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Abstract

Psoriasis is a common and chronic inflammatory skin disease that is complicated by gene–environment interactions.
Although genomic, transcriptomic, and proteomic analyses have been performed to investigate the pathogenesis of
psoriasis, the role of metabolites in psoriasis, particularly of lipids, remains unclear. Lipids not only comprise the bulk of
the cellular membrane bilayers but also regulate a variety of biological processes such as cell proliferation, apoptosis,
immunity, angiogenesis, and inflammation. In this study, an untargeted lipidomics approach was used to study the lipid
profiles in psoriasis and to identify lipid metabolite signatures for psoriasis through ultra-performance liquid
chromatography-tandem quadrupole mass spectrometry. Plasma samples from 90 participants (45 healthy and 45 psoriasis
patients) were collected and analyzed. Statistical analysis was applied to find different metabolites between the disease
and healthy groups. In addition, enzyme-linked immunosorbent assay was performed to validate differentially expressed
lipids in psoriatic patient plasma. Finally, we identified differential expression of several lipids including lysophosphatidic
acid (LPA), lysophosphatidylcholine (LysoPC), phosphatidylinositol (PI), phosphatidylcholine (PC), and phosphatidic acid
(PA); among these metabolites, LPA, LysoPC, and PA were significantly increased, while PC and PI were down-regulated in
psoriasis patients. We found that elements of glycerophospholipid metabolism such as LPA, LysoPC, PA, PI, and PC were
significantly altered in the plasma of psoriatic patients; this study characterizes the circulating lipids in psoriatic patients
and provides novel insight into the role of lipids in psoriasis.
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Background

Psoriasis is a common and chronic inflammatory skin disease
[1, 2]. Histologically, psoriasis is defined by epidermal hyperpla-
sia, keratinocyte differentiation with regenerative maturation,
prominent blood vessels in the dermis, and inflammatory leuko-
cyte infiltration. There are 5 main types of psoriasis, i.e., plaque,
guttate, inverse, pustular, and erythrodermic. Plaque psoriasis
is the most common type (90%) and presents as red and white
scaly patches on the top layer of the skin.

Epidemiological investigation has indicated that the inci-
dence of psoriasis in European populations is approximately 2–
3% [3–5], whereas in China it is approximately 0.47%; based on
this figure, there are approximately 8 million psoriatic patients
in China. Although the precise causes of psoriasis are not fully
understood, the disease is thought to have a genetic basis that
is further complicated by gene–environment interactions [1, 6]

Evidence has shown that abnormal immune responses, par-
ticularly in CD4(+) cells, and keratinocyte hyperplasia play crit-
ical roles in the pathogenesis of psoriasis. These 2 factors affect
each other, forming a positive feedback loop and causing cascad-
ing effects. Recently, studies in mouse models as well as clinical
studies in humans have demonstrated that the interleukin (IL)-
23/IL-17/IL-22 axes are pivotal signaling pathways in psoriasis
[7–9].

Lipids have key functions in maintaining normal physio-
logical cellular functions and are believed to be as important
as proteins and genes [10]. Currently, there are approximately
10 000 different documented lipids and approximately 600 dis-
tinct molecular species of human plasma lipids [11, 12]. Abnor-
mal lipid metabolism is involved in the pathogenesis of sev-
eral human diseases, such as diabetes, obesity, cancer, and
Alzheimer’s disease [13, 14]. Lipidomics analyses of both whole
plasma and lipoprotein subfractions are essential for current ini-
tiatives seeking to better understand the relationships between
the composition and function of lipoproteins, and how they are
affected by diseases and treatments.

Lipidomics focuses on the structure and function of the com-
plete set of lipids (i.e., the lipidome) produced in a given cell
or organism, as well as their interactions with other lipids,
proteins, and metabolites. Previously, genomic, transcriptomic,
and proteomic analyses had been performed to study psoria-
sis [15–17]. In the present study, an untargeted lipidomics ap-
proachwas used to investigate the alteration of lipidmetabolites
in psoriasis, and the lipid metabolite signature for psoriasis was
identified based on ultra-performance liquid chromatography-
tandem quadrupole mass spectrometry (UPLC-MS/MS), a highly
sensitive and high-resolution method for analyzing complex bi-
ological samples. Using this approach to characterize circulat-
ing lipids in patients with psoriasis, we found abnormal aspects
of lipid metabolism in psoriasis, such as glycerophospholipid
metabolism, which provides novel insight into the role of lipids
in psoriasis.

