells (28), and recent work using chimeric DNA receptor confirm

sharp thresholding based on binding times (29). More precisely, we

consider models where a cell is exposed to an amount L of identical li-

gands, and their binding time t defines their quality. Then the cell should

discriminate only on t, i.e., it should decide if t is higher or lower than a

critical value tc independently of ligand concentration L. This is a

nontrivial problem, because many ligands with binding time slightly lower

than tc should not trigger a response, whereas few ligands with binding

time slightly higher than tc should. Absolute discrimination has direct

biomedical relevance, which explains why there are models of various

complexities, encompassing several interesting and generic features of

biochemical networks (biochemical adaptation, proofreading, positive

and negative feedback loops, combinatorics, etc.). Such models serve as

ideal tests for the generality of f.

The performance of a network performing absolute discrimination is

illustrated in Fig. 2. We can plot the values of the network output O as a

function of ligand concentration L, for different values of t (Fig. 2 B).

Absolute discrimination between ligands is possible only if one (or more
FIGURE 1 Summary of f algorithm. (A) Given

here is asymptotic fitness evaluation and reduction.

For a given network, the values of the fitness f are

computed for asymptotic values of parameters or

couples of parameters. If the fitness is improved

(warmer colors), one subset of improving parame-

ters is chosen and pushed to its corresponding

limits, effectively reducing the number of parame-

ters. This process is iterated. See main text for

details. (B) Shown here is parameter symmetry

breaking. A given parameter present in multiple

rate equations (here q) is turned into multiple pa-

rameters (q1,q2) that can be varied independently

during asymptotic fitness evaluation. (C) Given

here are examples of parameter symmetry

breaking, considering a biochemical cascade

similar to the model from (10). See main text for

comments. To see this figure in color, go online.
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FIGURE 2 Fitness explanations. (A) Given here is the fitness used for biochemical adaptation. The step of an input variable is imposed (red dashed line)

and behavior of an output variable is computed (green line). Maximum deviation DOmax and steady-state deviation DOss are measured and optimized for

fitness computation. (B) Shown here are the schematics of a response line for absolute discrimination. We represent expected dose response curves for a

bad (top) and a good (bottom) model. Response to different binding times t are symbolized by different colors. For the bad monotonic model (e.g., kinetic

proofreading (33)), by setting a threshold (horizontal dashed line), multiple intersections with different lines corresponding to different values of t are found,

which means it is not possible to measure t based on the output. The bottom corresponds to absolute discrimination. Flat responses plateau at different output

values that easily measure t. Thus, the network can easily decide the position of t with respect to a given threshold (horizontal dashed line). (C) For actual

fitness computation, we sample the possible values of the output with respect to a predefined ligand distribution for different values of t (we have indicated a

threshold similar to (B) by a dashed line). If the distributions are not well separated, one cannot discriminate between values of t based on outputs and mutual

information between output and t is low. If they are well separated, one can discriminate values of t based on output and mutual information is high. See

technical details in the Supporting Material. To see this figure in color, go online.
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realistically few) values of t correspond to a given output value O(L, t) (as

detailed in (24)). Intuitively, this is not possible if the dose response curves

O(L, t) are monotonic: the reason is that for any value of output O, one can

find many associated couples of (L, t) (see Fig. 2 B). Thus, ideal perfor-

mance corresponds to separated horizontal lines, encoding different values

of O for different t independently of L (Fig. 2 B). For suboptimal cases and

optimization purposes, a probabilistic framework is useful. Our fitness is

the mutual information between the distribution of outputs O with t for a

predefined sampling of L, as proposed in (30). If those distributions are

not well separated (meaning that we can frequently observe the same output

value for different values of t and L; Fig. 2 C, top), the mutual information

is low and the network performance is bad. Conversely, if those distribu-

tions are well separated (Fig. 2 C, bottom), this means that a given output

value is statistically very often associated to a given value of t. Then the

mutual information is high and network performance is good. More details

on this computation can be found in Fig. S2.

We have run f on three different models of this process: adaptive sorting

with one proofreading step (30), a simple model based on feedback by

phosphatase SHP-1 from (10) (SHP-1 model), and a complex realistic

model accounting for multiple feedbacks from (31) (Lipniacki model).

Initial models are described in more detail in the following sections. We

have taken published parameters as initial conditions. Those three models

were all explicitly designed to describe absolute discrimination, modeled

as sensitive and specific sensing of ligands of a given binding time t

(24), so ideally those networks would have perfect fitness. However, due

to various biochemical constraints, these three models have very good

initial (but not necessarily perfect) performance for absolute discrimination.

