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Abstract

Purpose of review—Here, we discuss the interpretation and modeling of gene-environment 

interactions in hypertension related phenotypes, with a focus on the necessary assumptions and 

possible challenges.

Recent findings—Recently, small cohort studies have discovered several novel genetic variants 

associated with hypertension-related phenotypes through modeling gene-environment interactions. 

Several consortia-based meta-analytic efforts have uncovered many novel genetic variants in 

hypertension without modeling interaction terms, giving promise to future meta-analytic efforts 

that incorporate gene-environment interactions.

Summary—Heritability studies and genome-wide association studies have established that 

hypertension, a prevalent cardiovascular disease, has a genetic component that may be modulated 

by the environment (such as lifestyle factors). This review includes a discussion of known genetic 

associations for hypertension/blood pressure, including those resulting from the incorporation of 

gene-environmental interaction modeling.

1 Introduction

Cardiovascular disease (CVD) is the leading cause of death worldwide, and the burden is 

expected to increase in the coming years [1]. Further, CVD is considered to be largely 

preventable, and while prevention and mitigation efforts are leading to declines in CVD 

mortality in high income countries, the incidence of and mortality from CVD continues to 

increase in low- to middle-income countries [2]. In part, increasing rates of CVD mortality 

in low- to middle-income countries is a function of longer life expectancy resulting from 

decreasing prevalence of infectious disease [3]. This, combined with high smoking rates [4], 

increasing obesity rates, and relatively poor access to treatment [3], combine to increase 

CVD mortality in low- to middle-income countries. Hypertension (HTN) is characterized by 

high systolic blood pressure (SBP) and/or diastolic blood pressure (DBP), and is a major 

causal factor in heart failure, stroke, renal disease, and cardiovascular death [5]. A seminal 

study in BP research characterized the relationships between blood pressure and risk of 
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CVD mortality and stroke as continuous, consistent, and independent of other risk factors; 

between the ages 40–69 years, CVD risk doubles for every 20 mmHg increase in SBP or 10 

mmHg increase in DBP above 115/76 mmHg [6]. For 2015, the American Heart Association 

reported that high blood pressure (BP) was the leading factor in 40.6% of CVD and 34.7% 

ischemic heart disease attributable deaths in the US [7]. HTN incidence has been shown to 

differ among ancestral groups, as evidenced by comparisons between Caucasian and 

Hispanic American as well as Caucasian and African American groups [8, 9]. Between 2003 

and 2013, the overall death rate attributable to HTN in the United States increased 14.4% 

and 1.7% in non-Hispanic Caucasians and Hispanics respectively, and declined 9.1%, and 

non-Hispanic African Americans [7].

CVD, as most human diseases, arises from a complex interaction between the environmental 

and genetic factors. Genome-wide association studies (GWAS) have identified a large 

number of genetic factors in a variety of diseases, including HTN, as reviewed by Zheng et 

al. [10]. In BP, family and twin studies have yielded heritability estimates in the ranges of 

48% to 60% (SBP) and 34% to 67% (DBP) [11, 12, 13]. As of 2011, identified genetic loci 

from GWAS accounted for less than 2.5% of the phenotypic variance in BP studies [14], 

which has modestly increased to ≈3.5% with more recent GWAS [15, 16, 17]. 

Overestimation of heritability may occur in twin studies due to violations of shared 

environment assumptions, and poor phenotyping practices in control cohorts, failure to 

account for epistasis, GxE interactions, and other non-genetic sources of phenotype 

modulation may lead to underestimation of heritability in GWAS, all of which may 

contribute to the large difference in heritability estimates. Nonetheless, it is widely assumed 

that many of the causal loci are as of yet unidentified, a phenomenon commonly referred to 

as “missing heritability” [18, 19, 20]. Whereas GWAS have primarily focused on identifying 

genetic factors through modeling main effects of common SNPs, a focus on modeling gene-

environment (GxE) and gene-gene (GxG) interaction may identify additional causal factors 

in human disease [18]. BP is known to be modulated by a variety of lifestyle factors, such as 

diet [21], exercise [22], and smoking [23], as well as other factors such as age [24, 25] and 

obesity [26]. In GWAS for HTN-related phenotypes, significant GxE interactions have been 

identified with alcohol consumption [27], body mass index (BMI) [28], smoking [29, 30], 

education levels [31], and sodium intake [46] which are all modifiable through lifestyle 

changes. These findings suggest that further investigation into GxE interaction may identify 

causal genetic loci that contribute to missing heritability [33].