Data Description

Ninety human plasma samples were collected and analyzed
in this research to study lipid profiles in psoriasis. Table 1
shows the characteristics of 45 psoriasis and 45 healthy sub-
jects (Additional file 1). UPLC-MS technology was used to de-
tect lipids. Quality control (QC) samples pooled mixtures of all
samples were injected among the samples and used to evalu-
ate the experimental quality. Features extracted from all raw
data were subjected to data processing, and the features that

Table 1: Demographics of the study cohort

Healthy (n = 45) Disease (n = 45) P-value

Gender F = 21, M = 24 F = 20, M = 25 1
Age, y 39.42±8.95 40.64±12.00 0.37
BMI 22.38±4.01 22.03±3.20 0.97
PASI n/a 10.11±7.46 <0.001

Values are presented as the means±standard deviation. P-value was calculated
by unpaired-Wilcoxon test. There is no PASI score for the control group (n/a).

did not pass quality control were filtered. After data processing,
univariate and multivariate statistical analysis were conducted
to screen out the significant differentially expressed features.
Those features were then identified by searching LipidMaps [12]
and the HMDB database [18] and matching standards and tar-
geted data-dependent acquisition (DDA) spectra. Enzyme-linked
immunosorbent assay (ELISA) was performed, and the results
were used as confirmation and to supplement the lipidomics
study.

Analyses
Profiling of features from psoriasis and healthy groups

We detected 11 927 and 5791 features in positive and nega-
tive modes, respectively. The numbers of features in QC sam-
ples with CVs ≤ 30% were 8428 in positive mode and 4510 in
negative mode, with percentages of 70.66% and 77.88%, respec-
tively. After data clean processing, 7817 and 4333 features re-
mained in positive mode and negative modes, respectively. Six
hundred eleven (7.25%) and 177 (3.92%) noise features were re-
moved from positivemode and negativemode in data clean pro-
cessing, respectively. Principal component analysis (PCA) with
QC samples was performed to assess the experiment quality.
The PCA showed that the pooled QC samples were clustered to-
gether in both ion models (positive and negative) (Fig. 1A and
B), indicating that the LC-MS analysis process met the required
qualifications [19].

For the statistical analysis, we first applied the PCA to eval-
uate the separation between the healthy subjects and partici-
pants with psoriasis, but the unsupervised multivariate anal-
ysis revealed no significant differences between the 2 groups
(Fig. 1C, D). To further search for features that may discriminate
the 2 groups, a partial least squares discriminant analysis (PLS-
DA), which is a supervised multivariate data analysis method,
was established testing for differences between features with
P-values < 0.05. The PLS-DA model clearly distinguished the ex-
perimental and control groups based on the lipid dataset (Fig. 2A
and B). The model was assessed by monitoring the model good-
ness of fit (R2) and predictive ability (Q2) values, and 200 permu-
tation tests were performed on R2 and Q2 as shown in Fig. 2C
(positive, R2 = 0.699, Q2 = 0.536) and D (negative, R2 = 0.676, Q2

= 0.462). A plot of PCA and PLS-DA scores was drawn with the
first 2 PCs. Variable importance for projection (VIP) reflects the
importance of the variables in the PLS-DA model and was ap-
plied to select the important variables. The unpaired Wilcoxon
test and Benjamini-Hochberg correction method were also per-
formed for significantly different variable selection. Based on the
PLS-DA analysis and Q-value evaluation, the criteria of VIP ≥ 1
and Q-value < 0.05 were set to discover significant differential
features (339 in positive mode and 188 in negative mode) be-
tween the psoriasis group and healthy subjects. In total, there
were 527 significant features satisfying the criterion.
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Figure 1: PCA score plots. Overview of PCA score plots obtained from all psoriasis (red), all healthy (green), and QC (blue) samples in positive mode (A) and negative
mode (B). The PCA score map was derived from UPLC-QTOFMS spectra concerning psoriasis (red) and healthy (cyan) samples in positive mode (C) and negative mode

(D).