We see that after some initial fitness improvement, f reaches an optimum

fitness within a few steps and thus merely simplifies models while keeping

constant fitness (see fitness values in the Supporting Material). We have

tested f with several parameters of the fitness functions, and we give in

the following for each model the most simplified networks obtained with

the help of those fitness functions. Complementary details and other reduc-

tions are given in the Supporting Material.
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For both problems, f succeeds in fully reducing the system to a single

equation with essentially two effective parameters at steady state (see the

Supporting Material; the final model is given in the FINAL OUTPUT for-

mula, and discussion of the effective parameters is given in Comparison and

Categorization of Models). However, to help in understanding the mathe-

matical structure of the models, it is helpful to deconvolve this final reduced

expression to exhibit the underlying differential equations for the most rele-

vant variables. In particular, this helps to identify functional submodules of

the network that perform independent computations. Thus for each example

below, we give a small set of differential equations capturing the functional

mechanisms of the reduced model. In the figures, we show in the ‘‘FINAL’’

panel the behavior of the full system of ordinary differential equations

including all parameters (but potentially very big or very small values after

reduction, and thus including local flux conservation).
RESULTS

f for biochemical adaptation: feedforward and
feedback models

The problem of biochemical adaptation allows us to simply
illustrate and compare the algorithm on problems described
and well-studied elsewhere. We consider two models based
on feedforward and feedback loops, with corresponding
interactions between the nodes. These models are adapted
from (20), and have network topologies known to be
compatible with biochemical adaptation. The f algorithm
is designed to work with rate equations, so to keep mathe-
matical expressions compatible with the ones in (20)
we have to introduce new nodes corresponding to en-
zymes and regulations for production and degradation. For
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instance, a nonlinear degradation flux for protein A of the
form �A/(A þ A0) in (20) implicitly means that A deacti-
vates its own degrading enzyme, that we include and call
DA (see equations in the Supporting Material). This gives
networks with 6 differential equations/12 parameters for
the negative feedback network, and 9 differential equa-
tions/18 parameters for the incoherent feedforward network.
For this problem, we have not tried to optimize initial pa-
rameters for the networks; instead, we start with arbitrary
parameters (and thus arbitrary nonadaptive behavior), and
we simply let f reduce the system using the fitness function
defined above. The goal is to test the efficiency of f, and to
see if it finds a subset of nodes/parameters compatible with
biochemical adaptation by pure parameter reduction (we
know from analytical studies similar to what is done in
(20) that such solutions exist, but it is not clear that they
can be found directly by asymptotic parameter reduction).
Fig. 3 summarizes the initial network topologies considered,
including the associated enzymes and the final reduced
models, with equations. Steps of the reductions are given
in the Supporting Material.

Both networks converge toward adaptation by working in
a very similar way to networks previously described in
(20,25). For the negative feedback network of Fig. 3 A, at
steady state, A is pinned to a value independent of I ensuring
its adaptation by stationarity of protein B ð _B ¼ 0Þ. Stationar-
ity of A imposes that B essentially buffers the input variation
and that A transiently feels I (see equations and correspond-
ing behavior on Fig. 3 A). This is a classical implementation
of integral feedback (32) with a minimum number of two
nodes, automatically rediscovered by f.

We see similar behavior for reduction of the incoherent
feedforward networks (Fig. 3 B). At steady state, stationarity
of B pins the ratio A/B to a value independent of I, whereas
stationarity of C imposes that C is proportional to A/B and
thus adaptive (see equations and corresponding behavior
in Fig. 3 B). This is a classical implementation of another
feedforward adaptive system (20,26), rediscovered by f.
When varying simulation parameters for f, we can see
some variability in the results, where steady-state relations
among A, B, and C are formally identical but with another
logic (see details of such a reduction in the Supporting
Material).

During parameter reduction, ratios of parameters are sys-
tematically eliminated, corresponding to classical limits
such as saturation or dimensionless reductions, as detailed
in the Supporting Material. Similar limits were observed
in (25) when applying the MBAM to fit simulated data for
biochemical adaptation. The systems reduce in both cases
to a minimum number of differential equations, allowing
for transient dynamics of the adaptive variable. Interest-
ingly, in this case we have not attempted to optimize param-
eters a priori, but nevertheless f is able to converge toward
adaptive behavior only by removing parameters. In the end,
we recover known reduced models for biochemical adapta-
tion, very similar to what is obtained with artificial data
fitting in (25), confirming the efficiency and robustness of
fitness-based asymptotic reduction.
f for adaptive sorting

We now proceed with applications of f to the more
challenging problem of absolute discrimination. Adaptive
sorting (30) is one of the simplest models of absolute
discrimination. It consists of a one-step kinetic proofreading
cascade (33) (converting complex C0 into C1) combined
FIGURE 3 Adaptation networks considered and

their reduction by f. We explicitly include produc-

tion and degradation nodes (Ps and Ds) that are

directly reduced into Michaelis-Menten kinetics in

other works. From top to bottom, we show the orig-

inal network, the reduced network, and the equa-

tions for the reduced network. Dynamics of the

networks under control of a step input (I) is also

shown. Notice that the initial networks are not adap-

tive whereas the final reduced networks are. (A)

Shown here is the negative feedback network,

including enzymes responsible for Michaelis-

Menten kinetics for production and degradation. A

is the adaptive variable. (B) Shown here are the inco-

herent feedforward networks. C is the adaptive var-

iable. To see this figure in color, go online.
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with a negative feedforward interaction mediated by a ki-
nase K (see Fig. 4 A for an illustration). A biological reali-
zation of adaptive sorting exists for FCR receptors (28).

