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ABSTRACT Quantifying the relationship between protein sequence and structure is key to understanding the protein universe.
A fundamental measure of this relationship is the total number of amino acid sequences that can fold to a target protein structure,
known as the ‘‘sequence capacity,’’ which has been suggested as a proxy for how designable a given protein fold is. Although
sequence capacity has been extensively studied using lattice models and theory, numerical estimates for real protein structures
are currently lacking. In this work, we have quantitatively estimated the sequence capacity of 10 proteins with a variety of
different structures using a statistical model based on residue-residue co-evolution to capture the variation of sequences
from the same protein family. Remarkably, we find that even for the smallest protein folds, such as the WW domain, the number
of foldable sequences is extremely large, exceeding the Avogadro constant. In agreement with earlier theoretical work, the
calculated sequence capacity is positively correlated with the size of the protein, or better, the density of contacts. This allows
the absolute sequence capacity of a given protein to be approximately predicted from its structure. On the other hand, the rela-
tive sequence capacity, i.e., normalized by the total number of possible sequences, is an extremely tiny number and is strongly
anti-correlated with the protein length. Thus, although there may be more foldable sequences for larger proteins, it will be much
harder to find them. Lastly, we have correlated the evolutionary age of proteins in the CATH database with their sequence ca-
pacity as predicted by our model. The results suggest a trade-off between the opposing requirements of high designability and
the likelihood of a novel fold emerging by chance.
INTRODUCTION
The database of protein sequences contains a wealth of
evolutionary information. In particular, since for folded pro-
teins their structure is critical to their biological function,
the requirement of native-state stability alone places a
strong evolutionary constraint on the set of sequences al-
lowed for a given structure, in addition to functional con-
straints such as binding or enzymatic function (1–3). How
many sequences are there that satisfy this requirement of
stability for a given protein fold (4)? The answer to this
question is a fundamental property of the fold known as
the sequence capacity (SC), and it is often used as a measure
of protein ‘‘designability’’ (5,6). This designability has been
shown to be highly correlated with the actual sizes of gene
families (7). From the perspective of evolution, if the SC of
a protein system is large, its structure or function is likely to
be robust to mutation (8). Higher SC has also been associ-
ated with a higher rate of protein evolution (9) and with
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thermophilic adaptation (10). The snapshot of the protein
universe contained in the UniProt database (11) includes
70 million protein sequences, a number that is still growing
rapidly owing to the recent efforts in genomic sequencing.
However, even if the current genomic databases were com-
plete, they could not be used directly to count the number
of sequences belonging to a given fold, for the simple
reason that sequence space is vast and likely only a tiny
fraction has been explored. Indeed, recent work has
shown that the sequence universe is still expanding (12).
Similarly, even though natural protein sequences are opti-
mized for their native structures (13), there are still many
artificial sequences that can be designed to fold to the
same structure (14).

Since counting the number of sequences that fold to
a given structure implies knowing which structure each
sequence folds to, the problem of protein designability is
closely related to the folding problem—already a challenge
for computational models. Therefore, pioneering works on
protein designability and its relation to protein structure
have been carried out using simplified physical models
(5,15–17) in which the energy of a protein conformation
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is given by the summation of pairwise contact potentials. A
key conclusion of these theoretical works was that the SC is
primarily determined by the contact density, i.e., the total
number of contacts, normalized by the sequence length.
Theoretical arguments and analytic theory further supported
this conclusion (6,18). However, because these studies used
lattice models and highly coarse-grained energy functions,
they could not quantitatively address the SC of real protein
folds. Atomistic redesign methods have been used to
address the designability of certain folds (13,19), although
the sampling problem for these is much more challenging.
Alternatively, computationally cheap threading methods
(14,20–22), in which sequences are scored in the context
of a structure using a simple contact potential, have also
been used to estimate the SC of the proteins that are regis-
tered in the Protein Data Bank (PDB) (23,24).

Given the challenges associated with structure-based
modeling, an alternative may be to exploit directly the
evolutionary information contained in the large database
of protein sequences now available. An important aspect
of this information is coevolution of residues at different po-
sitions in a protein (25,26). Because the structure of folded
proteins is critical for their function, it imposes a strong
constraint on the mutational history: during evolution, if
one residue is mutated to a different amino acid, the prox-
imal residue is also likely to mutate to maintain compatible
interactions. This residue-residue coevolution signal can be
detected from covariance analysis of the sequences of ho-
mologs, which is usually done by fitting a likelihood model
including residue-residue couplings to observed sequence
data. Such models have been successfully exploited to pre-
dict residue pairs that are in contact in the native state (i.e.,
those with significant couplings between them) (25,27–32).
These predicted contacts have provided a new tool for pro-
tein structure determination.

