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Abstract

Purpose of review—Although peer influence is an important factor in the initiation and 

maintenance of cannabis use, few studies have investigated the neural correlates of peer influence 

among cannabis users. The current review summarizes research on the neuroscience of social 

influence in cannabis users, with the goal of highlighting gaps in the literature and the need for 

future research.

Recent findings—Brain regions underlying peer influence may function differently in cannabis 

users. Compared to non-using controls, regions of the brain underlying reward, such as the 

striatum, show greater connectivity with frontal regions, and also show hyperactivity when 

participants are presented with peer information. Other subcortical regions, such as the insula, 

show hypoactivation during social exclusion in cannabis users, indicating that neural responses to 

peer interactions may be altered in cannabis users.

Summary—Although neuroscience is increasingly being used to study social behavior, few 

studies have specifically focused on cannabis use, and therefore it is difficult to draw conclusions 

about social mechanisms that may differentiate cannabis users and controls. This area of research 

may be a promising avenue in which to explore a critical factor underlying cannabis use and 

addiction.
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Introduction

Susceptibility to social influence is likely an important risk factor for the development of 

cannabis use disorders. One of the strongest determinants of both initiation and current use 

of cannabis is peer networks, particularly for adolescents [1]. Peers play a pivotal role in 

introducing an individual to a drug [2, 3], and drug use primarily occurs in social settings 

[4]. Surveys of adolescents [5, 6], college students [3], and treatment-seeking adults [7] 

consistently find links between peer behavior and drug use. For example, individuals who 

are more susceptible to peer influence are more likely to have problems with drug and 

alcohol use, and are more likely to have friends who also engage in risky behavior [8]. 

Recent studies also suggest that social factors influence treatment and recovery; those with 

cannabis use disorders who do not seek treatment are more likely to be concerned about the 

stigma associated with seeking treatment [9, 10**].

It is not surprising that social influence contributes to drug use, as research has consistently 

shown that the way in which individuals perceive the behavior of others is a strong predictor 

of their own behavior, especially when the “others” are thought of as a peer group. For 

example, one study found that college age participants’ alcohol intake is strongly associated 

with the drinking behavior of their friends, but only loosely associated with the drinking 

behavior of other students outside their peer group [11]. Similarly, the strongest predictor of 

an individual’s physical activity is the physical activity of their friends [12]. Peer influence 

on eating behavior is well-known; individuals eat more when their peers eat more, and eat 

less when their peers eat less [13, 14]. Peers can also effect delay discounting rates [15], as 

well as the willingness to expend effort to obtain rewards [16]. However, though a sizable 

literature exists on mechanisms of influence in the general population, and research supports 

the notion that social influence can spur drug use and other risky behaviors, there is a wide 

gap in neuroscience research focusing on substance using populations, especially cannabis 

users.

The recent upward trend toward greater use of cannabis is an interesting case study for how 

social mechanisms may influence drug use and dependence. Cannabis is the most commonly 

used illicit substance among both adolescents and adults in the United States [17], and 

widespread efforts to legalize cannabis for medical and non-medical use may further 

increase rates of use. In a recent study surveying young adult cannabis users, nearly half 

cited social pressure as a motive for using [18]. The current review will focus on the brain 

regions underlying peer influence during decision-making paradigms, first in the context of 

social influence, and then in the context of social exclusion. The purpose of the review is to 

summarize the current research on social influence and cannabis use, with emphasis on the 

neural circuits underlying of social influence.

Why is Brain Imaging Necessary for Understanding Social Influence?

Investigating neural circuitry of social influence confers important advantages over 

measuring behavior alone. First, neuroimaging can allow us to test psychological theories 

about the nature of social influence. Social influence is a subset of social cognition, and 

refers to the act of changing one’s behavior to match the responses of others. It is important 
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to note that although social influence often has a negative connotation, more recent studies 

have characterized peer influence as a socialization process that can facilitate prosocial 

behaviors in addition to maladaptive risk-taking behaviors [19]. In a broader context, social 

influence can be thought of as a critical variable influencing decision-making, and can affect 

a decision at multiple levels. Decision-making consists of specific psychological 

components, which have been modeled in detail [20–22], composed of five fundamental 

processes (Fig 1): A. Determining Options, B. Evaluating Options, C. Selecting among 

Options, D. Decision Processing, and E. Receiving Feedback (from the external and internal 

environment), which will in turn influence future decisions. Each of these processes can be 

affected by social influence. Let’s take the decision of a teenager to smoke marijuana at a 

party. First, he will determine his options; he can use marijuana, or he can choose not to use 

marijuana. These options are largely determined by others at the party. Next, he will evaluate 

these different options, largely in the context of how he will be perceived by others. He will 

then select one option; let’s say, he decides to smoke. Next, he will experience and process 

the decision, which will also be largely affected by the people around him. Lastly, he will 

receive negative or positive feedback regarding his choice, influenced by social factors (e.g., 

do people look at him strangely? Do more people come up and talk to him?) The feedback 

will then influence future choices that he makes.