This model has a complete analytic description in the
limit where the backward rate from C1 to C0 cancels out
(30). The dynamics of C1 is then given by

_C1 ¼ fKKC0ðLÞ � t�1C1 with K ¼ KT

C�

C0ðLÞ þ C�:

(1)

K is the activity of a kinase regulated by complex C0(L), it-
self proportional to ligand concentration L. The K activity is
repressed by C0 (Fig. 4; Eq. 1), implementing an incoherent
feedforward loop in the network (the full system of equa-
tions is given in the Supporting Material).

Absolute discrimination is possiblewhenC1 is a pure func-
tion of t irrespective of L (so that C1 encodes t directly) as
discussed in (24,30). Theoretically, both C0 and C1 depend
on the input ligand concentration L. If we require C1 to be
independent of L, the product KC0 has to become a constant
irrespective of L. This is possible because K is repressed by
C0, so there is a tug-of-war on C1 production between the
substrate concentration C0, and its negative effect on K. In
the limit of large enoughC0,K indeed becomes inversely pro-
portional to C0, giving a production rate of C1 independent
of L. The t-dependency is then encoded in the dissociation
rate of C1, so that in the end C1 is a pure function of t.

The steps of f for adaptive sorting are summarized in
Fig. 4 A. The first steps correspond to standard operations:
1898 Biophysical Journal 113, 1893–1906, October 17, 2017
step 1 is a quasi-static assumption on kinase concentration,
step 2 brings together parameters having similar influence
on the behavior, and step 3 is equivalent to assuming recep-
tors are never saturated. Those steps are already taken in
(30), and are automatically rediscovered by f. Notably, we
see that during reduction several effective parameters
emerge, e.g., the parameter A ¼ KTfK can be identified in
retrospect as the maximum possible activity of kinase K.

Step 4 is the most interesting step and corresponds
to a nontrivial parameter modification specific to f,
which simultaneously reinforces the two tug-of-war terms
described above, so that they balance more efficiently. This
transformation solves a trade-off between sensitivity of the
network and magnitude in response, illustrated in Fig. 4 B.
If one decreases only parameterC*, the dose response curves
for different values of t become flatter, allowing for better
separation of values of t (i.e., specificity; Fig. 4 B, middle
panel). However, the magnitude of the dose response curves
is proportional toC* so that ifwewere to takeC*¼ 0, all dose
response curves would go to zero as well and the network
would lose its ability to respond. It is only when both C*
and the parameter A ¼ KTfK are changed in concert
that we can increase specificity without losing response
(Fig. 4 B, bottom panel). This ensures that K(L) becomes
always proportional to L without changing the maximum
production rate AC* of C1. The f algorithm finalizes the
reduction by putting other parameters to limits that do not
significantly change in the value of C1. There is no need to
perform symmetry breaking for this model to reach optimal
behavior and one-parameter reduction.
FIGURE 4 Reduction of adaptive sorting. (A)

Given here is a sketch of the network, with five

steps of reductions by f. Adaptation and kinetic

sensing modules are indicated for comparison

with reduction of other models. (B) Given here is

an illustration of the specificity/response tradeoff

solved by Step 4 of f. Compared to the reference

behavior (top panel), decreasing C* (middle panel)

increases specificity with less L dependency

(horizontal green arrow) but globally reduces

signal (vertical red arrow). If KT is simultaneously

increased (bottom panel), specificity alone is

increased without detrimental effect on overall

response, which is the path found by f: To see

this figure in color, go online.
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This simple example illustrates that not only is f able to
rediscover automatically classical reduction of nonlinear
equations, but also, as illustrated by step 4 above, it is
able to find a nontrivial regime of parameters where the
behavior of the network can be significantly improved.
Here this is done by reinforcing simultaneously the weight
of two branches of the network implicated in a crucial inco-
herent feedforward loop, implementing perfect adaptation,
and allowing us to define a simple adaptation submodule.
The t-dependency is encoded downstream of this adaptation
module in C1, defining a kinetic sensing submodule. A gen-
eral feature of f is its ability to identify and reinforce crucial
functional parts in the networks, as will be further illustrated
below.
f for SHP-1 model

This model aims at modeling early immune recognition by
T cells (10) and combines a classical proofreading cascade
(33) with a negative feedback loop (Fig. 5 A, top). The
A

B

FIGURE 5 Reduction of SHP-1 model. (A) Given here is the initial

model considered and the final reduced model (bottom). Step 1 shows the

initial dynamics. Equations can be found in the Supporting Material. The

f algorithm (with parameter symmetry breaking) eliminates most of the

feedback interactions by S, separating the full network into an adaptation

module and a kinetic sensing module. See main text for discussion. (B)

