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Abstract

Clostridium species (particularly Clostridium difficile, Clostridium botulinum, Clostridium tetani and Clostridium perfringens) are

associated with a range of human and animal diseases. Several other species including Clostridium tertium, Clostridium cadaveris,

and Clostridium paraputrificum have also been linked with sporadic human infections, however there is very limited, or in some

cases, no genomic information publicly available. Thus, we isolated one C. tertium strain, one C. cadaveris strain and three C.

paraputrificum strains frompreterm infants residingwithinneonatal intensive careunits andperformedWholeGenomeSequencing

(WGS) using Illumina HiSeq. In this report, we announce the open availability of the draft genomes: C. tertium LH009, C. cadaveris

LH052, C. paraputrificum LH025, C. paraputrificum LH058, and C. paraputrificum LH141. These genomes were checked for

contamination in silico to ensure purity, and we confirmed species identity and phylogeny using both 16S rRNA gene sequences

(fromPCRand in silico) andWGS-basedapproaches.AverageNucleotide Identity (ANI)wasused todifferentiategenomes fromtheir

closest relatives to further confirm speciation boundaries. We also analysed the genomes for virulence-related factors and antimi-

crobial resistancegenes, anddetectedpresenceof tetracyclineandmethicillin resistance, andpotentially harmful enzymes, including

multiple phospholipases and toxins. The availability of genomic data in open databases, in tandem with our initial insights into the

genomic content and virulence traits of these pathogenic Clostridium species, should enable the scientific community to further

investigate the disease-causing mechanisms of these bacteria with a view to enhancing clinical diagnosis and treatment.
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Medical Relevance

Clostridium, which means “a small spindle” in Greek (due to

its rod-shaped morphology), is classified as a genus under the

phylum Firmicutes and class Clostridia, and comprises 221

species to date (September 2017) (Parte 2014). Clostridium

spp. are Gram-positive spore-forming anaerobes found ubiq-

uitously in the environment (soil and water) and the intestinal

tract of humans and animals (Yamagishi et al. 1964; Miwa

1975; de Vos et al. 1982). There are several significant human

and animal disease causing Clostridium species including

Clostridium difficile (pseudomembranous colitis), Clostridium

botulinum (infant botulism), Clostridium tetani (tetanus), and

Clostridium perfringens (acute watery diarrhea/necrotising en-

terocolitis [NEC]), with associated pathology ascribed to the
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toxins they produce (Bruggemann and Gottschalk 2004;

Awad et al. 2014; Carter and Peck 2015; Sim et al. 2015).

There are also several less well-studied species including

Clostridium tertium, Clostridium paraputrificum, and

Clostridium cadaveris, which have been sporadically reported

in the literature to be associated with human infection.

C. cadaveris (formerly Clostridium capitovale), is thought to

be a key tissue-decomposing bacterium in dead carcasses,

and is generally not considered pathogenic in living individuals

(Poduval et al. 1999). However, this bacterium has infre-

quently been associated with human systemic diseases, in-

cluding intraperitoneal infection (Leung et al. 2009) and

bacteremia (Poduval et al. 1999; Schade et al. 2006).

C. tertium, is an aerotolerant and nontoxin-producing spe-

cies. During The First World War, it was the third most fre-

quently isolated bacteria from war wounds, after C.

perfringens and C. sporogenes (Henry 1917). This organism

was officially recognized as a pathogen in 1963, when the

first C. tertium-associated septicemia case was reported (King

et al. 1963). C. tertium has also been associated with infec-

tions including peritonitis (Butler and Pitt 1982) and pneumo-

nia (Johnson and Tenover 1988). Importantly, C. tertium is

also linked with cattle enteritis (Silvera et al. 2003), preterm

NEC (Cheah et al. 2001) and adult enterocolitis (Coleman

et al. 1993).

C. paraputrificum has previously been isolated from

formula-fed infants within their first weeks of life (Stark and

Lee 1982). This pathogen has been associated with paediatric

infection (sepsis) (Brook 1995), adult necrotizing enterocolitis

(Shandera et al. 1988), bacteremia (Shinha and Hadi 2015),

and preterm NEC (Smith et al. 2011). Interestingly, this organ-

ism was shown to produce NEC-like lesions, including gas

cysts, in an animal model and thus supports their disease-

causing link (Waligora-Dupriet et al. 2005).