Inspired by these results, in this article, we take a comple-
mentary approach to estimating SC. We use the observed
FIGURE 1 Representative structures of the proteins we studied here: (A) WW

1DIV (39)), (D) Im7 (PDB: 1AYI (38)), (E) titin I27 (PDB: 1TIT (35)), (F) TN

blumin (PDB: 1HFY (41)), (I) IFABP (PDB: 1IFC (34)), and (J) OmpA (PDB:
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sequences from the same protein family to infer a fitness
model for sequences that can fold into a given structure, us-
ing a likelihood function similar to those used for contact
prediction. Our approach avoids the problem of determining
protein folds ab initio; instead, we exploit the known infor-
mation about which sequences fold to a given structure. We
show that the model can capture the pattern of sequence
variation of natural sequences in terms of single-site propen-
sity and residue-residue covariation inferred from evolu-
tionary information. Furthermore, the associated energy
function is a good predictor of native-state stability, as
would be expected. By combining these two insights, we
are able to estimate the total number of sequences folding
to a given structure by simple integration of the density of
states. We apply the model to 10 different protein folds, cho-
sen for the availability of both sequence information and
experimentally measured stabilities; the latter allow the
threshold energy values for foldable sequences to be deter-
mined. We have verified the robustness of our approach by
applying it to a simple lattice model, which can be directly
enumerated. We can generalize our estimates to other
folds by establishing an empirical relation, justified by the-
ory, between the contact density of a fold and its SC. This
relation allows us to estimate the SC of each protein fold
in the CATH database. Analysis of the CATH sequence ca-
pacities supports our finding that there is a minimal contact
density for a folded protein. It also suggests a tension in
evolution between optimizing SC and maximizing the prob-
ability of finding a new fold by chance, which we term
‘‘discoverability.’’
MATERIALS AND METHODS

Choice of proteins

We have chosen for our study 10 different single-domain proteins (Fig. 1)

whose folds are common in nature, i.e., there are many sequences which
domain (PDB: 1I5H (33)), (B) villin (PDB: 1QQV (37)), (C) NTL9 (PDB:

fn3 (PDB: 1TEN (36)), (G) PDZ domain (PDB: 1GM1 (40)), (H) a-lactal-

1QJP (90)). To see this figure in color, go online.
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fold to these structures. The set includes all-b proteins: WW domains (33),

the outer membrane protein OmpA (90), the immunoglobulin-like b-sand-

wich domain titin I27 (35), and the fibronectin type III domain from tenas-

cin (TNfn3) (36); all-a proteins: villin (37) and the bacterial immunity

protein Im7 (38); and a/b proteins: the ribosomal domain NTL9 (39), a

PDZ domain (40), a-lactabumin (a-LA) (41), and fatty acid binding pro-

tein-like protein (IFABP) (34). An additional criterion for selection was

that stability data should be available for a large number of mutants of

each protein (most frequently, from f-value analysis). In earlier f-value

studies, thermodynamic information for multiple mutants was obtained

for villin (42), the titin I27 domain (43), the PDZ domain (44), OmpA

(45), Im7 (46), IFABP (47), a-LA (48), TNfn3 (49), NTL9 (50), and the

WW domain (51). These rich experimental data allow us to evaluate our

evolutionary model by predicting the folding stability of different mutants.
Multiple sequence alignment and reweighting

For each protein family in Fig. 1, we have built a likelihood function for fold-

able sequences based on multiple sequence alignments (MSAs). The input

MSAs were generated using the Jackhammer method (52) with an E-value

of 10�4 (10�40 for titin I27 considering its high abundance in nature)

and eight iterations, using the Uniref90 database (53). Sequences that

have>25%gapswere removed. The sequences obtained in theMSAusually

have a phylogenetic bias. A sequence re-weighting algorithm is therefore

used here to mitigate the effects of uneven sampling of sequences. The algo-

rithm has previously been very successful in improving the accuracy of pro-

tein structure prediction (54). Specifically, theweight given to a sequence,Sa,

is set towa ¼ 1=na, where na is the number of sequences in the MSA similar

to Sa: na ¼
PN

i¼1qðsimðSa; SiÞ � xÞ, where simðSa; SiÞ is the fraction

sequence identity between two sequences Sa and Si, andN is the total number

of sequences in the MSA. x is a threshold whose optimal value was found to

be 0.8. The same reweighting scheme is also used on the sequences from the

hydrophobic-polar (HP) model, described below.
Statistical model of protein sequences

To find protein sequences that can fold to a given structure, the amino acid

composition should follow the pattern of the natural sequences that fold into

the same structure, represented by an MSA for the fold in question. We

describe this pattern using a statistical model that includes parameters for

single-site amino acid propensity as well as residue-residue co-evolution.

Specifically, we describe the likelihood of an amino acid sequence

s ¼ a1; a2; ::; aL to fold into a given protein structure, using the function

Pða1; a2; ::; aLÞ ¼ 1

Z
exp

(X
i < j

Jij
�
ai; aj

�þX
i

hi ðaiÞ
)
:

(1)

In this Potts-type model, the parameters hi ðaiÞ represent the propensity

for amino acid ai to occur at position i in a sequence. In addition to
this conventional sequence propensity, the parameters Jij measure the

coupling propensity of amino acids ai and aj to be at aligned positions

i and j. Z is the partition function, defined such that the likelihood is

normalized over all possible sequences. With the MSA as input (Support-

ing Material), our aim is to maximize the log-likelihood of the observed

sequences si, ln L ¼ P
iln½PðsiÞ�. Because optimizing the likelihood

directly is very expensive owing to the size of the sequence space, we

instead use an established pseudolikelihood optimization method (54)

to estimate the parameters of h and J with appropriate regularization to

prevent overfitting.