The remainder of this review is organized as follows: Section 2 presents a discussion of 

interaction, including common definitions of interaction, rationales for modeling interaction, 

and limitations in modeling GxE interaction. Section 3 briefly reviews selected methodology 

employing interaction that has been used to identify genetic factors in HTN and HTN-

related phenotypes. Section 4 summarizes the genetic factors in HTN and HTN-related 

phenotypes, and focuses further on associations identified using models that account for 

GxE interactions. Section 5 ends with a discussion of future direction for GxE studies and a 

conclusion.
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2 Interaction and accounting for interaction through statistical modeling

Although the term “interaction” is prevalent in GWAS and the statistical literature, the 

definition and interpretation of interaction is contextual. Here, we discuss possible 

interpretations of interaction in the contexts of GWAS and statistics, then discuss how these 

interpretations coincide. A series of rationales is given for investigation into GxE 

interactions, and we follow with a commentary on the difficulties surrounding modeling 

GxE interaction terms in GWAS.

In an oft-cited review of GxE interaction in GWAS, Thomas [34] presents five definitions of 

interaction, given in Table 1. Of the five, biological interactions are the assumed to account 

for a portion of the missing heritability. Using a more general definition, biological 

interaction occurs when the effect of one factor on the process driving a phenotypic response 

is affected by the presence or magnitude of another factor [24]. Qualitative and quantitative 

interactions are forms of statistical interaction, as mentioned by Thomas [34], and public 

health synergy is collapsible into statistical interaction using the definition of statistical 

interaction given by Cox [35]. In all cases where statistical interaction is modeled, it should 

be assumed that biological interaction exists, even if the biological mechanism is not 

understood. Ottman [36] gives five plausible models for environmental and genetic factors to 

cooperatively influence disease etiology, of which four could be appropriately modeled by 

the definition of statistical interaction given above. Un-modeled interactions, in the case of 

GxE, GxG, or gene-covariate interactions, may contribute to confounding if left 

unincorporated. In general, the statistical literature tends to focus on modeling interaction 

terms as a nuisance, while the genetic epidemiology literature models interaction to increase 

power in finding disease relevant genetic loci [33]. In the context of statistical analysis, 

erring on the side of overfitting rather than underfitting with respect to interaction terms is 

recommended when interaction is believed to exist [35]. In cases where GxE interaction is 

biologically feasible, modeling these interactions can aid in accounting for departures from 

independence between the genetic and environmental factors of interest.

Hunter [37] gives a series of rationales for studying GxE interactions in GWAS, which is 

presented in its entirety in Table 2. Thomas [34] also describes the goal of incorporating 

GxE interaction terms in GWAS is to use interactions – not discover interactions, but use 
interactions – to “discover novel genes that act synergistically with other factors” in 

modeling disease etiology, which intersects with the first of the rationales given by Hunter 

[37] in Table 2. The resulting findings from modeling GxE interactions in GWAS focus on 

presenting results in light of the remaining four rationales. The genetic associations 

discovered in GWAS are often used to drive bioinformatics research in finding the biological 

pathways mentioned in rationales three and four. In cases where the biological pathways for 

genes associated with GWAS identified genetic loci are understood, findings are presented in 

light of the processes underlying the biological pathways. Incorporating the interaction term 

into modeling can make finding a sufficiently explanatory relationship between the 

phenotypic response and model possible. Ultimately, the goal of GWAS is to drive 

personalized medicine, which is reflected in the fifth and final rationale presented.
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Appropriately modeling interaction from a statistical standpoint is difficult, and modeling 

interaction in the context of GWAS presents additional complexity. Much of the difficulty in 

appropriately modeling interaction in GWAS comes in light of the generally small sample 

sizes relative to the large number of possible combinations of factors in observational studies 