Each of these components of decision-making can be influenced by peers, but there may be 

significant variation among individuals in how much they are influenced by those around 

them, and to what extent neural mechanisms are engaged. It is a methodical challenge for 

researchers to separate out components of decision-making in order to determine at which 

point social influence exerts its largest effect, and when a social-influence-based intervention 

could potentially be effective. Using neuroimaging paradigms with event-related designs 

may help researchers understand each stages of the decision-making process, whereas using 

behavioral paradigms alone would simply give one output.

Second, a detailed understanding of which brain regions activate during a social influence 

task can provide clues about what is most salient in the brain when individuals respond to 

peer influence. For example, during a social influence task, heightened activation of 

prefrontal regions underlying ‘executive function,’ would raise a hypothesize that social 

influence is a factor in evaluating the potential outcome of a decision, whereas heightened 

activation of striatal regions underlying ‘reward’ may raise a hypothesis that social 

conformity is a type of rewarding stimulus, similar to a monetary reward. Therefore, the 

major advantages of neuroimaging over behavior alone is its potential to determine the 

“when” and the “where” questions underlying a behavioral output. Characterization of these 

features of social influence could improve our understanding of a critical behavior 

underlying cannabis use.

Brain regions Associated with Social Influence

Scientists began studying the neuroscience of social cognition in the 1990’s, generally by 

using functional magnetic resonance imaging (fMRI) while showing participants pictures of 

social relevance, such as faces, expressions, and the direction of gaze, body posture, and 

movement. Researchers were able to identify regions of brain activation that were active 
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during the passive viewing of social information, such as the fusiform gyrus, the superior 

temporal gyrus and other regions of occipitotemporal cortex (for review, see [23]). These 

studies, while establishing the idea that certain brain regions are preferentially responsive to 

social stimuli, generally had participants isolated in the scanner environment, mostly during 

passive viewing, rather than actively engaging in decision-making processes. Recently, 

studies have used fMRI to examine more complex social interaction such as social 

cooperation [24], revenge [25], and the acquisition of social reputations [26]. These studies 

have established structures in the brain, such as the nucleus accumbens (NAc), caudate, 

amygdala, cingulate, and anterior insula, that appear to be particularly responsive to these 

social interactions. These same regions are also associated with social reward and learning, 

social cognition, and physiological arousal and anxiety, indicating that social interactions, 

especially conforming or deviating from social norms, generate emotional responses (e.g. 

[27, 28**, 29]).

Social influence is often associated with heightened neural activation in various regions 

within what has been called the ’social brain network’ [30**, 31, 32]; see [19] for review. 

This network encompasses regions such as medial prefrontal cortex (mPFC), 

temporoparietal junction (TPJ), and superior temporal sulcus (STS), and is activated during 

tasks in which participants are instructed to think about themselves in relation to others (see 

Fig 2). Many studies also report activity in striatal regions when participants are asked to 

make judgments involving peer information. In one of the first fMRI studies to directly 

investigate peer influence, data indicated that the caudate showed heightened activation 

when participants saw ‘popular’ compared to ‘unpopular’ symbols [33]. A second study 

reported that the NAc, part of the ventral striatum, showed decreased activation when 

individuals disagreed with peer ratings of facial attractiveness. Furthermore, in this study, 

deactivation of the NAc during such a conflict with group opinion predicted conformity in 

future trials [29]. Exposure to social norms can also affected striatal response; a study of 

young adults reported that the act of agreeing with peers increased activity in the NAc, 

whereas disagreeing decreased NAc activity [34]. Together, these studies suggest that 

traditional reward circuitry, such as the caudate and the NAc, may underlie neural processing 

of consensus or cooperation.

Peer opinion can affect neural response throughout life, but may be particularly salient 

during adolescence (e.g. [35**, 36, 37, 30]). A study with adolescent participants showed 

that heightened activation in the striatum and insula, regions involved in affect and reward 

processing, was associated with peer conflict and with greater risk-taking behavior [38]. 