Specifically, a regularization term is added to the negative pseudo-log-

likelihood to keep unimportant parameters close to zero and thus avoid

overfitting:
Rðh; JÞ ¼ lh
X
i

kh2i k þ lJ
X
i < j

kJ2i;j k ; (2)

where lh and lJ are two regularization parameters for single-site and

coupling parameters. The empirically determined optimal lJ is 0.05 (54).

By defining a corresponding evolutionary Hamiltonian energy, EEH, for a

given sequence A as

EEH ¼ �ln PðAÞ; (3)

it is possible to sample sequences from the likelihood function PðAÞ using al-
gorithms sampling the canonical distribution, such as the Metropolis Monte

Carlo (55) used here. Note that although this energy is formally dimension-

less, we report it in units of kBT by analogy with statistical mechanics. This

provides the means, in principle, to compute the SC, provided we can also

determine which sequences are stable. In this way, we would not rely on ex-

isting databases to sample sequence space exhaustively (since in reality only a

tiny (and biased) fraction of possible sequences is likely to be sampled).
Computational sampling in protein sequence
space

To fully explore the mutational landscape and find the absolute sequence

entropy as a function of EEH, simulated annealing Monte Carlo simulations

(Eq. 4) are carried out. In each Monte Carlo iteration, the amino acid of one

random chosen residue is perturbed by a flip from one type of amino acid to

another, taking the system from one sequence, x, of energy EEHðxÞ to a new
sequence, x0, with energy EEHðx0Þ. The move is accepted/rejected with

acceptance probability

Pacc ¼ min
�
1; e�bðEEHðx0Þ�EEHðxÞÞ�; (4)

where b ¼ 1=kBT, with kB being the Boltzmann constant and T the temper-

ature. The simulations are started at a very high temperature to permit many

sequence rearrangements. Then, the system is cooled down slowly with the

temperature decreased in steps, with the time between temperature steps

long enough for it to reach equilibrium at each new temperature level.

Each simulation is terminated when the sequence is frozen. All the trial mu-

tations are chosen from existing amino acid types in the same aligned po-

sition of the MSA. Besides the 20 natural amino acids, we also allow

gaps to be sampled (as captured by the model (Eq. 1)), since the sequence

length of the same protein family fluctuates slightly.

For every protein system we studied here, 100 independent simulated an-

nealing simulations are carried out from random sequences; each simulation

contains 10 billion Monte Carlo steps, and b starts at 0.1 and increases 0.04

every 100 million steps. Histograms of EEH at different temperatures are ex-

tracted from the simulations. The overall density of states (sequence entropy)

is obtained by combining the histograms using WHAM (56).
HP model

Themodel is a 27-mer HPmodel that contains two types of beads to represent

polar and hydrophobic amino acids (5,57–59) (Fig. 4), and that can be exhaus-

tively enumerated owing to the reduced amino acid alphabet. The energy of

the HP sequence in a target structure is based on the contact interactions:

EHPðxÞ ¼
X
i < j

qije
�
ai; aj

�
; (5)

where qij ¼ 1 if residues ai and aj are adjacent on the lattice but not adja-

cent in sequence, and qij ¼ 0 otherwise. The energy contribution, eðai; ajÞ,
Biophysical Journal 113, 1719–1730, October 17, 2017 1721
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depends on the residue types of ai and aj . eðH;HÞ ¼ �2.3, eðP; PÞ ¼ 0.0,

and eðH;PÞ ¼ �1.0 (5).

In fitting the statistical potential to the sequences from the HP model,

we have slightly modified the regularization term: owing to the reduced

alphabet of the HP model, we found that lJ ¼ 0.5 is a more optimal

value in that case with respect to native contact prediction accuracy.

Similar to proteins, the residue coupling score can be obtained by the

l2 norm of Ji,j,

zi;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2

a;b¼ 1

Ji;j ða; bÞ2
vuut ; (6)

where the amino acid types of a and b are only ‘‘H’’ or ‘‘P.’’ The final

ranking score, zAPCi;j , is adjusted by an average-product correction term to

reduce the background effect (60). A large value of zAPCi;j means the muta-

tions at residues i and j are highly correlated and the two residues are likely

to be in contact in the 3D structure.
Alternative scaling of density of states

As an alternative procedure to obtain the absolute scaling of the density

of states, U, we use the concept of the median energy ðEmedian
EH Þ, which is

the energy value, EEH, at which 50% of the amino acid sequence energies

are below it and 50% are above. It can be estimated easily by unbiased

sampling of random sequences. If a protein is composed of L residues,

and the total number of existing amino acid types at residue position i

is Mi, the total number of different possible sequences (with gaps al-

lowed) is
QL

i¼1Mi, so that the number of sequences below the median en-

ergy is simply ð1=2ÞQL
i¼1Mi (23). The parameter g is introduced to scale

the estimation of UðEEHÞ obtained from simulated annealing simulations.