[38]. Further exacerbating this problem is the possibility that minor allele frequencies are 

small, that the disease prevalence is low, or both [33, 38]. Confounding issues stemming 

from failing to model non-GxE interactions may arise, and will be discussed briefly in the 

conclusion. Outside of practical modeling concerns, some researchers believe that modeling 

interaction in the GxE or GxG context is inherently problematic. Some “environmental” 

factors, such as alcohol intake in studies concerning alcohol metabolism, may be driven by 

the causal gene in question and should not be used as covariates [39]. This suggests that 

additional factors related to the phenotype of interest, especially genetic factors that could be 

considered intrinsic, may be better incorporated through methodologies that model 

pleiotropy [40]. Furthermore, because the genotype frequency of the marker found in 

linkage disequilibrium and the true causal locus likely differ, the imputed genotype 

frequency at an identified marker is not an unbiased estimator of the frequency at the causal 

locus, leading to unknown misclassification probabilities [40]. Misclassification or 

measurement error for environmental and nuisance factors may also exist in the data. While 

it has been shown analytically [41] and through simulation [42] that misclassification in 

environmental factors biases the interaction term toward zero, these studies assume 

independence in the prevalence of genetic and environmental factors in the population, and 

results may not hold when this assumption is violated [40].

3 Common methodologies used to account for interaction in GWAS 

modeling

Although the GWAS literature that do not account for interaction is diverse, these 

methodologies are well reviewed and do not fit the scope of this writing. The literature 

concerning the modeling of interaction in GWAS is also diverse, but we focus on methods 

that appear to be successful in uncovering genome-wide significant (GWS) SNP associations 

in BP-related traits. More specifically, we compare the assumptions, perceived notions of 

power and type I error rates, and discuss how violations of these assumptions may affect 

type I error rates. For all tests discussed, researchers mitigate multiple testing issues and 

control type I error rates with a restrictive definition of GWS by setting the target type I 

error rate at α=5×10−8., and studies often further control for false positives by accounting 

for population substructures through genomic control methods [43].

3.1 Tests involving a single cohort, or multiple cohorts with fully available data

Applications of the general linear model, or GLM, are appropriate to test for association 

between genomic markers and the phenotype of interest. In analyses where complete data 

for all individuals is readily available, a GLM can be fit to the full data. These tests can 

account for any confounding factor that may arise through modeling of nuisance factors. 

Unfortunately, these tests are limited by the complexities that arise from analyzing massive 

cohorts, and require full access to raw data from all cohorts, which is often unattainable. 

While a number of tests could arise from the use of GLMs in the GWAS GxE literature, we 

Waken et al. Page 4

Curr Hypertens Rep. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



focus on the joint 2 degree of freedom likelihood ratio test (referred to as J2DF) and the 

Wald type 1 degree of freedom interaction effect test (referred to as 1DF). In applying a 

GLM, assumptions are imposed on the error structure of the resulting model. Typically, 

population substructures within the errors resulting from a GLM fit will inflate type I error 

rates [43]. For a more formal review of the mechanics surrounding these hypothesis tests and 

test statistics, see Appendix A.1.

3.2 Meta-analytic tests involving multiple cohorts

Studies concerning the detection of causal genetic loci are demanding regardless of the 

inclusion of interaction effects, which further compounds the issue [44]. In addition, fitting 

GLMs to datasets large enough to allow for the discovery of significant interaction terms 

may be computationally difficult, and in many cases, researchers do not have access to full 

cohort data. Meta-analytic procedures allow researchers to incorporate results from study-

specific analyses to implement more powerful tests than what could be achieved through the 

use of a single cohort analysis; this does not require access to the individual level data used 

in each of the contributing cohorts.

In meta-analysis concerning synthesis of uncorrelated regression slopes, inverse variance 

weighted least squares approaches are common. Ordinary and weighted least squares 

approaches are inappropriate to model correlated regression slopes and may not result in 

consistent estimates. Becker and Wu [45] present a robust generalized least squares meta-

analytic approach to estimate possibly correlated population regression coefficients given 

summaries of study-specific analyses. This technique was later applied to meta-analysis of 

GWAS results [33]. As with all meta-analytic approaches, we must assume that the results 

from the k studies incorporated are representative of the true processes in the population of 

interest, and are not pruned to the most significant results via publication bias. This 

assumption is somewhat safe in the realm of genetic epidemiology, where the aim of the 

meta-analysis is to bolster power through the incorporation of results from multiple cohorts 

performing agnostic GWAS. This methodology also assumes that either a) each of the k 
studies considered accounted for the same nuisance parameters, or b) that although the k 
studies did not incorporate the same nuisance parameters, the resulting parameter estimates 

are unbiased representations of the true slopes of interest. The validity of the latter 

assumption is generally corroborated, so long as modeling techniques in the individual 

studies are the same; studies have found little to no evidence of bias in the synthesized 

slopes of interest as a result of the estimation of additional nuisance parameters in the 

considered studies [46, 47], while analyses synthesizing results from different models show 

that the type of model, as well as the difference in nuisance parameters, will affect the meta-

analytic slope estimates [48]. We focus on the joint Wald type 2 degree of freedom test 