Dose response curves for t ¼ 3, 5, 10 s and different steps of f reduction

are given, showing how the curves become more and more horizontal for

different t, corresponding to better absolute discrimination. Corresponding

parameter modifications are given in the Supporting Material. FINAL panel

shows behavior of Eqs. 9–15 in the Supporting Material (full system

including local mass conservation). To see this figure in color, go online.
proofreading cascade with N steps amplifies the t-depen-
dency of the output variable, whereas the variable S in the
negative feedback encodes the ligand concentration L in a
nontrivial way. The full network presents dose response-
curves plateauing at different values for different values
of t, allowing for approximate discrimination as detailed
in (10) (Fig. 5 B, step 1). Full understanding of the steady
state requires solving a N � N linear system in combination
with a polynomial equation of order N � 1, which is analyt-
ically possible if N is small enough (see the Supporting
Material). Behavior of the system can only be intuitively
grasped in limits of strong negative feedback and infinite
ligand concentration (10). The logic of the network appears
superficially similar to the previously described adaptive
sorting network, with a competition between proofreading
and feedback effects compensating for L, thus allowing
for approximated kinetic discrimination based on param-
eter t. Other differences include the sensitivity to ligand
antagonism because of the different number of proofreading
steps, discussed in (24).

When performing f on this model, the algorithm quickly
gets stuck without further reduction in the number of param-
eters and corresponding network complexity. By inspection
of the results, it appears that the network is too symmetrical:
variable S acts in exactly the same way on all proofreading
steps at the same time. This creates a strong nonlinear
feedback term that explains why the nonmonotonic dose-
response curves are approximately flat as L varies as
described in (10), as well as other features, such as loss of
response at high ligand concentration that is sometimes
observed experimentally. This also means the output can
never be made fully independent of L (see details in the Sup-
portingMaterial). But it could also be interesting biologically
to explore limits where dephosphorylations are more spe-
cific, corresponding to breaking symmetry in parameters.

We thus perform symmetry breaking, so that f converges
in <15 steps, as shown in one example presented in Fig. 5.
The dose-response curves as functions of t become flatter
while the algorithm proceeds, until perfect absolute discrim-
ination is reached (flat lines in Fig. 5 B, step 13).

A summary of the core network extracted by f is pre-
sented in Fig. 5 A (in the Supporting Material, we explicitly
list the equations of the core network, illustrating how all
reaction terms are initially present in the original model;
this ensures that we obtain an existing limit on the original
model manifold). In brief, symmetry breaking in parameter
space concentrates the functional contribution of S in
one single network interaction. This actually reduces the
strength of the feedback, making it exactly proportional to
the concentration of the first complex in the cascade C1,
allowing for a better balance between the negative feedback
and the input signal in the network.

After the reduction, the dynamics of the last two com-
plexes in the cascade can be simply extracted analytically
and are given by
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_C4 ¼ f4C3 þ g5SC5 �
�
f5 þ t�1

�
C4 with C3fC1;

(2)

_C5 ¼ f5C4 � g5SC5 with SfC1: (3)
Now at steady state, we get f5C4¼ g5SC5 from Eq. 3 so that
those terms cancel out in Eq. 2; and we get that at steady
state, C4 ¼ f4tC3. Due to the removal by f of the reaction
backward terms with S in the cascade C1 / C2 / C3, C3 is
exactly proportional to C1 in the reduced model. Looking
back at Eq. 3, it means that at steady state both the produc-
tion and the degradation rates of C5 are proportional to C1

(respectively via C3 for production and S for degradation).
This is another tug-of-war effect, so that at steady-state
C5 concentration is independent of C1 and thus from L.
However, there is an extra t-dependency coming from C4

at steady state (Eq. 2), so that C5 concentration is simply
proportional to a power of t (see full equations in the
Supporting Material).

Again, f identifies and focuses on different parts of
the network to perform perfect absolute discrimination.
Symmetry breaking in the parameter spaces allows us to
decouple identical proofreading steps and effectively makes
the behavior of the network more modular, so that only one
complex in the cascade is responsible for the t-dependency
(see kinetic sensing module in Fig. 5) whereas another one
carries the negative interaction of S (see adaptation module
in Fig. 5).

When varying initial parameters for reduction, we see
different possibilities for the reduction of the network (see
examples in the Supporting Material). Although different
branches for degradation by S can be reinforced by f, even-
tually only one of them performs perfect adaptation. Similar
variability is observed for t-sensing. Another reduction of
this network is presented in the Supporting Material.
f for Lipniacki model

Although the f algorithm works nicely on the previous
examples, the models are simple enough that in retrospect
the reduction steps might appear as natural (modulo
nontrivial effects such as mass conservation or symmetry
breaking). It is thus important to validate the approach on
a more complex model, which can be understood intuitively
but is too complex mathematically to assess without simula-
tions, a situation typical in systems biology. It is also impor-
tant to apply f to a published model that is not designed by
ourselves.