Given the UðEEHÞ and the median energies ðEmedian
EH Þ, g can be estimated

by requiring

ZEmedian
EH

�N

gUðEEHÞdEEH ¼

YL
i¼ 1

Mi

2
: (7)

Then, the adjusted SC is given by

SCadj ¼
ZEfold

EH

�N

gUðEEHÞdEEH: (8)

The adjusted SC ðSCadjÞ estimated by the median energy method is shown

in Fig. S4. As is evident, the adjusted estimations are in general consistent

with the direct estimations in Fig. 3 in the main text.
RESULTS AND DISCUSSION

Fitness of protein sequences correlates with
thermodynamic stability

We have chosen for our study 10 protein folds (Fig. 1)
that are common in the structural and sequence databases,
and therefore amenable to statistical sequence analysis.
The proteins were also selected to be representative of
different structural classes (such as all-a, all-b, or a/b),
and to have extensive mutational data, for reasons which
will become clear. For each of these folds, we have in-
1722 Biophysical Journal 113, 1719–1730, October 17, 2017
ferred a fitness model and corresponding statistical en-
ergy. Theoretical models have reasonably assumed that
the fitness of protein sequences is correlated with the ther-
modynamic stability of their folded states (15,61,62).
Consistent with this hypothesis, several recent studies
have shown that there is indeed a correlation between
the statistical energy, EEH, from such evolutionary models
and protein stability (3,63).

Therefore, we can in principle identify stable sequences
by establishing a critical value, EEH, below which most se-
quences are expected to be stable. To demonstrate this for
the 10 proteins we consider, we have built an evolutionary
model of the form of Eq. 1 for each protein family. For
example, for the 35-residue WW domain (Fig. 1 A), 42 nat-
ural sequences and 105 artificial sequences have been char-
acterized systematically by experiment (1). Among all the
sequences, 28 of the natural sequences and 12 of the artifi-
cial sequences can adopt a WW-domain fold (1). In addi-
tion, the PDB contains a further 68 wild-type and mutated
WW-domain sequences with solved structures, which we
also consider to be stable proteins. Taken together, there
are in total 108 protein sequences that are known to adopt
the WW-domain fold and 107 sequences that do not. We
have calculated the EEH of each sequence, and the EEH dis-
tributions of these two groups of sequences are shown in
Fig. 2 A. As anticipated, EEH separates the two groups fairly
well, the approximate border being ��54:0 kBT, which we
define as the folding energy, Efold

EH . There is some overlap of
the folded and unfolded sequences on the coordinate Efold

EH .
At least some of this must be due to the limitations of our
energy function. In addition, factors besides stability will
play an auxiliary role in determining the fitness of a
sequence.

For the other nine protein families, we have fewer mutant
sequences to determine Efold

EH than for the WW domain, and
in particular few unstable sequences. Therefore, we adopt an
alternative approach based on the correlation between EEH

and experimental folding stability for different mutations
(Fig. S1), as has been observed for other proteins (3,63).
By extrapolating a linear fit of these data to a stability of
zero, we can determine the critical Efold

EH . We have tested
the robustness of estimating the Efold

EH using this method on
the WW domain. The folded state stability of a wild-type
WW domain and 64 mutants, which are different from the
sequences used in Fig. 2 A, are reported in an experimental
f-value study of the WW domain (51). To be consistent
with the temperature at which the stability of the mutants
in Fig. 2 A was determined, the folded-state stability was
calculated at 298 K from the reported thermodynamic data
(51). The estimated Efold

EH (Fig. S1) is �59.2 kBT, very close
to the value obtained from Fig. 2 A, �54.0 kBT. The same
approach was used to estimate the critical folding energy,
Efold
EH , for the other domains we studied. An important conse-

quence of this correlation is that it should be possible to
design sequences that are more stable than the wild-type
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FIGURE 2 Correlation of evolutionary Hamilto-

nian energy, EEH, with protein stability. (A) Dis-

tribution of EEH of experimentally characterized

stable (blue) and unstable (red) sequences of the

WW domain. (B) Estimated entropy of sequences

(on a log scale) along EEH, obtained by Monte

Carlo simulation. The green line is the approximate

threshold of EEH separating the stable and unstable

sequences of the WW domain. To see this figure in

color, go online.
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based on the sequence energy. Indeed, we find for titin I27,
TNfn3, and NTL9 that the several variants that are more
stable also have lower statistical energy, supporting this
conclusion (Fig. S1). It should also be possible to use
this method to design foldable sequences, a goal we are
currently pursuing.

Since the simple cutoff on EEH does not exactly separate
folded and unfolded sequences, there will be some fraction
of sequences predicted to fold that do not (false positive
fraction (FPF)) and vice versa (false negative fraction
(FNF)). Given the density of sequences (Fig. 2 B) and
the fraction of sequences predicted to be folded that are
in fact unstable according to experiment (Fig. 2 A), we
can estimate the false positives from the WW-domain
data for the SC estimation. By assuming that the fraction
of foldable sequences at a given energy is correctly
estimated, we computed the fraction of non-foldable se-
quences as

FPF ¼
R Efold

EH

�N
UðEÞpf ðEÞdER Efold
EH

�N
UðEÞdE

; (9)

where Efold
EH ¼ �59.2 kBT. We describe pfðEÞ as a sigmoidal

function fitted to the observed fraction of folded sequences
at each energy value from the experimental data.