(referred to as JMA2DF), which tests the genetic main and GxE interaction effects, and the 

Wald type 1 degree of freedom interaction effect test (referred to as MA1DF). For a more 

formal review of the mechanics surrounding these hypothesis tests and test statistics, see 

Appendix A.2.
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4 Significant findings in the HTN literature

Although the above is primarily focused on incorporation of GxE interaction terms into 

models evaluating the effect of allelic presence at genetic loci of interest, major findings 

concerning causal genetic loci have been accomplished without modeling GxE interaction 

terms. Online Resource 1 gives a summary of GWS findings from studies that did not 

incorporate GxE interaction, including the gene, cytogenetic or molecular location, 

associated phenotype, lead/tag SNP (a representative SNP in an area of the genome that 

exhibits high linkage disequilibrium), and the ancestral groups. A short summary of all HTN 

GWAS GWS findings is given in Table 3.

4.1 Findings relying on the incorporation of GxE interactions

A set of GWS findings from models incorporating interactions is given in Online Resource 

2. Notably, this table is somewhat smaller, suggesting that this is a more recent direction of 

research which needs more effort. Also, some of the identified loci that were not novel may 

have been observed in studies that did not include interactions. It is notable that when 

findings of association were also detected in studies accounting for GxE interactions, these 

models lend great power to uncovering possibly causal genomic variants. An example of 

increased power from the inclusion of GxE terms in GWAS can be seen through the analysis 

of 6,889 participants from the Framingham Heart Study cohort by Sung et al. [29]. In Table 

4, the findings overlap at the MECOM gene are displayed as well as cohort information for 

the studies involved. Although these findings have shortcomings, recall that our purpose is 

not to detect interaction, but rather detect novel loci by accounting for interaction, similar to 

the arguments made by Cox [35] and Thomas [34]. In this context, the interaction can be 

thought of more as a nuisance parameter, much like the covariates modeled.

5 Conclusion and future direction

We have reviewed the definition, rationale, and interpretation of GxE interaction in the 

context of GWAS. The discussion includes limitations in select methodology, and relevant 

GWS findings within the HTN GWAS literature. Accounting for GxE interaction in GWAS 

can aid in the detection of new GWS genetic loci [34], which is shown through the examples 

in Online Resource 2 and Table 3. Additionally, although the mechanistic processes 

underlying GxE interactions is unknown, their existence is well accepted and studied [36], 

which gives credibility to the incorporation of GxE interaction terms in GWAS.

It is commonly known that even in the absence of a true effect, increases in the study sample 

size n for a given study leads to more significant p-values, which may cause a researcher to 

declare spurious results statistically significant. Through simulation, VanderWeele et al. [79] 

show that this phenomenon is more pronounced at smaller sample sizes as the effect size of 

an uncontrolled confounder increases. Keller [80] attributes this type I error rate inflation to 

either uncontrolled confounding involving environmental and/or un-modeled population 

substructures in GxE GWAS studies or improper model specification, adding that, of 45 

reviewed studies with GWS findings in the GxE schizophrenia literature, only 12 were thus 

far replicated. Further, in situations where measurement error or misclassification exists in 

the genetic, phenotype, and/or environmental covariates, effect estimates may be 
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inconsistent, resulting in lower power, or bias, which may increase type I error rates [81]. In 

light of the previous discussion regarding the assumption of a true biological interaction 

between the genetic factor and environmental covariates of interest, note that we implicitly 

assume independence of all possible un-modeled covariates and factors, interactions 

included. As meta-analytic approaches become more prevalent, increasing the sample size 

and power of GxE GWAS, this assumption will need to be given more attention to avoid 

inflating type I error rates. While misclassification of environmental factors has been shown 

to bias the interaction term toward zero, thus not contributing to type I error rate inflation 

[41, 42] these analyses assume independence of the genetic and environmental factors in the 

population conditional on the phenotype of interest, and these results may not hold when this 

independence assumption is violated [40]. Although research has not specifically been 

conducted to study type I error rates as a function of minor allele frequencies in GxE studies, 

inclusion of genetic variants with small minor allele frequencies is uncommon due to error 

rate inflation concerns [82]. While these concerns are echoed throughout the literature, it has 

been shown through simulation that inclusion of genetic loci with small minor allele 

frequencies does not increase type I error rates above expected levels [83].