For those differential features, theoretical database search-
ing and manual spectrum confirmation with specific fragment
pattern for different lipid classes were used for identification.
Considering the elution rules for different lipid classes, we fil-
tered the theoretical identifications by retention time. Based
on the specific fragment patterns and retention times, we ul-
timately identified 17 lipids (20 features) that were differentially
expressed between the healthy and disease groups (Table 2).
Among the 17 metabolites, the identification level of LysoPC, PC,
and PI was level 1, and the identification level of PA was level 2
[20]. LysoPC (16:0), LysoPC (18:0), and PC (18:0/18:1) were detected
in both positive and negative mode, and the abundance pattern
in the 2 scanmodes was consistent.We generated a heatmap as
a graphical representation of the differential expression of each
lipid (Fig. 3). The result showed that LysoPC and PA were up-
regulated in disease group, while PC and PI were down-regulated
in the disease group. The relative intensity of changes of those
lipids in the 2 groups was also shown in boxplots (Fig. 4; Addi-
tional file 2).

We further examined the discrimination of several classes of
lipids using multivariate receiver operating characteristic (ROC)
curve analysis. The ROC results (Fig. 5A) showed that the area
under the curve (AUC) of the LysoPC combination was 0.743, the
AUC of the PC combination was 0.747, the AUC of the PA combi-
nation was 0.778, and the AUC of the PI combination was 0.758.
Tenmetabolites from those differentially expressedmetabolites
were selected by the random forest method, and the AUC of ROC
reached up to 0.939 (Fig. 5B). Pathway analyses were performed

using MetaboAnalyst [21], and the results (Fig. 6A) showed
that metabolites in glycerophospholipid metabolism and glyco-
sylphosphatidylinositol (GPI)-anchor biosynthesis were altered
in the disease group.

As described above, we found some differential lipids be-
tween the healthy and psoriasis groups. To further explore
whether some lipids could distinguish patients with mild or
moderate-severe cases from healthy participants, we divided
the psoriatic cohorts into mild (n = 25) and moderate-severe
(n = 20) groups based on the psoriasis area severity index (PASI),
with PASI ≤ 10 representing mild psoriasis and PASI > 10 repre-
senting moderate-severe psoriasis. The PCA score plots showed
no clear differences among the healthy, mild, and moderate-
severe groups (data not shown). The PLS-DA model (data not
shown) effectively differentiated between the healthy and mild
(R2 = 0.813, Q2 = 0.321) and the healthy and moderate-severe
(R2 = 0.820,Q2 = 0.344) groups; however, it could not differentiate
between the mild and moderate-severe groups (Q2 = –0.135). In
addition, after applying the criteria above, there were no differ-
ential ions between the mild and moderate-severe groups (data
not shown). This revealed that there were no significant differ-
ences in lipids among subgroups.

Lipids identification

Metabolite identification was performed using Progenesis QI
(Waters, Nonlinear Dynamics, Newcastle, UK). The LipidMaps
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Figure 2: PLS-DA score plots from the healthy and psoriasis groups in (A) positive mode (R2 = 0.699, Q2 = 0.536) and (B) negativemode (R2 = 0.676, Q2 = 0.462). Validation
plots were obtained from 200 permutation tests in (C) positive mode and (D) negative mode.

[12] and Human Metabolome databases (version 3.6) [18] were
used forMS1 identification, and theoretical fragmentswere used
for MS/MS identification. The mass tolerance in MS1 and MS2
was 10 ppm. The elution time of the different lipid classes in the
CSH column was also considered for annotation of features ac-
cording to Additional files 3–4 [22, 23]. Based on these potential
identifications, targeted DDA spectra of the significantly differ-
ent features were acquired for further structure confirmation,
as presented in Additional file 5. A standard of LysoPC (18:0) was
purchased, and the MS/MS spectrum was collected for metabo-
lite validation (Additional file 6).

Measurement of LPA and PA concentrations in plasma
using ELISA

Because the PA identification rate in the lipid profiling was
relatively low, we did not get any differential PAs. However,
considering that the LPCs and PCs have important relationships
with LPAs and PAs [24], we performed an ELISA to examine LPA
and PA abundance in plasma from psoriasis and healthy pa-
tients. The results in Fig. 6B and C, show that LPA and PA are dra-
matically increased in psoriasis patients compared to healthy
controls.