We thus consider a much more elaborate model for T cell
recognition proposed in (31) and inspired by (34). This
models aims at describingmany known interactions of recep-
tors in a realistic way, and accounts for several kinases such
as Lck, ZAP70, ERK, and phosphatases such as SHP-1—
multiple phosphorylation states of the internal ITAMs.
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Furthermore, this model accounts for multimerization of re-
ceptors with the enzymes. As a consequence, there is an ex-
plosion of the number of cross-interactions and variables in
the system, as well as associated parameters (because all en-
zymes modulate variables differently), which renders its
intractable without numerical simulations. It is nevertheless
remarkable that this model is able to predict a realistic
response line (e.g., Fig. 3 in (31)), but its precise quantitative
origin is unclear. The model is specified in the Supporting
Material by its 21 equations that include a hundred-odd terms
corresponding to different biochemical interactions. With
multiple runs of f we found two variants of reduction.
Figs. 6 and 7 illustrate examples of those two variants, sum-
marizing the behavior of the network at several reduction
steps. Due to the complexity of this network, we first proceed
with biochemical reduction. Then we use the reduced
network and perform symmetry breaking.

The network topology at the end of both reductions is
shown in Figs. 6 and 7 with examples of the network for
various steps. Interestingly, the steps of the algorithm corre-
spond to successive simplifications of clear biological mod-
ules that appear in retrospect unnecessary for absolute
discrimination (multiple runs yield qualitatively similar
steps of reduction). In both cases, we observe that biochem-
ical optimization first prunes out the ERK positive feedback
module (which in the full system amplifies response), but
keeps many proofreading steps and cross regulations. The
optimization eventually gets stuck because of the symmetry
of the system, just like we observed in the SHP-1 model
from the previous section (Figs. 6 B and 7 A).

Symmetry breaking is then performed, and allows us to
considerably reduce the combinatorial aspects of the sys-
tem, reducing the number of biochemical species and fully
eliminating one parallel proofreading cascade (Fig. 6 C)
or combining two cascades (Fig. 7 B). In both variants,
the final steps of optimization allow for further reduction
of the number of variables keeping only one proofreading
cascade in combination with a single loop feedback
via the same variable (corresponding to phosphorylated
SHP-1 in the complete model).

Further study of this feedback loop reveals that it is
responsible for biochemical adaptation, similarly to what
we observed in the case of the SHP-1 model. However,
the mechanism for adaptation is different for the two
different variants and corresponds to two different param-
eter regimes.

For the variant of Fig. 6, the algorithm converges to
a local optimum for the fitness. However upon inspection,
the structure appears very close to the SHP-1 model reduc-
tion, and can be optimized by putting three additional pa-
rameters to zero. Again, the dynamics at the end of
reduction is simple enough that it can be comprehended
analytically. The output of the system of Fig. 6 is then gov-
erned by three variables out of the initial 21 and is summa-
rized by



FIGURE 6 Reduction of Lipniacki model. (A)

Given here is the initial model considered. We indi-

cate complexity with colored squared boxes that

correspond to the number of individual reaction

rates in each of the corresponding differential equa-

tions for a given variable. (B–D) Dose response

curves for different reduction steps are given.

Step 1 shows the initial dynamics. From top to

bottom, graphs on the right column display the

(reduced) networks at the end of steps 16 (biochem-

ical reduction), 32 (symmetry breaking), and 36

(final model). The corresponding parameter reduc-

tion steps are given in the Supporting Material.

FINAL panel shows behavior of Eqs. 28–34 in the

Supporting Material (full system is given, including

local mass conservation). To see this figure in color,

go online.

Fitness-Based Asymptotic Reduction
_C7 ¼ f1C5ðLÞ � f2C7 � gSC7; (4)

_S ¼ lC ðLÞ � mR S; (5)
5 tot

_CN ¼ f C7 � t�1CN: (6)
2

Here C5(L) is one of the complex concentrations midway of
the proofreading cascade (we indicate here L dependency
that can be computed by mass conservation but is irrelevant
for the understanding of the mechanism). S is the variable
accounting for phosphatase SHP-1 in the Lipniacki model,
and Rtot is the total number of unsaturated receptors (the
reduced system with the name of the original variables is
given in the Supporting Material).
At steady state, S is proportional to C5(L) from Eq. 5. We
see from Eq. 4 that the production rate of C7 is also propor-
tional to C5(L). Its degradation rate f2 þ gS is proportional
to S if f2 << gS (which is the case). So both the production
and degradation rates of C7 are proportional (similar to what
happens in the SHP-1 model, Eq. 3), and the overall contri-
bution of L cancels out. This corresponds to an adaptation
module.