Incorporation of GxE interaction terms into GWAS may enhance statistical power without 

increasing sample sizes by reducing error variance, which may facilitate personalized 

medicine approaches in healthcare and may help in the development of pharmaceutical 

treatment for complex diseases. Although arguments against interaction studies exist, 

replication in additional cohorts and biological explanations of gene expression can mitigate 

spurious findings. Investigation of pleiotropy and epistasis can yield further insights into the 

genetic underpinnings of complex diseases, but require much larger sample sizes. As the 

cost of sequencing decreases, these approaches may shed light on genetic variants that either 

work in parallel to influence disease, or contribute to multiple diseases.

Added in proof: As of this revision, Warren et al. [84] have identified an additional 32 novel 

blood pressure loci, and further validated 75 loci discovered by Hoffman et al. [55].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: Formulation of relevant test statistics

A.1: Tests involving individual level cohort data

Let y denote a quantitative vector containing measurements representing the phenotype of 

interest. We specify the GLM

(1)

where XC and βC are the design matrix and regression coefficients for the nuisance factors, 

xG and βG is the covariate vector and regression coefficient for the genetic locus of interest, 

xE and βE is the covariate vector and regression coefficient for the environmental variable of 

interest, xG⊙xE is the elementwise product of the genetic and environmental covariate 

vectors, βG×E is the regression coefficient for the GxE interaction term, and ε is a 

multivariate normal random vector with mean 0 and covariance matrix Σ. Coding schemes 

for xE depends on the study in question, as environmental factors may be discrete or 

continuous. xG may be binary in the case of dominant alleles, or coded based on the number 

of copies of a reference allele at a locus of interest.

In analyses where all data for all individuals is readily available, (1) can be fit to the full 

data, usually with a set of assumptions on the distribution of ε. In particular, researchers will 

assume independence amongst subjects, restricting the covariance matrix Σ to the diagonal 

case, or choose to only model within family correlation, giving Σ a block diagonal structure.
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In some cases, researchers choose to isolate the genetic and environmental factors of interest 

portrayed in (1) through a two step modeling process. Let

where XC and βC are the design matrix and regression coefficients for the nuisance factors. 

Then, the model

(2)

is fit, where xG, xE, βG, βE, βG,×E and ε are defined as in (1). While the model in (2) 

assumes that xG, xE, βG, βE, βG×E|z is independent of y, which is likely unrealistic, (2) fits 

the coefficients of interest much more quickly than one through only fitting βC once.

In both (1) and (2), parameter estimates β̂G, β̂E, and β̂G×E, along with parameter variance 

estimates var(β̂G), var(β̂E) and var(β̂G×E) are obtained through maximum likelihood 

methods. For the Wald type hypothesis test

the test statistic

asymptotically follows a  distribution under the null hypothesis. This is commonly 

referred to as the one degree of freedom interaction test, shortened to 1DF here. The 

ProbABEL software [85] is commonly used to carry out this test.

Of course, given the discussion above regarding accounting for interaction rather than 

modeling it, the researcher may be more interested in tests that incorporate interaction into 

the whole model. Let L(βG, βG×E|Data) be the profile likelihood for the model proposed in 

(1) or (2). To test the hypothesis

we perform a likelihood ratio test, whose test statistic
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asymptotically follows a  distribution under the null hypothesis. This is commonly 

referred to as the joint two degree of freedom test, shortened to J2DF here. The ProbABEL 

software [85] may be used to carry this test out as well.