Although we include non-foldable sequences, we also
miss some foldable sequences that have energy larger than
our simple cutoff. The number of false negatives as a frac-
tion of our prediction of non-foldable sequence space can
be computed from

FNF ¼
RN

Efold
EH

UðEÞpf ðEÞdERN

Efold
EH

UðEÞdE : (10)

The FPF and FNF values we obtained for the WW domain
are 31.0% and 0.3%, respectively. Considering that we are
making order-of-magnitude estimates of the SC, these errors
are acceptable.
Density of sequences on EEH

Since EEH is a good indicator of foldability, we set out to
calculate the SC starting with the density of states (i.e., se-
quences) in EEH, UðEEHÞ (i.e., the total number of possible
sequences per unit of EEH); an analogous approach has
previously been applied in lattice-model studies (16). We
estimate UðEEHÞ using simulated annealing Monte Carlo
simulations in sequence space (Eq. 4). For the WW domain,
for example, all the sequences whose EEH value falls below
�59.2 kBT are considered to adopt the native fold.

However, to estimate the total SC, it is critical to deter-
mine an absolute scale for the density of sequences,
UðEEHÞ. We did this in two ways that gave comparable re-
sults. In the first, we located, where possible, the unique
sequence with the global minimum energy and used this
to scale the overall density of states. Since 100 simulated
annealing simulations of the WW domain (starting from
different, random initial sequences) converge to the same
final amino acid sequence, we assign that sequence the
lowest energy. The resulting estimated U for the WW
domain is shown in Fig. 2 B. This procedure also consis-
tently yielded the same lowest-energy sequence in indepen-
dent simulated annealing simulations for each of the other
proteins considered, with the exception of OmpA. This
protein may be unusual due to inherent differences in the
sequence energy landscape between membrane proteins
(such as OmpA) and globular proteins (all of the others
considered). For OmpA, the global minimal energy was
approximated by the lowest energy of 100 independent
annealing simulations. We also used an independent
approach for scaling the sequence entropy by determining
the median energy (23), as described in the Materials and
Methods; very similar final results were obtained, as shown
in Fig. S4.
Quantitative estimates of SC

Having obtained both the density of states on EEH and an
estimated cutoff Efold

EH , we can now obtain the sequence
Biophysical Journal 113, 1719–1730, October 17, 2017 1723



TABLE 1 Estimates of SC

Protein L Fold SC SC* M

WW 35 all-b 9.9�1021 2.9�10�24 5800

Villin 35 all-a 1.6�1013 4.7�10�33 759

NTL9 56 a/b 3.2�1019 4.4�10�54 4828

IM7 87 all-a 1.6�1027 1.1�10�86 536

Titin I27 89 all-b 2.0�1078 3.2�10�38 55,422

TNfn3 90 all-b 8.5�1078 6.9�10�39 66,289

PDZ 94 a/b 1.2�1073 5.8�10�50 30,176

a-LA 123 a/b 1.1�1039 1.0�10�121 934

IFABP 131 a/b 3.0�1059 1.1�10�111 1691

OmpA 171 all-b 7.9�1096 2.6�10�126 31,397

L refers to the protein length, SC* is the absolute SC normalized by the total

number of possible sequences (20L), and M is the number of sequences in

the MSA for each protein family.

Tian and Best
capacity by simple integration of the density of states. It is
clear that the SC is an enormous number. For example, in
the case of the WW domain, the SC is estimated to be
1:6� 1024, larger even than Avogadro’s number! However,
the relative SC, SC*, i.e., the fraction of the total number
of possible sequences (2035 for the WW domain) that
fold is extremely tiny, with SC*¼ 4:5� 10�22 for the
WW domain. We note that considering the small variations
of length in sequences that fold to a given structure
(accommodated by gaps in our model) changes the number
of possible sequences by a negligible amount (<5%). In
addition, using the alternative Efold

EH of �59:2 kBT also
yields a very similar SC for the WW domain (Fig. 3 B,
red plus sign).

The SC and SC* of each of the 10 protein structures are
listed in Table 1. The densities of sequences as a function
of EEH are plotted in Fig. 3 A.

This calculation of the SC makes an important assump-
tion: if a sequence is predicted to be stable for a given
fold, it should not be more stable (or even similarly sta-
ble) in some other fold. We do not think this is a signifi-
cant effect in our calculation for two reasons. First, if we
treat the probabilities of a sequence folding to each of two
different folds as being independent, it is clear from the
low probability of being stable in even a single fold that
the probability of being stable in two folds is negligible.
Second, it is well known that it is extremely rare for a pro-
tein to be stable in alternative folds. Even in those cases,
usually one fold is most stable, and some energetic factor,
e.g., dimer formation, ligand binding, or change of solu-
A B

C D
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tion conditions is needed to cause a switch to a different
fold (64).
Robustness test of SC estimation

A key issue for our model is that it has been parameterized
using a limited set of sequences compared with the total
number of sequences that can fold. The obvious question
that arises is how dependent our knowledge-based model
is on the number of sequences for a protein that are available
in the database. To mitigate this dependence, we have delib-
erately chosen proteins for which a large number of se-
quences are already known. We have also determined, for
all the proteins studied here, that using only half of the
FIGURE 3 Densities of sequences and SCs. (A)

