Skip to main content
. 2017 Sep 29;19(3):277–285. doi: 10.5853/jos.2017.02054

Table 1.

Machine-learning studies on stroke imaging

Application Setting Imaging tool Performance
Diagnosis
 Automatic lesion segmentation (ischemic stroke) [17] Subacute stroke (> 24 hours and < 2 weeks) MRI Inferior to human segmentation
 Automatic lesion segmentation (ischemic stroke) [18] Chronic stroke MRI (T1-weighted) Comparable to manual segmentation
 Automatic lesion segmentation (ischemic stroke) [19] Acute stroke DWI Comparable to manual segmentation
 Determination of ASPECTS (e-ASPECTS) [20,21] Acute stroke CT Non-inferior to human reading
 Automatic diagnosis of MCA dot sign [22] Acute stroke (< 24 hours) CT Sensitivity 97.5%
 Estimation of CSF volume for infarct edema [23] Acute stroke CT Better than conventional method
 Automatic lesion segmentation (hemorrhagic stroke) [25] Acute stroke CT Comparable to manual segmentation
Prognosis
 Symptomatic ICH after thrombolysis [27] Acute stroke CT Improved the prognostic prediction
 Improvement of visual function in PCA infarcts [28] Subacute stroke (within 7 days) MRI Improved the prognostic prediction
 Long-term mortality of AVM [34] After endovascular treatment CT, MRI Accuracy of 97.5% to predict outcome
 Impairment in multiple behavioral domains [35] Subacute stroke (within 2 weeks) MRI, fMRI Enabled the prognostic prediction
 Motor impairment [36] Chronic stroke (≥ 3 months) MRI, fMRI Enabled the prognostic prediction

MRI, magnetic resonance imaging; DWI, diffusion weighted imaging; ASPECTS, Alberta Stroke Program Early Computed Tomography Score; CT, computed tomography; MCA, middle cerebral artery; CSF, cerebrospinal fluid; ICH, intracerebral hemorrhage; PCA, posterior cerebral artery; AVM, arteriovenous malformation; fMRI, functional magnetic resonance imaging.