Discussion

Lipids not only comprise the bulk of the cellular membrane bi-
layer but also regulate a variety of biological processes such
as cell proliferation, apoptosis, immunity, angiogenesis, and in-
flammation [10, 25, 26]. Lipid dysregulation is a pathogenic char-
acteristic of many diseases, including cardiovascular diseases,
hypertension, diabetes, and Alzheimer’s disease; thus, some
dysregulated lipids may act as important biomarkers [27–29].
Lipidomics is an emerging technique for comprehensively an-
alyzing the end products of lipid metabolism and revealing in-
ternal changes within whole organisms. Investigation of the
lipid byproducts produced by genes or proteins provides clues
for understanding cellular regulatory processes and the under-
lying molecular networks. Because lipids are the end products
and the most downstream representation of cellular processes,
lipidomics will enable us to gain valuable information regarding
the physiology of a system by measuring the amplified output
that results from genetic and environmental interactions.

Previous studies showed that lipid metabolites including
TC, LDL-C, HDL-C, and ApoA-I are abnormal in psoriatic
serum [30] and that fatty acid composition profiles of cer-
tain CER subclasses of the SC were significantly altered in epi-
dermal psoriatic patients [31]. In this study, we found that
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lysoglycerophospholipids, such as LPA and LPC, and glyc-
erophospholipid metabolism, including PA, PC, and PI, were sig-
nificantly altered in plasma from patients with psoriasis (Figs 4
and 6B and C). LPC and LPA are the most prominent lyso-
glycerophospholipids and are considered to be inflammatory
lipids involved in several immune-mediated diseases such as
atherosclerosis and the autoimmune disease systemic lupus
erythematosus (SLE) [32–35]. In our study, we found that LPC is
significantly increased in psoriasis plasma and that PC shows
the opposite. LPC is a type of bioactive lysoglycerophospho-
lipid with high circulating body concentrations (approximately
120 μM) and is a mixture of different components including
16:0 (40%), 18:2 (20%), and 18:1/18:0 (10–15%) [36–38]. LPC is de-
rived from phosphatidylcholine (PC) in lipoproteins or from cell
membrane–derived PC in the phospholipase A2 (PLA2) enzyme
superfamily via hydrolysis of the sn-2 position fatty acid of
membrane PC [38].

Accumulating evidence shows that LPC is raised in
inflammation-associated diseases including psoriasis [39]
and that LPC exerts its effects through different signaling
pathways such as NF-kB, PKC, and ERK in several cell types
such as T-lymphocytes, monocytes, and neutrophils. For ex-
ample, LPC can induce expression of cyclooxygenase type 2
(COX-2), a key pro-inflammatory mediator, via the p38/CREB
or ATF-1 pathways in vascular endothelial cells [40, 41]. COX-2
is well known to catalyze arachidonic acid to various classes
of bioactive pro-inflammatory lipids such as thromboxanes
and prostaglandins, which provides additional clues about the
role of lysoglycerophospholipids in inflammatory responses.
Interestingly, LPA has also been demonstrated to stimulate
COX-2 expression in stromal COX-2. Recently, studies have
indicated that LPC could be a high-affinity ligand for G2A
that triggers immune-related signaling pathways [42, 43]. G2A
is a type of G protein–coupled receptor that is expressed in
immunoregulatory cell types such as neutrophils, T cells, and
macrophages [44, 45].

LPA is also increased in psoriatic plasma, as shown in Fig. 6B.
LPA is a bio-activated lipid that has been detected in various flu-
ids such as serum, seminal fluid, and follicular fluid. Compared
with LPC, the total plasma LPA concentration ismuch lower than
LPC [38]. LPA has multiple functions in almost all mammalian
cell types such as endothelial cells, T lymphocytes, and dendritic
cells, which are dependent on the LPA receptor and G-protein-
coupled receptor classified from LPA1–LPA6 [46–48]. Notably, the
transcription factor peroxisome proliferator–activated receptor
γ (PPAR-γ ) was identified as an intracellular receptor for LPA [49,
50]. LPA initiates signaling pathways or exerts biological effects
through different receptor subtypes; for example, LPA promoted
cell growth and differentiation through the LPA receptor 1,3 and
PPAR-γ , which facilitated hyperplasia during inflammation in
mast cells [24, 51].