Entropy of sequences on the coordinate EEH for

each of the 10 proteins. The vertical lines are the

boundaries of foldability (Efold
EH ) obtained for each

protein (Fig. S1). (B and C) Correlations of the SC

with CD (B) and protein length (C). The red plus

sign in (B) is the SC of the WW domain calculated

using Efold
EH ¼ �59.2 kBT. The black line in (B) is a

linear fit to the dependence of ln(SC) on CD. (D)

SC* plotted against the protein length. To see this

figure in color, go online.
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sequences (Fig. S2, gray) to build the energy function still
results in a prediction of comparably low energies (high pro-
pensities) for the omitted sequences (Fig. S2, red). More-
over, as shown in Fig. S3, the SC estimated using half of
the sequence of MSA ðSChÞ is highly consistent with the
value estimated using the full MSA (Fig. 3). This suggests
that the accuracy of the model does not depend critically
on the size of the database.

To further validate whether a small subset of sequences
can be used to recapitulate the properties of the full set of
foldable sequences, we have employed a highly simplified
27-mer lattice model in which the chain is confined to lie
on a 3� 3� 3 cubic lattice (i.e., considering only compact
conformations such as that shown in Fig. 4 A). Similar
models have been used previously to study protein designa-
bility (16,65,66), as well as to benchmark inferred Potts
Hamiltonians (Eq. 1) (67). Although highly simplified, it
has been found that the trends of designability obtained
FIGURE 4 Lattice-model test of robustness of the coevolutionary model for d

(B) The logarithm of the density of sequences on the HP energy. (C) Native co

circles and the (top 27) predicted contacts based on the sequences fxHPgs90 as b
evolutionary energy, EEH, for all the sequences fxHPgs90. The green line is Efold

EH

black line at position Efold
HP (red line). (E) The logarithms of the exact density of

corresponding results from Monte Carlo simulations using the energy EEH are s
with the HP model agree qualitatively with those using
the Miyazawa-Jernigan model (68), which uses all 20 amino
acids (69). The restriction to a 3� 3� 3 cubic lattice allows
the � 105such conformations to be enumerated for each
sequence, versus the � 1016 conformations on an unre-
stricted cubic lattice (70). This restriction is somewhat unre-
alistic for protein folding, as unfolded conformations will
not, in general, be compact (70,71); furthermore, it has
been shown that in many cases the true lowest-energy
(native) configuration is not even a compact structure (71).
However, since our aim is to count foldable sequences
within the context of a simplified model, rather than to
have a more realistic model, we can include the restriction
to compact structures in our model definition. We could
alternatively have used a two-dimensional HP model, the
only type of lattice model for which all conformations can
be practically enumerated (72,73). We have chosen not to
do this here, because the SCs tend to be much smaller
etermining SC. (A) The most designable 27-mer structure for the HP model.

ntact predictions from the fitness model. Native contacts are shown as red

lue crosses. (D) Correlation of the energy in the HP model, EHP, with the

, which is obtained by fitting the correlation between EHP and EEH with a

sequences on EEH from enumeration of the HP model are shown in black;

hown in purple. To see this figure in color, go online.

Biophysical Journal 113, 1719–1730, October 17, 2017 1725



Tian and Best
(e.g., the SC of the most designable structure of a 24-mer
is 228 (74), and only 24 sequences are left if sequences
with >90% sequence identity are removed).

We chose the most designable structure of the 27-mer
three-dimensional HP lattice model, shown in Fig. 4 A (5),
and we enumerated the energy of all possible HP se-
quences threaded onto this structure (density of states shown
in Fig. 4 B). We assume that the relative folded-state stability
of the sequences is given by EHP (i.e., that the energy and
entropy of the unfolded states of all sequences are similar).
We initially defined the foldable sequences as those with
EHPðxÞ<Efold

HP , where E
fold
HP is chosen as �54.0, so that only

sequences in the low-energy tail of the distribution are
included, yielding a total of 22,185 sequences. We then con-
structed a subset of the foldable sequences by filtering the full
set of foldable sequences fxHPg so that the maximum pair-
wise sequence identity is 90% to yield a subset, fxHPgs90,
which contains 994 sequences. We used the MSA of these
994 sequences ðfxHPgs90Þ as input to build the Hamiltonian
energy, EEH, as Eq. 1. The structure contacts predicted
(Fig. 4 C) using the covariance parameters Jij obtained in
Eq. 1, are highly consistent with the ‘‘native contacts’’ of
the lattice structure (Fig. 4 A), showing that the sequence
model can accurately describe the foldable sequences that
can fold to the target structure. Similar results were also ob-
tained for a randomly chosen subset of 1% of the foldable
sequences.