One t-dependency remains downstream of C7 through
Eq. 6 (realizing a kinetic sensing module) so that the
steady-state concentration of CN is a pure function of t,
thus realizing absolute discrimination. Notably, this model
corresponds to a parameter regime where most receptors
are free from phosphatase SHP-1, which actually allows
for the linear relationship between S and C5.

For the second variant, when the system has reached
optimal fitness, the same feedback loop in the model
Biophysical Journal 113, 1893–1906, October 17, 2017 1901



FIGURE 7 Another reduction of the Lipniacki model starting from the same network as in Fig. 6 A leading to a different adaptive mechanism. The cor-

responding parameter reduction steps are given in the Supporting Material. (A) Initial biochemical reduction suppresses the positive feedback loop in a

similar way (compare with Fig. 6 B). (B) Symmetry breaking breaks proofreading cascades and isolates different adaptive and kinetic modules (compare

with Fig. 6 D). FINAL panel shows behavior of Eqs. 35–43 in the Supporting Material (full system is given, including local mass conservation). To see

this figure in color, go online.
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performs perfect adaptation, and the full system of equa-
tions in both reductions has similar structure (compare
Eqs. 28–34 to Eqs. 35–43 in the Supporting Material). But
the mechanism for adaptation is different: this second reduc-
tion corresponds to a regime where receptors are essentially
all titrated by SHP-1. More precisely, we have (calling Rf the
free receptors, and Rp the receptors titrated by SHP-1):

_Rp ¼ mRf ðLÞS� eRp; (7)

_S ¼ lC5 � mRf ðLÞS; (8)
_C ¼ C ðLÞ � ðlSþ f ÞC ; (9)
5 3 5 5

CNftC5: (10)
Now at steady state, e is small so that almost all receptors
are titrated in the form Rp, and thus Rp x Rtot. This fixes
the product Rf(L)S f Rtot to a value independent of L in
Eq. 7, so that at steady state of S in Eq. 8, C5 ¼ eRtot/l is it-
self fixed at a value independent of L. This implements an
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integral feedback adaptation scheme (32). Down C5, there
is a simple linear cascade so that one t-dependency survives
(Eq. 10), ensuring kinetic sensing and absolute discrimina-
tion by the final complex of the cascade CN.
Comparison and categorization of models

An interesting feature of f is that reduction allows us to
formally classify and connect models of different complex-
ities. We focus here on absolute discrimination only. Our
approach allows us to distinguish at least four levels of
coarse-graining for absolute discrimination, as illustrated
in Fig. 8.

At the upper level, with maximal coarse-graining and
minimal complexity, we observe that all reduced absolute
discrimination models considered can be broken down
into two parts of similar functional relevance. In all reduced
models, we can clearly identify an adaptation module real-
izing perfect adaptation (defining an effective parameter l in
Fig. 8), and a kinetic sensing module performing the sensing
of t (function f(t) in Fig. 8). If f(t)¼ t, we get a two-param-
eter model, where each parameter relates to a submodule.



FIGURE 8 Categorization of networks based on f reduction. Absolute discrimination models considered here (bottom of the tree) can all be coarse-grained

into the same functional forms (top of the tree). Intermediate levels in reduction correspond to two different mechanisms—feedforward-based and feedback-

based. See main text for discussion. To see this figure in color, go online.

Fitness-Based Asymptotic Reduction
Themodels can then be divided in the nature of the adapta-
tionmodule, which gives a functional level of coarse-graining
at the second level of complexity. With f, we automatically
recover a dichotomy previously observed for biochemical
adaptation between feedforward and feedback models
(20,26). The second variant of Lipniacki relies on an integral
feedbackmechanism,where adaptation of onevariable (C5) is
due to the buffering of a negative feedback variable (S(L))
(Eqs. 7–9; Fig. 8). Adaptive sorting, the SHP-1 model and
the first variant of Lipniacki model instead rely on a feedfor-
ward adaptation module where a tug-of-war between two
terms (an activation term A(L) and feedforward terms K/S in
Fig. 8) exactly compensates.

The tug-of-war necessary for adaptation is realized in two
different ways, which is an implementation level of coarse-
graining at the third level of complexity. In adaptive sorting,
this tug-of-war is realized at the level of the production
rate of the output, which is made ligand independent by a
competition between a direct positive contribution and an
indirect negative one (Eq. 1; Fig. 8). In the reduced SHP-1
model, the concentration of the complex C upstream of
the output is made L independent via a tug-of-war between
its production and degradation rates. The exact same effect
is observed in the first variant of the Lipniacki model: at
steady state, from Eqs. 4 and 5, the production and degrada-
tion rates of C7 are seen as proportional (Fig. 8), which
ensures adaptation. So f allows us to rigorously confirm
the intuition that the SHP-1 model and the Lipniacki model
indeed work in a similar way and belong to the same cate-
gory in the unsaturated receptor regime. We also notice
that f suggests a new coarse-grained model for absolute
discrimination based on modulation of degradation rates,
with fewer parameters and simpler behavior than the exist-
ing ones, by assuming specific dephosphorylation in the
cascades (we notice that some other models have suggested
specificity for the last step of the cascade, e.g., in limited
signaling models (11)).