Several studies have also shown that simply being observed by peers during risky and non-

risky decisionmaking tasks elicited striatal activation in adolescents [39, 40]. In addition, a 

behavioral study reported a steady decline in social conformity from late childhood through 

adulthood when individuals rated risky behaviors before and after observing peer ratings of 

those behaviors [41**]. These studies support the idea that the striatum is sensitive to social 

context and can be linked to individual differences in sensitivity to peer influence.
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Brain regions Associated with Peer influence in Cannabis Users

Neuroscience is increasingly being used to study social behavior (e.g. [23]), but few studies 

have focused on substance-using individuals, and even fewer specifically among individuals 

who use cannabis regularly. The primary psychoactive component of cannabis, ∆9-

tetrahydrocannabinol (THC; [42]), binds to the endogenous cannabinoid receptors which are 

widely dispersed throughout the brain, especially in the cerebellum, prefrontal cortex, 

cingulate cortex, striatum, amygdala, and hippocampus [43]. Interestingly, many of the 

regions implicated in cannabis use are also implicated in social behavior (see Fig 2), raising 

a hypothesis that perhaps cannabis use may alter neural response underlying social behavior.

Existing research, though limited, indicates that activity in the striatum may be markedly 

altered among those with substance use disorders. In a cohort of healthy adolescents, 

researchers found that the earlier individuals initiated use of alcohol, cigarettes, and 

cannabis, the greater the strength of connectivity between reward circuitry (including the 

striatum) and frontal regions [44**]. This finding is consistent with a large body of research 

showing that maturational differences in frontal cortical and subcortical monoaminergic 

systems may underlie impulsivity and/or novelty seeking among adolescents (see [45] for 

review). Most research into adolescent behavior, however, does not directly address the 

relationship among peer influence, reward circuitry, and substance use, revealing a 

fundamental gap in the literature.

A hindrance to our ability to empirically investigate the neural correlates of social influence 

is a lack of well-validated tasks specifically designed to assess susceptibility to influence. 

We have attempted to fill this gap with a series of recent studies, in which we adapted classic 

social psychology task developed in the 1950s by psychologist Solomon Asch. Using a 

simple paperand pencil line-judgment task, Asch asked participants which line, among three 

choices, matched the length of another line. Asch demonstrated that individuals were 

extremely accurate when alone, but when they were with a group of confederates who would 

give the wrong answer, the majority of participants would repeat the wrong answer. In other 

words, most participants were likely to agree with peers even at the expense of accuracy [46, 

47]. We developed a computerized version of this task that could be performed during fMRI 

scanning. We developed an initial version of the task, where we showed participants graphs 

of peer responses to cognitive judgments [48], and then based on the data from this study, 

made further modifications to the task (including the addition of color photographs 

of‘peers’) [49**] so that we could achieve greater rates of group conformity and better 

understand how neural activation related to task performance. Conducting these two studies 

in two different groups of participants had the benefit of allowing us to investigate which 

findings replicated, which is critical given what researchers have referred to as a “crisis” of 

replication and reliability in the neuroimaging field [50].

These studies were conducted on young adult (age 18–25) regular cannabis users and age- 

and gendermatched healthy controls. It is important to note that though there is little 

consensus in the literature on a standard definition for a ‘regular cannabis user’, for the 

purpose of this review, a regular cannabis user is defined as an individual who selfreports 

using cannabis at least once per week on most weeks. In these studies, participants could 
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choose whether to follow or oppose group influence regarding which of two lines was longer 

during a neuroimaging session. We then compared behavior and neural responses between 

groups. Across both studies, we found that cannabis user and controls were both more likely 

to follow than oppose group opinions. Only cannabis users, however, showed longer reaction 

times when going against the group. This reaction time slowing was associated with 

increased inferior frontal gyrus (IFG) activation, raising the hypothesis that cannabis users 

compared to controls expended more effortful processing when they opposed group 

influence. Cognitive variables such as attention and working memory contribute to decision 

speed, [51, 52] and cannabis use is often associated with these domain-specific deficits [53–

55]. The longer reaction time during the trials in which the cannabis users disagreed with the 

group may have indicated that the cannabis users had less ability to identify and/or resolve 

information conflicts (though this interpretation is one among many, and should be verified 

in future studies). In addition to reaction time differences, we also found significant 

differences between cannabis users and controls in neural activation, specifically within 

social influence trials. In these studies, cannabis users, but not controls, showed bilateral 

caudate activation when exposed to social information. We hypothesized that 

hyperactivation of the caudate in cannabis users indicated this group, relative to controls, 

showed greater responsiveness in the reward regions of the brain when presented with social 

information. We note that in this study, heightened activation in the caudate was specific to 

the social influence component of the task, and not to the monetary feedback, indicating that 

perhaps hyperactivation of the caudate was specific to peer influence and not an overall 

hyper-reactivity to reward, though this needs to be replicated in larger samples.