As for the real proteins (Fig. S1), we found that the EEH of
the HP model sequences ðfxHPgs90Þ is highly correlated with
the stability, EHP, so that the boundary of foldability defined
by the evolutionarymodel ðEfold

EH Þ can be determined from the
stability,Efold

HP , using this correlation (Fig. 4D). Following the
same procedures as for the real proteins, we estimate the ab-
solute sequence entropy of the HPmodel as a function ofEHP

by carrying out simulated annealing Monte Carlo simula-
tions (Eq. 4). As one can see, the estimated sequence entropy
agrees very well with the exact sequence entropy on EEH

(Fig. 4 E). The estimated SC from Fig. 4 E (purple) is
21,398, which is very close to the exact SC of 22,185. In sum-
mary, the SC estimation of a lattice model, which can be
enumerated (75), indicates that our method is robust.

In the above example we have successfully recovered the
HP-model SC, in which folded sequences are defined purely
by the physical energy. However, the folded state is nor-
mally taken as the unique, lowest-energy structure for a
given sequence. We have therefore checked the energy of
each of our foldable sequences (as defined by Efold

HP ) when
it is threaded onto a set of 10,000 representative compact
folds (67). This comparison revealed that the model is in
fact quite degenerate, with many sequences having other
folds of equal or slightly lower energy, likely due to the
limited sequence alphabet. Moreover, the lowest-energy se-
quences also have a high fraction of hydrophobic residues
and hence the most potential for degeneracy. We therefore
defined the foldable sequences as those for which the target
1726 Biophysical Journal 113, 1719–1730, October 17, 2017
structure (Fig. 4 A) is below Efold
HP ¼�54.0 and also a ground

state for that sequence, i.e., there are no other structures with
lower energy for that sequence (69). A total of 2880 se-
quences fulfill these two requirements; we constructed
a subset, fx0HPgs90, of 207 sequences, after filtering with
maximum pairwise sequence identity of 90%. The MSA
of these 207 sequences sequences was used to build the
Hamiltonian energy (Eq. 1). As shown in Fig. S5 A, the
EEH of the HP-model sequences ðfx0HPgs90Þ still correlated
very well with the stability EHP and the estimated SC of
8409 (density of sequences is shown in Fig. S5 B) remains
close to the true sequence capacity of 2880, considering
the order of magnitude nature of our estimate. The predicted
8409 sequences show a good overlap with the true stable se-
quences, with 89% of the learning set and 84% of the full set
of foldable sequences being included in the predictions.
Long-range native contacts are important for
protein designability

The SC and SC* values of all the 10 protein structures are
listed in Table 1. The densities of sequences as a function
of EEH are plotted in Fig. 3 A. Previous theoretical studies
had suggested that SC is determined by contact density
(CD), which is the total number of native contacts of the
protein structure divided by the sequence length (6,18). A
simplified explanation for this is that structures with higher
CD can be designed to be more stable (with the right choice
of sequence) because of the higher number of total interac-
tions, and that more stable proteins are more designable,
because they allow more unfavorable interactions to be
accommodated without making the folded state unstable.
Very short-range contacts, although numerous, would not
contribute much to stability, as they are also likely to be
formed in the unfolded state.

To test the relation of SC to CD, we define two residues as
being in contact as long as any pair of heavy atoms, one
from each residue, are closer than 4.5 Å. We observed that
the correlation between SC and CD varies depending on
the chosen minimal residue distance for the CD calculation.
We do not find significant correlations between SC and CD
for a minimal sequence separation of native contacts be-
tween residues i and j of ji� j j >m for m ¼ 1; 2, similar
to what has been found using sequence threading (24). On
the other hand, there is a strong correlation between SC
and CD for ji� j j >m for mR3, where local contacts are
excluded in the CD calculation. This is consistent with pre-
vious studies suggesting that long-range contacts are more
important in determining the designability of proteins
(17,76,77). In Fig. 3 B, SC is plotted against CD with
ji� j j > 4, giving a Spearman rank correlation of 0.93.
The SC also increases with protein length (Fig. 3 C), as ex-
pected from the general trend of increasing CD with length
(due to the reduced contribution from surface residues in
larger proteins). We note anecdotally that for proteins of
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similar length in our data set, the SC appears to be more
discriminating than protein size alone. For example, both
villin and the WW domain have 35 residues, but the WW
domain has many more long-range contacts and it has
higher SC. Similarly, Im7, titin I27, TNfn3, and the PDZ
domain all contain around 90 residues, and the SC is clearly
distinguished by the CD with ji� j j > 4.

Although absolute SC increases with CD or protein size,
the SC* decreases (Fig. 3D) with sequence length, indicating
that although larger proteinsmay havemore sequences avail-
able to design, the task of finding those sequences from the
many possible sequencesmay be harder. Thus, if the absolute
SC is associated with the ‘‘designability’’ of a sequence, the
SC* could be assigned to its ‘‘discoverability.’’
How big is the sequence universe of natural
protein folds?

There are �70 million protein sequences registered in
the UniProt database so far (11). According to either the
CATH (78) or SCOPe (79) databases, all of these sequences
can be classified into only �2000 superfamilies. The num-
ber of registered sequences is increasing rapidly owing to
the advances of genomic sequencing techniques. However,
the number of distinct protein superfamilies appears to be
saturating (80). Protein sequences with the same superfam-
ily share highly similar protein structure. Given the good
correlation between CD and SC, we sought to use CD to
predict the SC of each protein superfamily based on the
CD of a representative PDB structure. Assuming a negli-
gible sequence overlap between different superfamilies
(81), we can estimate the total number of possible stable se-
quences of all the natural folds by summing up the SCs of all
the superfamilies.