Whole genome sequencing (WGS) has contributed signif-

icantly to biomedical and veterinary research through our in-

creased understanding of pathogens at a genomic level.

Despite the medical importance of these three pathogenic

Clostridium species, there is currently no sequenced genomes

of C. tertium or C. cadaveris available to the research commu-

nity (apart from 16S rRNA gene sequences) and only four

genomes of C. paraputrificum accessible on NCBI databases

as of September 2017 (Geer et al. 2010). In this study, we

sequenced one C. cadaveris isolate, one C. tertium isolate and

three C. paraputrificum isolates from preterm infant faecal

samples obtained from two neonatal intensive care units

(NICUs) units in England. We identified these using their

16S rRNA gene sequences (both full-length PCR and in silico)

and WGS-based k-mer phylogenetic assignment, thus con-

tributing new genomic data on these pathogenic bacteria.

We also verified their phylogenetic positions using WGS

data, measured genetic distances via Average Nucleotide

Identity (ANI), and performed genome-wide functional

annotation (COG classification). These genomic data and

analyses increases our understanding of the virulence

potentials and functionalities of these pathogenic bacte-

ria, with a future view to unraveling disease-causing

mechanisms.

Genome Description

Here, we report the release of draft genomes sequenced on

Illumina HiSeq 2500 platform as stated in table 1. C. para-

putrificum isolates have a genome size between 3.6 and 3.7

million bases and a stable GC content from 29.6 to 29.9%,

which is in line with the four public genomes (Geer et al.

2010). C. tertium has a larger genome (3.9 million bases)

and relatively lower GC content of 27.8%, whilst C. cadaveris

has a smaller genome (3.4 million bases) compared with C.

paraputrificum, and a significantly higher GC content of

31.2%. All draft genomes were assembled using Prokka de

novo assembler and 80% (four out of five) of the genomes

analyzed were<50 contigs, except for C. paraputrificum

LH058 with 84 contigs.

Table 1

Genome Description, Assembly Statistics, and Clinical Information of Isolates Used in This Study

C. tertium

LH009

C. cadaveris

LH052

C. paraputrificum

LH025

C. paraputrificum

LH058

C. paraputrificum

LH141

Genome size (bp) 3,970,462 3,460,249 3,797,748 3,776,795 3,630,606

No. of contigs 49 46 40 84 29

Genes 3,910 3,395 3,896 3,823 3,655

CDS 3,821 3,310 3,813 3,745 3,565

N50 (bp) 258,765 118,391 479,233 101,241 390,404

tRNAs 89 84 83 77 90

GC content (%) 27.8 31.2 29.6 29.9 29.7

Origin of isolates 29-week preterm

infant

32-week preterm

infant

29-week preterm

infant

32-week preterm

infant

27-week preterm

infant

Hospital RH NNUH RH NNUH RH

*RH: Rosie Hospital, Cambridge, UK; NNUH: Norfolk and Norwich Hospital, Norwich, UK.
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These five strains were isolated from preterm infants resid-

ing at two different NICUs (table 1), which is in line with

previous findings that report frequent detection of C. para-

putrificum (16–22%) and C. tertium (4–9%) in infant cohorts

(Tonooka et al. 2005; Ferraris et al. 2012). However, to date

there are no reports of C. cadaveris isolation from infants.

Phylogenetic Positions

To assign phylogenetic position, and identify these isolates,

we computationally extracted 16S rRNA sequences from

genomes to construct a Clostridium 16S rRNA phylogeny

(based on 19 isolates in the NCBI nucleotide database) as in

figure 1A. Here, we coupled three genomic approaches to

confirm taxonomic position of these newly released genomes.

We firstly, performed a PCR targeting almost the full length of

the 16S rRNA gene, and predicted the whole 16S rRNA gene

sequence in silico. Secondly, we employed Average

Nucleotide Identity (ANI) to confirm species boundaries; ANI

cut-offs for species discrimination is known to be approxi-

mately 95%, and this value has been reported to mirror the

traditional taxonomic gold standard method DNA–DNA hy-

bridization (DDH) to define species (Richter and Rossello

2009). Lastly, we performed CVTree—an alignment-free

whole genome-based phylogenetic construction method,

which is known for speed and accuracy for taxonomic assign-

ment (Xu and Hao 2009).