The caudate is not only important for social decision-making, but may be sensitive to 

individual differences in susceptibility to influence. Across groups, activation of the caudate 

correlated with self-reported peer conformity. In other words, activation of the caudate was 

particularly heightened in those who valued group conformity. Previous studies have 

suggested that the mesocorticolimbic circuitry underlying reward largely overlaps with 

valuation of social stimuli [56, 29]. Social conformity is likely incorporated with other 

standard reinforcement parameters (e.g., effort, reward magnitude, probability) to derive a 

subjective value for a given option [57]. Greater activation of mesocorticolimbic circuitry in 

the cannabisusing group may indicate that this group may place a higher value on social 

conformity relative to controls. It is important to note that several studies have reported 

differences between cannabis users and controls in structure [58, 59] and function [60–62] of 

mesocorticolimbic circuitry, especially the ventral striatum/nucleus accumbens complex. 

Both the ventral and dorsal striatum, including the caudate and putamen, play a prominent 

role in decisionmaking, and are likely affected by cannabis use due to the high density of 

cannabinoid receptors throughout this region (see [63] for review). The striatum, particularly 

the caudate, is also implicated in habit formation, a process by which over time (in the 

transition from casual drug use to addiction), drug-taking becomes controlled largely by 

automatic rather than deliberative processes [64].

Brain regions Associated with Social Exclusion in Cannabis Users

Ostracism, or social exclusion, causes significant distress, and even sends neural signals of 

pain. Individuals who use cannabis may not only show greater sensitivity to social 
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information, but may also be more sensitive to social exclusion. Anecdotally, individuals 

often report that desire to avoid social rejection underlies their use of drugs in social settings. 

The relationship between peer groups and drug use, however, is complex. On one hand, 

people tend to use cannabis primarily in social settings [4]. On the other hand, youth who 

are isolated from their peers are more likely to use tobacco than those who are integrated 

into peer groups [65, 66]. Indeed, one study found that adolescents who were isolated, but 

peripheral to substance-using peer groups, had an increased likelihood of substance use [67], 

suggesting that social isolation may increase vulnerability to substance use for youth 

connected to substance-using peers.

As with social influence, few studies exist that investigate the neural circuitry of social 

exclusion in cannabis users. We conducted such a study in cannabis users by scanning 

individuals during a task called Cyberball, an interactive computerized ball-toss game [68] 

in which individuals are included, and then subsequently excluded, from the game. A recent 

meta-analysis of the Cyberball paradigm [69] identified a set of critical brain regions 

involved in the processing social exclusion, including the right insula, the ventral anterior 

cingulate cortex (vACC), and the dorsal anterior cingulate cortex (dACC). Results from our 

study showed that although cannabis users and controls reported similar levels of distress 

from social exclusion, the cannabis group showed significantly less activation than controls 

in the right anterior insula during peer rejection. This is intriguing, given that insula 

activation to social exclusion was the most highly replicated finding in the meta-analysis of 

Cyberball paradigms. The anterior insula is involved in many brain functions such as 

subjective awareness [70] and cognitive control [70, 71], and is associated with experiences 

of physical pain [69, 70] and processing of negative emotions [72, 73]. The anterior insula 

has also been implicated in drug craving [74–77]. There are several interpretations of what 

reduced insula activation in cannabis users may reflect, but one plausible hypothesis that that 

cannabis users show impaired processing of social information. In fact, a study of 

adolescents using Cyberball showed that more socially competent adolescents showed 

greater activity in the insula, suggesting that heightened interpersonal skills may be 

associated with increased neural sensitivity to peer rejection [36]. Reduced insula activity 

during peer rejection could also indicate that cannabis users were less conscious of social 

norms. Insula activation may underlie an ability to reflect on social situations, and this 

ability may produce greater sensitivity to peer relationships [78]. Additionally, cannabis use 

has been associated with anhedonia, (e.g. [79]), indicating that emotional response may be 

dulled in the cannabis group.