A.2: Meta-analytic approaches

Let β̂G,i and β̂G×E,i denote the regression coefficients associated with the genetic locus and 

gene by interaction effects estimated in the ith study in consideration. Then, for studies i = 1, 

…, k,

where Σ̂i = cov(β̂G,i, β̂G×E,i) is the covariance matrix for the regression coefficients from the 

ith study. We write the vector b as a linear combination of the parameters of interest  and 

where e has a multivariate normal distribution with zero mean vector and covariance matrix 

Σ̂. Using the generalized estimating equations as presented by Becker and Wu [45] and the 

imposed inverse variance weighting scheme from our definition of Σ̂, we estimate β1 as

and the covariance matrix associated with the β1estimate vector as
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The Wald type hypothesis test

has test statistic

which asymptotically follows a  distribution under the null hypothesis. Because 

, we can also test for a significant interaction term under the Wald 

type hypothesis test

which has test statistic

which asymptotically follows a  distribution under the null hypothesis.
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Table 1

Definitions of GxE interaction, as given by Thomas [34]

Biological interaction An established biological relationship in which some environmental factor triggers a response in people that have a 
susceptible genotype.

Quantitative interaction An interaction where effects of one factor go in the same direction at different levels of the other, but differ in 
magnitude

Qualitative interaction An interaction in which the presence of factor A’s effect only occurs in the presence/absence of factor B

Public health synergy When phenotype measurements are attributable to a number of risk factors, but phenotype realization is not a 
function of the sum of the risk factors

Statistical interaction Any departure from y = v1(x1) + v2(x2) when modeling response y using factors and [9]
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Table 2

Hunter’s Rationales for studying GxE interactions in GWAS [37]

Obtain a better estimate of the population-attributable risk for genetic and environmental risk factors by accounting for their joint interactions

Strengthen the associations between environmental factors and diseases by examining these factors in genetically susceptible individuals

Help to dissect disease mechanisms in humans by using information on susceptibility (and resistance) genes to focus on the biological pathways 
that are most relevant to that disease, and the environmental factors that are most relevant to the pathways

Use the information on biological pathways to design new preventative and therapeutic strategies

Offer tailored preventative advice that is based on the knowledge that an individual carries susceptibility or resistance alleles
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Table 3

GWAS studies identifying HTN loci

Paper Loci Identified (known and novel, not unique)

Adeyemo et al., 2009 [49] 3

Cho et al., 2009 [50] 1

Ehret et al., 2016 [15] 66

Fox et al., 2011 [14] 3

Franceschini et al., 2013 [51] 5

Ganesh et al., 2013 [52] 12

Ganesh et al., 2014 [53] 19

Ho et al., 2011 [54] 10

Hoffman et al. 2017 [55] 316

Hong et al., 2010 [56] 3

Hong et al., 2012 [57] 4

ICBP, 2011 [58] 28

Johnson et al., 2011a [59] 1

Johnson et al., 2011b [60] 8

Kato et al., 2011 [61] 15

Kelly et al., 2013 [62] 4

Levy et al., 2009 [63] 10

Lin et al., 2011 [64] 3

Liu et al., 2016 [17] 21

Lu et al., 2014 [65] 17

Newton-Cheh et al., 2009 [66] 7

Org et al., 2009 [67] 1

Padmanabhan et al, 2010 [68] 1

Qi et al., 2014 [69] 3

Salvi et al., 2012 [70] 1

Simino et al., 2014 [25] 20

Sung et al., 2014 [29] 1

Surendan et al., 2016 [16] 49

Tabara et al., 2010 [71] 4

Takeuchi et al., 2010 [72] 6

Tomazewski et al., 2010 [73] 1

Tragante et al., 2014 [74] 55

Wain et al., 2011 [75] 7

Wang et al., 2009 [76] 1

Wang et al., 2013 [77] 1

Zhu et al., 2011 [78] 1

Total (Non-interaction) 708
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Paper Loci Identified (known and novel, not unique)

Basson et al., 2014 [31] 5

Basson et al., 2015 [30] 13

Li et al., 2016 [32] 3

Simino et al., 2013 [27] 1

Simino et al., 2014 [25] 9

Sung et al., 2014 [29] 7

Total (Interaction) 38

Grand Total 746
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Table 4

Studies with Statistically Significant Findings at the MECOM Gene for HTN Related Phenotypes

Study (Interaction?) Sample Size

ICBP, 2011 [58] (No) 200,000

Tragante et al., 2014 [74] (No) 87,736

Sung et al., 2014 [29] (Yes) 6,889

Ehret et al., 2016 [15] (No) 342,415

Surendan et al., 2016 [16] (No) 192,763
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