At a 16S rRNA level, LH058, LH141, and LH025 fall in the

same lineage as C. paraputrificum DSM2630, indicating

species-level relatedness (fig. 1A), with LH052 clustering

with C. cadaveris JCM1392, and LH009 within the same lin-

eage as C. tertium ATCC14573 and Clostridium sartagoforme

KAR69. CVTree phylogenetic analysis, providing greater res-

olution based on sequence comparison, showed similar rela-

tionships. (fig. 1B); all C. paraputrificum isolates grouped

within the same lineage as C. paraputrificum DSM2630,

when compared with other Clostridium species, indicating

correct species assignment for isolates LH058, LH141, and

L025. C. cadaveris LH052 is most closely related to C. perfrin-

gens ATCC13124, and LH009 (C. tertium as assigned accord-

ing to 16S data) is closely related to C. sartagoforme AAU1

(fig. 1B).

We next used ANI analysis to provide higher phylogenetic

resolution (fig. 2A). C. paraputrificum AGR2156 are identical

to LH025, LH141, and LH058 in terms of nucleotide sequen-

ces, sharing ANI of>95.7%, thus determined to be the same

species. Although LH009 is closely related to C. sartagoforme

AAU1, the ANI calculation does not allocate these two within

the same species (ANI¼ 83.6%,< 95% as species cut-off),

which indicates LH009 is distinct from its closest relatives,

and may be identified as the species C. tertium. LH052 is

also evolutionarily distant (based on ANI calculation, 68.5%)

from other Clostridium, indicating this isolate is a separate

species, C. cadaveris.

Virulence Traits and Genome-Wide
Functional Analyses

Using genome annotations, we performed a thorough search

on virulence-related terms including “phospholipase,”

“hemolysin,” “resistance,” “lactamase,” “drug,” and

“toxin” to provide initial insights into the potential

FIG. 1.—(A) 16S rRNA maximum-likelihood (ML) phylogenetic tree of

19 species of Clostridium. (B) WGS-based alignment-free cladogram of

representative Clostridium species. Lactobacillus rhanmosus and

Bifidobacterium longum have been used as outgroups. Grey labels indicate

newly sequenced isolates in this study.
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virulence-linked genes encoded within these genomes

(table 2).

C. tertium LH009, C. cadaveris LH052, and C. paraputrifi-

cum LH141 harbour phospholipase genes (ytpA) that are ho-

mologous to phospholipases encoded in other pathogen

genomes including Bacillus subtilis, Pseudomonas aeruginosa,

and Streptococcus pneumoniae. Phospholipases are known

to possess hydrolytic activity against eukaryotic cell mem-

branes, and are thus considered key virulence factors. C. per-

fringens produces homologous phospholipase C (also known

as alpha toxin) that has previously been reported to damage

epithelial cells (Verherstraeten et al. 2013), and which share-

s>58% protein sequence identity with the phospholipase

encoded by gene ytpA. Importantly, LH052 and LH141 also

FIG. 2.—(A) Average Nucleotide Identity (ANI) values in representative Clostridium genomes. (B) Comparison of functional annotations based on COG

classifications on three representative genomes.
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possess toxA gene, which encodes C. difficile-associated Toxin

A, known to be one of the main virulence factors during

infection having cytotoxic and proinflammatory activities

(Awad et al. 2014).

Notably, antimicrobial resistance genes are encoded in all

three genomes, including vancomycin (vanW) and tetracycline

resistance (tetM) (Evers and Courvalin 1996; Donhofer et al.

2012). Other resistance traits include multidrug efflux pumps;

that is, those encoded by mdtK and norM (fluoroquinolones)

(Horiyama et al. 2011; Golparian et al. 2014), mdtA (amino-

coumarin) (Guerrero et al. 2012), and efflux pump transcrip-

tional regulators marA and marR (Maira-Litran et al. 2000). In

addition, methicillin resistance gene mecR1 was detected in

LH009 (Shore et al. 2011), whilst beta-lactamase (penicillins

and carbapenems) precursor (inactive protein sequence that

could potentially be activated via posttranslational modifica-

tion) was encoded in all genomes (Marciano et al. 2007). The

prevalence of multiple antimicrobial resistance genes in these

clinical strains may correspond to the environment in which

they were isolated; preterm infants residing in NICUs where

antimicrobial usage is extensive (Albrich et al. 2004).