Importantly, the variable S, encoding for the same nega-
tive feedback in both the SHP-1 and the first reduction of
Lipniacki model, plays a similar role in the reduced models,
suggesting that two models of the same process, although
designed with different assumptions and biochemical de-
tails, nevertheless converge to the same class of models.
This variable S also is the buffering variable in the integral
feedback branch of the reduction of the Lipniacki model, yet
adaptation works in a different way for this reduction. This
Biophysical Journal 113, 1893–1906, October 17, 2017 1903
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shows that even though the two reductions of the Lipniacki
model work in different parameter regimes and rely on
different adaptive mechanisms, the same components in
the network play the crucial functional roles, suggesting
that the approach is general. As a negative control of both
the role of SHP-1 and more generally of the f algorithm,
we show in the Supporting Material for the SHP-1 model
that reduction does not converge in the absence of the
S variable (Fig. S3).

Coarse-graining further allows us to draw connections
between network components and parameters for those
different models. For instance, the output is a function of
K(L)A(L) for adaptive sorting and A(L)S(L)�1 for SHP-1/
Lipniacki models. In both cases, A(L) is a smooth function
of ligand concentrations (corresponding to an upstream
complex) exactly compensated by K and S. So we can
formally identify K(L) with S(L)�1. The immediate interpre-
tation is that deactivating a kinase is similar to activating a
phosphatase, which is intuitive but only formalized here by
model reduction.

At lower levels of coarse graining, complexity is
increased, so that many more models are expected to be
connected to the same functional absolute discrimination
model. For instance, when we run f several times, the ki-
netic discrimination module on the SHP-1 model is realized
on different complexes (see several other examples in the
Supporting Material). Also, the precise nature and position
of kinetic discriminations in the network might influence
properties that we have not accounted for in the fitness. In
the Supporting Material, we illustrate this on ligand antago-
nism (35): depending on the complex regulated by S in the
different reduced models, and adding back kinetic discrim-
ination (in the form of t�1 terms) in the remaining cascade
on the reduced models, we can observe different antago-
nistic behavior, comparable with the experimentally
measured antagonism hierarchy (Fig. S4). Finally, a more
realistic model might account for nonspecific interactions
(relieved here by parameter symmetry breaking), which
might only give approximate biochemical adaptation (as
in (10)) although still keeping the same core principles
(adaptation þ kinetic discrimination) that are uncovered
by f:
DISCUSSION

When we take into account all possible reactions and pro-
teins in a biological network, a potentially infinite number
of different models can be generated. But it is not clear
how the level of complexity relates to the behavior of a sys-
tem, nor how models of different complexities can be
grasped or compared. For instance, it is far from obvious
whether a network as complex as the one from (31)
(Fig. 6 A) can be simply understood in any way, or if any
clear design principle can be extracted from it. We propose
f, a simple procedure to reduce complex networks, which is
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based on a fitness function that defines network phenotype,
and on simple coordinated parameter changes.

The f algorithm relies on the optimization of a predefined
fitness that is required to encode coarse-grained phenotypes.
It performs a direct exploration of the asymptotic limit on
boundary manifolds in parameter space. In silico evolution
of networks teaches us that the choice of fitness is crucial
for successful exploration in parameter spaces and to allow
for the identification of design principles (22). Fitness
should capture qualitative features of networks that can be
improved incrementally. An example is mutual information,
and simulations optimizing it have recently led to new in-
sights on the design and evolution of biological systems
for development (36) and immune recognition (30), as
further illustrated here. Although adjusting existing param-
eters or even adding new ones (potentially leading to over-
fitting) could help in optimizing this fitness, it is not obvious
a priori that systematic removal of parameters is possible
without decreasing the fitness, even for networks with initial
good fitness. For both cases of biochemical adaptation and
absolute discrimination, f is nevertheless efficient at prun-
ing and reinforcing different network interactions in a coor-
dinated way while keeping an optimum fitness, finding
simple limits in network space, with submodules that are
easy to interpret. Reproducibility in the simplifications of
the networks suggests that the method is robust.

In the examples of SHP-1 and Lipniacki models, we
notice that f disentangles the behavior of a complex
network into two submodules with well-identified functions,
one in charge of adaptation and the other of kinetic discrim-
ination. To do so, f is able to identify and reinforce tug-of-
war terms, with direct biological interpretation. This allows
for a formal comparison of models. The reduced SHP-1
model and the first reduction of the Lipniacki model have
a similar feedforward structure, controlled by a variable cor-
responding to phosphatase SHP-1 defining the same biolog-
ical interaction. This is reassuring because both models aim
to describe early immune recognition; this was not obvious
a priori from the complete system of equations or the
considered network topology (compare Fig. 5 with Fig. 6
A). These feedforward dynamics discovered by f contrast
with the original feedback interpretation of the role of
SHP-1 from the network topology only (10,31,34). Adaptive
sorting, although performing the same biochemical func-
tion, works differently by adapting the production rate of
the output, and thus belongs to another category of networks
(Fig. 8).