PA is not only a major constituent of the cell membrane but
also a biosynthetic precursor for the formation (directly or in-
directly) of all cellular acylglycerol lipids. The conversion of PA
into DAG by lipid phosphate phosphohydrolases is a critical step
for the production of PC. In addition, DAG can be converted
into cytidine diphosphate (CDP)–DAG, which is a precursor for
phosphatidylglycerol (PG) and protease inhibitors (PIs). PA also
acts as a secondary messenger to mediate downstream signal-
ing pathways such as the mTOR pathway [52–55]. Synthesis via
the glycerophospholipid pathway, named the Kennedy pathway
[56–58], was elucidated in the early 1960s. PA is synthesized in
several steps from glycerol-3-phosphate, which is derived from
glycolysis or the phosphorylation of glycerol and fatty acetyl Ta
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Figure 3: Heatmap of the 17 significantly altered lipids (20 features). (+) represents positive mode, and (-) represents negative mode. The color is proportional to the
intensity of change in metabolites; red indicates upregulation, and green indicates down-regulation.

(A) (B)

(C) (D)

Figure 4: Boxplot of the 17 significantly altered lipids (20 features). Red represents the diseased state, and cyan represents the healthy state. The y-axis is the normalized

intensity after log2 transformation. (+) represents positive mode, and (-) represents negative mode. (A) LysoPCs, (B) PAs, (C) PCs, (D) PIs.

coenzyme A by enzymes such as glycerol-3-phosphate acyl-
transferases (GPAT); therefore, PA is considered a critical prod-
uct of glycolysis and glycerophospholipidmetabolism. PA can be
converted into DAG or CDP-DAG by CDP-DAG synthase, which
are phospholipid biosynthesis precursors. CDP-alcohol phos-
photransferase enzymes such as choline/ethanolamine phos-
photransferase (CEPT) and choline phosphotransferase have
been demonstrated to be indispensable in the biosynthesis of
PC, which catalyzes the formation of a phosphodiester bond
linking the head and tail components of the lipid.

In conclusion, we employed plasma lipidomics to investi-
gate the potential pathophysiology of psoriasis. The profiles,
including lysoglycerophospholipids such as LPC and LPA and
glycerophospholipids such as PA, PC, and PI, are dramatically
altered in psoriasis plasma. However, mechanistic studies will

be required to explore the details and distinct biochemical
characteristics and the cellular effects of lipid species on
both T cell and keratinocyte responses in the pathogenesis of
psoriasis.

Potential implications

Psoriasis is a chronic, systemic inflammation disease
consequence of the interactions between genetic and
environmental factors. IL-23/IL-17/IL-22 axes produced by
abnormal activation of Th17 cells play key roles in pathogenesis
of psoriasis that stimulate keratinocyte proliferation and secre-
tion of other inflammatory cytokines such as TNF-α, IL-1, IL-6,
and IL-8. Currently, metabolism and immunity is a hotspot,
particularly in Th17 cell activation. Accumulating evidence
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(A)

(B)

Figure 5: (A) ROC curves of LysoPCs with AUC = 0.743, PCs with AUC = 0.747,
PAs with AUC = 0.778, and PIs with AUC = 0.758. (B) The best combination of

metabolites selected from the 17 metabolites using the random forest method
(AUC = 0.939). CI: confidence interval.

has demonstrated that glycolysis regulated by mTOR and the
HIF-1α signaling pathway facilitates Th17 cell differentiation
and inhibition of HIF-1α and mTOR activation from CD4+ T
cells; treatment with 2-DG attenuates Th17 differentiation
through inhibition of glycolysis. Although we found that glyc-
erophospholipids metabolism is dysfunction in psoriasis, the
details of the mechanism are lacking, especially for Th17 cell
differentiation; therefore, the elaboration of the relationship
between glycerophospholipid metabolism and Th17 activation
is an important direction for the future in the pathogenesis of
psoriasis.