From the COG-based genome-wide annotation, most

genes (>40% in each genome) did not map with any known

functional orthologs, which highlights the limitation of geno-

mic tools and current databases, for understanding these bac-

teria at a functional level. Gene counts in most categories of

these three genomes did not differ significantly from one an-

other (fig. 2B). However, the number of genes involved in

carbohydrate metabolism and transport is lower in C. cadav-

eris LH052 (n¼ 159), than encoded in C. tertium LH009

(n¼ 300) and C. paraputrificum LH141 (n¼ 269), whereas

LH052 possesses more genes (n¼ 249) involved in amino

acid metabolism and transport as compared with LH009

(n¼ 203) and LH141 (n¼ 212). These functional differences

may correspond to divergent modes of metabolism and nu-

tritional substrates for C. cadaveris, which is distinct from C.

tertium and C. paraputrificum (correlates to WGS phylogeny

positions), and may link to previous isolations of this species

from additional environmental niches, i.e. dead carcasses.

Therefore, we conclude that these three Clostridium species

are similar in terms of genomic functionalities, however due

to the high number of function-unknown genes, this some-

what reduces in-depth comparison between genomes and

will require further experimental work.

Materials and Methods

Faecal Sample Collection

Fecal sample collection was performed under an on-going

preterm infant study (BAMBI) which is approved by

University of East Anglia (UEA) Faculty of Medical and

Health Sciences (FMH) Ethics Committee. Sample collection

was done in accordance with the procedures outlined by

National Research Ethics Service (NRES) approved UEA

Biorepository (Licence no.: 11208). Participating infants

were given written consent by their parents for fecal sample

collection at Norfolk and Norwich University Hospital

(Norwich, UK) and Rosie Hospital (Cambridge, UK). Fecal sam-

ples were routinely collected from infant nappies in the NICUs

into sterile stool containers and stored at 4 �C.

Bacterial Isolates and Preliminary 16S rRNA PCR
Identification

A total of five Clostridium isolates (including C. tertium, C.

cadaveris, and C. paraputrificum) were analyzed in this study.

Isolates were preliminarily identified using 16S rRNA full-

length PCR (Weisburg et al. 1991). Primers used as in table 3.

Table 2

Virulence-Related Genes Detected in Selected Clostridium Genomes

Isolate Gene Names Gene Description

and Functions

C. tertium LH009 ytpA Phospholipase

vanW Vancomycin B-type resistance

stp Multidrug resistance

mdtK Multidrug resistance

tetM Tetracycline resistance

marA Multiple antibiotic resistance

mecR1 Methicillin resistance

norM Multidrug resistance

mepA Multidrug export protein

hcpC Beta-lactamase precursor

sme-1 Carbapenem-hydrolyzing

beta-lactamase precursor

C. cadaveris LH052 ytpA Phospholipase

(n/a) Patatin-like phospholipase

(n/a) Phospholipase C precursor

toxA Toxin A

marA Multiple antibiotic resistance

vanW Vancomycin B-type resistance

norm Multidrug resistance protein

tetM Tetracycline resistance

marR Multiple antibiotic resistance

mdtA Multidrug resistance

mepA Multidrug export protein

(n/a) Beta-lactamase precursor

C. paraputrificum

LH141

ytpA Phospholipase

toxA Toxin A

marR Multiple antibiotic resistance

tetM Tetracycline resistance

norM Multidrug resistance

vanW Vancomycin B-type resistance

mdtK Multidrug resistance

mepA Multidrug export protein

(n/a) Beta-lactamase precursor

sme-1 Carbapenem-hydrolyzing

beta-lactamase precursor
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Near 1kbp PCR products were subsequently sequenced

(Eurofins, Luxembourg) and compared with 16S rRNA bac-

teria sequence database on NCBI using BLASTn (optimized

for megablast) search algorithm (Camacho et al. 2009).