A straight-line fit to the data in Fig. 3 B yields a simple
approximation for the SC of a given structure, with
ln½SC�zaCD� b with best-fit parameters of a ¼ 147 and
b ¼ 134. This expression suggests a minimal designable
CDz0:9, below which it will be hard to find foldable se-
quences. With this empirical function, we can estimate the
SC of a given structure from the CD. The histogram of
CDs of 2737 representative structures (one structure from
each superfamily) from the CATH database are shown in
Fig. 5 A. Indeed, there are very few superfamilies whose
CD lies below 0.9. The structures in most of those superfam-
ilies have very few, if any, tertiary contacts, such as single
a-helices (CATH: 1.20.5) and the ‘‘irregular’’ architecture
in CATH (CATH: 4.10). These are mainly protein subunits,
e.g., ribosomal protein S8 (CATH: 1.20.5.1150) and Foot-
And-Mouth Disease Virus subunit (CATH: 4.10.90.10),
which derive their stability from assembly with other pro-
teins or biomolecules. Considering the SC of these proteins
without their partner domains makes little sense, so here we
consider only the SC of the domains whose CD is >0.9. By
adding together the SCs of all those superfamilies, the num-
ber of all the foldable sequences of the current (natural) fold
universe is estimated to be 7.4 � 10172. Considering that
there is evidence that the naturally occurring folds are just
a small fraction of the possible folds (82,83), the total num-
ber of foldable protein sequences over all folds would be
even larger.
Older proteins have larger SC

Protein evolutionary history might be influenced by many
structural properties (9). Here, we have investigated the
relation between the evolutionary age of proteins and their
SC. The relative evolutionary ages of different CATH su-
perfamilies have been previously estimated using phyloge-
netic analysis (84–87). Here, we compare the ages of
CATH superfamilies determined by Alva et al. (87) with
our estimates of SC. As shown in Fig. 5 B, we find that
there is a clear trend for ancient folds to have higher SC
than the folds that have arisen more recently (Spearman
rank correlation ¼ �0.86; note that the relative protein
ages of 1.0 and 0.0 represent the most recent and ancient
proteins, respectively). This may be because the higher
designability enabled by the more complex (larger) folds
with higher CD is ultimately more desirable; protein folds
can become increasingly complex over the course of evolu-
tion by fusion, repetition, and recombination (Fig. 5 C)
(86,88). High designability is desirable, because it results
in folds that are more robust to mutation and allows
more functional diversity (89). Therefore, highly design-
able proteins are more likely to emerge though adaptive
evolution.

However, considering the relationship between the SC*
and protein age reveals the opposite result: SC* is highly
anti-correlated with protein age (Fig. 5 D). Although a
larger absolute SC may emerge in more highly evolved folds
as a result of selective pressure, there may also be advan-
tages to a higher SC* for more recent folds. A higher SC*
means that these novel structures would then have a higher
probability of emerging by chance, rather than evolving
from something else. There is thus some tension between
the competing advantages conferred by high absolute or
relative SC, which may lead to the correlations observed
with protein age.
CONCLUSIONS

Using a protein fitness model based on sequence variation
inferred from evolutionary information, our study has pro-
vided a quantitative estimate of the SC for 10 different pro-
tein families by computational sampling of sequence space.
We find that the SC of even the simplest folds is enormous,
exceeding even the Avogadro constant, suggesting a lot of
room for redesign of existing structures. Our SC estimates
appear to be robust, as they are not sensitive to the size
of the protein sequence database used; furthermore, our
Biophysical Journal 113, 1719–1730, October 17, 2017 1727
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FIGURE 5 (A) Histogram of CDs for all the representative protein structures (2737) from each CATH superfamily. (B–D) The relative age of all the super-

families from theCATHdatabase are plotted against themedian of SC (B),mean protein length (C), andmedian of SC* (D). To see this figure in color, go online.
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method successfully predicts the SC of a lattice protein
model, which can be exactly enumerated, based on a small
subset of the foldable sequences. We find that larger pro-
teins, or those with higher CD, are more designable, in
accord with theoretical predictions. On the other hand, the
SC* is strongly anti-correlated with protein length. There-
fore, accessing the larger SC of larger proteins places
more demanding requirements on rational design protocols,
such that the search problem in sequence space can be over-
come. Based on our results, we have obtained a simple
empirical formula to predict SC from CD. The formula
predicts that structures with a CD of <0.9 (using our defini-
tion) would be hard to design. Indeed, analysis of the CATH
database of protein structures reveals that those with a CD
of <0.9 are generally part of a larger complex, and unstable
in isolation. Our SC estimates for the CATH database enable
us to estimate the total SC of the known universe of protein
structures, and to correlate the SC of a fold with its evolu-
tionary age. We find that more recently evolved proteins
have higher SC*, which may be an advantage for initial dis-
1728 Biophysical Journal 113, 1719–1730, October 17, 2017
covery of a folded structure, but that more ancient proteins
have a higher absolute SC, suggesting that evolution guides
proteins toward more designable structures.
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