Methods
Sample collection

Healthy controls (n = 45) and patients with mild or severe
psoriasis (n = 45) were recruited at the Xiangya Hospital Central
South University in accordance with the Declaration of Helsinki.
All sample donors provided signed consent forms, which were
approved by the Xiangya Hospital Committee of Ethics. Mild and
moderate-severe psoriasis patients (defined as PASI > 10) were
recruited from patient pools without systemic therapy. None
of the patients were on prescribed anti-inflammatory drugs.
All samples were obtained prior to the commencement of any
treatment. The recruited participants consisted of 90 age- and
gender-balanced individuals (45 healthy controls, 20mild and 25

(A)

(B)

(C)

Figure 6: (A) The pathway impact plot based on 17 differential lipids using
MetaboAnalyst 3.0. Redder colors represent lower P-values, and larger circles

represent higher impact factors. Low P-values and large pathway impact fac-
tors indicate that the pathway is greatly influenced. The pathways were mainly
enriched in glycerophospholipid metabolism and glycosylphosphatidylinositol
(GPI)-anchor biosynthesis. The concentrations of LPA and PA detected in ELISA

are shown as (B) and (C). The asterisk (∗∗) indicates a significant difference
(p < 0.01) Student’s t test.

moderate-severe psoriasis patients) (Additional file 1). For anal-
ysis purposes, the participants were subdivided into healthy
and disease groups (n = 45 each), referred to as the exploratory
and validation subjects. After fasting overnight, 10 mL of whole
blood was collected from each subject into ethylene diamine
tetraacetic acid (EDTA) tubes. Samples were left standing for
1 hour before centrifugation at room temperature for
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20 minutes at 3100 g. After centrifugation, plasma sam-
ples were collected and immediately stored at –80◦C until
use. Psoriasis was judged as severe according to the PASI,
which is an established measurement that quantifies the
thickness, redness, scaling, and distribution of psoriasis le-
sions. This study was approved by the Regional Committee of
Ethics.

Sample preparation and lipid extraction

Prior to the experiment, samples were left at –20◦C for 30 min-
utes and then thawed at 4◦C until no ice was observed in the
tubes. The lipid extraction method followed a previously pub-
lished paper [22]. Briefly, 40 μL of plasma was extracted with
120 μL precooled isopropanol (IPA) then vortexed for 1 minute,
and after incubation for 10 minutes at room temperature, the
mixture was stored overnight in the refrigerator at –20◦C to im-
prove protein precipitation. Samples were centrifuged for 20
minutes at 14 000 g, and then the supernatant was further di-
luted with IPA/acetonitrile (ACN)/H2O (2:1:1 v:v:v) and stored at
–80◦C until LC-MS analysis. Equal amounts of all samples were
pooled as a QC sample for LC-MS system conditioning and qual-
ity control [59].

The UPLC-MS/MS method

Lipidomics was performed on an ACQUITY UPLC system (Wa-
ters, Manchester, UK) coupled with a G2-XS QTOF mass spec-
trometer (Waters, Manchester, UK). Chromatographic separa-
tion was employed with an ACQUITY UPLC CSH C18 column
(2.1 × 100 mm, 1.7 μm, Waters). Mobile phase A consisted of 10
mM of ammonium formate and 0.1% formic acid (ACN: H2O =
60:40, v/v), and mobile phase B consisted of 10 mM of ammo-
nium formate and 0.1% formic acid (IPA: ACN = 90:10, v/v). A
flow rate of 0.4 mL/min was used. The initial elution was started
at 40% B and was immediately increased by a linear gradient to
43% B for the first 2 minutes, followed by an increase to 50% B
within 0.1 minutes. Over the next 3.9 minutes, the gradient was
increased to 54% B, and the amount of B was increased to 70%
during the next 0.1 minutes. In the final part of the gradient, B
was increased to 99% and maintained for 1.9 minutes. Finally, B
was returned to 40% over the next 0.1 minutes and equilibrated
for 1.9 minutes for the next injection. Both positive and negative
modeswere performed and operated in CentroidMSE modewith
an acquisition time of 0.2 seconds per scan. The scan range was
set at 50–1800 Da. The capillary was set at 0.25 kV and 2 kV in
positive ionmode andnegative ionmode, respectively. Sampling
cone voltages were set at 40 V in both modes. The source tem-
perature was set to 120◦C. The desolvation temperature and gas
flow were 500◦C and 800 L/h. Leucine enkephalin (MW = 555.62)
was applied as a lock mass for accurate mass measurements,
and sodium formate solutionwas used formass calibration. Fur-
thermore, QC samples were interspersed in samples to evaluate
the stability of the LC-MS system during acquisition (Additional
file 7).