Genomic DNA Extraction

Overnight 10 ml pure cultures in BHI were harvested for

phenol-chloroform DNA extraction. Briefly, bacterial pel-

lets were resuspended in 2 ml 25% sucrose in 10 mM Tris

and 1 mM EDTA at pH 8.0. Cells were lysed using 50 ll

100 mg/ml lysozyme (Roche). 100 ll 20 mg/ml Proteinase

K (Roche), 30 ll 10 mg/ml RNase A (Roche), 400 ll 0.5 M

EDTA (pH 8.0) and 250 ll 10% Sarkosyl NL30 (Fisher)

were added subsequently into the lysed bacterial suspen-

sion. This follows by 1-h ice incubation and 50 �C over-

night water bath.

Second-day protocol comprises three rounds of

phenol-chloroform-isoamyl alcohol (Sigma) extraction

using 15 ml gel-lock tubes (Qiagen). Chloroform-

Isoamyl alcohol (Sigma) extraction was performed to re-

move residual phenol, followed by ethanol precipitation

and 70% ethanol wash. DNA pellets were finally

resuspended in 200–300 ll of 10 mM Tris (pH 8.0).

DNA concentration was quantified using Qubit dsDNA

BR assay kit (Invitrogen) and DNA quality assessed by

Nanodrop spectrophotometer.

Whole Genome Sequencing, Genome Assembly and
Annotation

Isolated DNA of pure cultures was subjected to multiplex stan-

dard Illumina library preparation protocol followed by se-

quencing via Illumina HiSeq 2500 platform with read length

2 � 125 bp (paired-end reads) and an average sequencing

coverage of 60�. Draft genome assemblies were generated

using an assembly and annotation pipeline as described pre-

viously (Page et al. 2016). All genomes were annotated using

Prokka v1.11 (Seemann 2014).

Contamination Estimation

Webtool ContEst16S was used to check for potential contam-

ination of the draft genomes based on Genbank database

(Lee et al. 2017).

16S rRNA Phylogeny

Publicly available16S rRNA genes were retrieved from NCBI

nucleotide database (Geer et al. 2010). 16S rRNA genes from

our isolates were predicted using Barrnap v0.7 (https://github.

com/Victorian-Bioinformatics-Consortium/barrnap, last

accessed September 20, 2017) and extracted using BEDTools

getfasta utility (Quinlan and Hall 2010). All 16S rRNA sequen-

ces were subsequently concatenated as a multisequence fasta,

and sequences were aligned with MUSCLE (Edgar 2004).

Neighbor-joining (NJ) tree was generated in 1000 bootstrap

replicates using Juke-Cantor distance (Gouy et al. 2010).

Maximum-likelihood (ML) tree was produced by PhyML GTR

model with 1000 bootstrap replicates (Guindon et al. 2010).

Trees were edited using iTOL (Letunic and Bork 2016).

Alignment-Free WGS Phylogeny

Selected Clostridium genome sequences were retrieved from

NCBI genome database. Annotated multiple protein sequen-

ces were used as input for CVTree v5.0 to generate

alignment-free WGS-based phylogeny using the optimized

six as the k-tuple length (Xu and Hao 2009). Tree was edited

using iTOL as described in previous section.

Average Nucleotide Identity (ANI)

OrthoANI Tool v.093 (OAT) was employed to calculate the

ANI (both directions) between genomes (Lee et al. 2016).

Identity>95% was used as cut-off for species delineation.

Genome-Wide Functional Assignment (COG)

Functional assignments were implemented using eggNOG-

mapper v0.99.3 (Huerta-Cepas et al. 2017), based on

eggNOG orthology data (Huerta-Cepas et al. 2016). Sequence

searches were performed using HMMER3 (Eddy 2011). Data

were extracted using Shell scripts (https://github.com/raymond

kiu/eggnog-mapper_COGextraction, last accessed September

20, 2017) and visualized in GraphPad PRISM v5.04.

Ethics Approval and Consent for Participation

This study was approved by the University of East Anglia (UEA)

Faculty of Medical and Health Sciences (FMH) Ethics

Committee. Sample collection follows the protocols outlined

by NRES approved UEA Biorepository (Licence no.: 11208).

Written consent was given by the parents for their infants

for participation in this study.
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Table 3

Sequence of Primers Used for PCR Amplification of 16S rRNA Gene

Primers Sequence

fD1 50-AGA GTT TGA TCC TGG CTC AG-30

fD2 50-AGA GTT TGA TCA TGG CTC AG-30

rP1 50-ACG GTT ACC TTG TTA CGA CTT-30
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