The f algorithm is also able to identify different param-
eter regimes for a network performing the same function,
thereby uncovering an unexpected network plasticity. The
two reductions of the Lipniacki model work in a different
way (one is feedforward-based, the other one is feedback-
based), but importantly, the crucial adaptation mechanism
relies on the same node, again corresponding to phosphatase
SHP-1, suggesting the predictive power of this approach
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irrespective of the details of the model. From a biological
standpoint, because the same network can yield two
different adaptive mechanisms depending on the parameter
regime (receptors titrated or not by SHP-1), it could be that
both situations are observed. In mouse, T cell receptors do
not bind to phosphatase SHP-1 without engagement of
ligands (37), which would be in line with the reduction of
the SHP-1 model and the first variant of the Lipniacki model
reduction. But we cannot exclude that a titrated regime for
receptors exists, e.g., due to phenotypic plasticity (38), or
that the very same network works in this regime in another
organism. More generally, one may wonder if the parame-
ters found by f are realistic in any way. In the cases studied
here, the values of parameters are not as important as the
regime in which the networks behave. For instance, we
saw for the feedforward models that some specific variables
have to be proportional, which requires nonsaturating enzy-
matic reactions. Conversely, the second reduction of the
Lipniacki model requires titration of receptors by SHP-1.
These are direct predictions on the dynamics of the net-
works, not specifically tied to the original models.

Because f works by sequential modifications of parame-
ters, we get a continuous mapping between all the models at
different steps of the reduction process, via the most simpli-
fied one-parameter version of the model. By analogy with
physics, f thus renormalizes different networks by coarse-
graining (17), possibly identifying universal classes for a
given biochemical computation, and defining subclasses
(39). This allows us to draw correspondences between net-
works with very different topologies, formalizing ideas
such as the equivalence between activation of a phosphatase
and repression of a kinase (as exemplified here by the com-
parison of influences of K(L) and S(L) in reduced models
from Fig. 8). In systems biology, models are neither tradi-
tionally simplified, nor are there systematic comparisons
between models, in part because there is no obvious strategy
to do so. The approach proposed here offers a solution for
both comparison and reduction, which complements other
strategies such as the evolution of phenotypic models (22)
or direct geometric modeling in phase space (9).

To fully reduce complex biochemical models, we have
to perform symmetry breaking on parameters. Similar to
parameter modifications, the main role of symmetry
breaking is to reinforce and adjust dynamical regimes
in different branches of the network, e.g., imposing
proportionality to tug-of-war terms. Intuitively, symmetry
breaking embeds complex networks into a higher dimen-
sional parameter space allowing for better optimization.
Much simpler networks can be obtained with this procedure,
which shows in retrospect how the assumed nonspecificity
of interactions strongly constrains the allowed behavior.
Of course, in biology, some of this complexity might also
have evolutionary adaptive values. More detailed models
are valuable and needed to model behaviors that we do
not consider here, such as amplification or bistability
(31,40). A tool like f allows for a reductionist study by spe-
cifically focusing on one phenotype of interest to extract its
core working principles. Once the core principles are iden-
tified, it should be easier to complexify a model by account-
ing for other potential adaptive phenotypes (e.g., as is done
to reduce antagonism in (30) or in Fig. S4).

Finally, there is a natural evolutionary interpretation of f.
In both evolutionary computations and evolution, random
parameter modifications in evolution can push single param-
eters to zero or potentially very big values (corresponding to
the N limit). However, it is clear from our simulations that
concerted modifications of parameters are needed, e.g., for
adaptive sorting, the simultaneous modifications of the ki-
netics and the efficiency of a kinase regulation is required
in step 4 of the reduction. Evolution might select for net-
works explicitly coupling parameters that need to be modi-
fied in concert. Conversely, there might be other constraints
preventing efficient optimizations in two directions in
parameter space at the same time, due to epistatic effects.
Gene duplications provide an evolutionary solution to
relieve such tradeoffs, after which previously identical
genes can diverge and specialize (41). This clearly bears
resemblance to the symmetry breaking proposed here. For
instance, having two duplicated kinases instead of one
would allow us to have different phosphorylation rates in
the same proofreading cascades. We also see, in the exam-
ples of Figs. 5–7, that complex networks that cannot be
simplified by pure parameter changes can be improved by
parameter symmetry breaking via decomposition into inde-
pendent submodules. Similar evolutionary forces might be
at play to explain the observed modularity of gene networks
(8). More practically, f could be useful as a complementary
tool for artificial or simulated evolution (22) to simplify
complex simulated dynamics (42).
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