ELISA analysis of plasma LPA and PA

The plasma derived from age- and gender-matched psoriasis
patients (n = 25) and healthy individuals (n = 25) was pre-
pared as previously described. The ELISA kit for testing LPA and
PA was obtained from Shanghai Xinyu Biotechnology Co. Ltd.
(Shang Hai, China). The experimental procedure follows ELISA
protocol.

Data processing

The raw files were imported into Progenesis QI software
for peak alignment and picking. Data generated from Pro-
genesis QI (Additional file 8) were further preprocessed us-
ing metaX software [60]. Features were removed from fur-
ther analysis if they were detected in less than 50% of
the QC samples or less than 20% of the experimental sam-
ples. After the previous filtering, missing values were im-
puted using the k-nearest neighbor method. The QC-robust
spline batch correction (QC-RSC) [59] and Combat normaliza-
tion methods [61] were used to correct signal drift and batch
variation. After normalization, features with a relative stan-
dard deviation of less than 30% in the QC samples were
retained. Prior to statistical analysis, data clean algorithms
were applied to the dataset. Features were removed if SNR
< 1 (SNR = standard deviationsample/standard deviationQC) or
the relative difference between the mean QC samples inten-
sity compared to the mean study sample intensity was more
than 3 times the standard deviation of the study sample
intensity.

Statistical analysis

Multivariate and univariate analyses were also conducted using
metaX [60]. A PCA was performed to detect outliers, and a PLS-
DA [62] was applied using log transformation and Pareto scal-
ing. Permutation testing (200 times) on the R2 and Q2 of the PLS-
DA was used to assess the reliability of the PLS-DA model [63].
The unpaired-Wilcoxon test was performed to test significant
differences between the control and experimental groups, and
the P-value was adjusted for multiple hypothesis testing using
the Benjamini-Hochberg method.

The univariate and multivariate receiver operating charac-
teristic curve was applied to detect potential biomarkers. To cre-
ate the classification model between the experimental and con-
trol groups, functions implemented in metaX [60] were used for
biomarker selection, model creation, and performance evalua-
tion. In short, the best feature set for classification was evalu-
ated and used to build a random forest model. In all, 2/3 of the
subjects were selected randomly as a training set, and the rest
were used as a test set. To prevent overfitting in the training
set, a 7-fold cross-validation was applied in the random forest
modeling.

Availability of source code and requirements

Project name: Psoriasis
Project home page: https://github.com/ZengVera/psoriasis
Operating system(s): platform independent
Programming language: R
Other requirements: R 3.2.0 or higher, metaX package
License: GNU General Public License version 2.0 (GPLv2).
Any restrictions to use by non-academics: none

Availability of data materials

Raw data (MSE) for all samples including QC samples re-
ported here are available at the MetaboLights database
(MetaboLights, RRID:SCR 014663) with the accession num-
ber MTBLS408. The code we performed can be acquired at
https://github.com/ZengVera/psoriasis [64]. Further supporting
data and snapshots of our code in GitHub are available in the
GigaScience repository, GigaDB (GigaDB, RRID:SCR 004002) [65].

https://github.com/ZengVera/psoriasis
https://scicrunch.org/resolver/RRID:SCR_014663
https://github.com/ZengVera/psoriasis
https://scicrunch.org/resolver/RRID:SCR_004002
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Further details on experimental protocols can be found in Zeng
et al. [66].

Additional files

Additional file 1: Phenotype of 90 enrolled subjects.
Additional file 2: Boxplot of differentially expressed lipid.
Additional file 3: Lipid retention time range in positive mode.
Additional file 4: Lipid retention time range in negativemode.
Additional file 5: Targeted DDA MS/MS spectrum or MS/MS

spectrum extracted by Progenesis QI software from MSE raw
data.

Additional file 6: MS/MS spectrum of standard LysoPC (18:0).
Additional file 7: Run order of samples and QCs in LC-MS

analysis.
Additional file 8: Table of peak intensity generated by Proge-

nesis QI software.
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