Though cannabis users had reduced insula activation, they showed normative processing in 

the vACC. Like the insula, vACC activation has been reported in studies of emotion, 

especially sadness [80–82]. However, unlike the insula, the vACC has been more 

specifically associated with affective conflict during cognitive tasks [81]. A recent study 

reported increased connectivity between vACC and default mode network (DMN) regions 

during social exclusion [83], suggesting that during exclusion blocks, when the participant is 

perhaps ruminating on the situation, they may be engaged in reflective processing. DMN 

functional connectivity to vACC is stronger in people with depression compared to controls, 

suggesting an association between vACC-DMN connectivity, negative emotion, and 

rumination [83, 84]. Activity in the vACC during social exclusion likely reflects not only 
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negative emotion produced by social exclusion, but also affective monitoring, which may be 

intact in the cannabis group. It is also plausible that vACC dysfunction may become 

apparent in heavier users, or in those with cannabis dependence. Further studies are needed 

to better understand the factors contributing to altered insula response, but possibly in tact 

vACC response, within cannabis users.

Limitations of Current Studies and Future Directions

Though there is increasing focus on neuroscience underlying influence, there is a clear need 

for more of this research to focus on substance using populations, especially cannabis users. 

Studies in cannabis users indicate that brain regions such as the caudate, insula, and 

prefrontal regions, may show altered activation during the processing of social information. 

The studies reviewed, however, are cross-sectional, and therefore we cannot draw 

conclusions about causality. Longitudinal studies are needed in order to determine whether 

altered neural response to social influence/exclusion is a risk factor for cannabis use, a 

consequence of cannabis use, or a combination of both. Without such longitudinal studies, 

there are several possible explanations for these differences; 1) altered neural response is a 

trait that reflects a pre-existing risk for initiation of cannabis use, 2) altered neural response 

developed as a result of cannabis exposure due to disruption to neurodevelopmental 

processes underlying social processing, 3) a third variable is responsible for giving rise to 

both cannabis use and altered neural responses to social cognition, such as striatal reactivity, 

or 4) some combination of the explanations above is responsible for of the relationship 

between cannabis use and altered neural responses.

Understanding which mechanism is responsible for the differences observed in social 

processing may lead us to identifying who is at risk for cannabis use disorders, and help us 

to develop treatments that can target this risk. Neuroimaging may allow us to better 

understand at what point in the decision-making process cannabis users diverge from 

controls, and to form hypothesis about how brain regions underlying these differences map 

onto motivations for cannabis use. Clever task designs can also help us better disentangle 

which aspects of social decision-making differ (e.g. social reward vs general reward). Brain 

regions implicated in social processes, in cannabis use, and in both are depicted in Fig 2; 

further research is needed to fully understand interactions and networks that may differ in 

cannabis users.

It Is important to note that in many of the social influence and peer rejection studies 

described above, brain differences often occurred in the absence of behavioral differences 

(for commentary, see [85]). It is important to acknowledge that scanner-based experimental 

psychology tasks represent simplified traces of complex real-life behaviors. Our tasks, like 

most neuroimaging tasks, investigated decision-making during low-arousal tasks where the 

outcomes (comparing the relative length of lines, being excluded from a ball-tossing game) 

are not particularly meaningful or salient. Social influences that occur in the context of drug 

use are likely to be high-arousal, personally meaningful, and require complex balancing of 

costs and benefits. Future studies can employ tasks more relevant to drug-seeking and drug-

using behavior, to further probe whether more effortful tasks would reveal behavioral 
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differences as well better understand the predictive utility of slowed decision making in 

understanding real-world functional outcomes.

Furthermore, it is important to note that although peer influence often has a negative 

connotation, more recent studies have characterized peer influence as a socialization process 

that can facilitate prosocial behaviors in addition to maladaptive risk-taking behaviors [19]. 

For example, the presence of peers during late adolescence has been linked to more 

exploratory behavior, as well as higher learning rates [86]. Therefore, future research into 

social mechanisms of cannabis use should take into consideration the positive aspects of 

peer influence.

Finally, cannabis users with heavier patterns of use (dose, quantity, frequency, and duration 

of use) are subjected to greater adverse impacts of cannabis on brain structure and function 

(e.g. [87**]). Therefore, future studies should compare heavy (e.g. daily) to non-heavy (e.g. 

weekly) users, as well as current heavy users to past heavy users, in order to investigate 

whether neural response to social information varies as a function of cannabis exposure over 

time. Furthermore, young adults using other substances such as alcohol or nicotine may also 

show differences in brain-based activity to peer influence. An additional avenue for research 

is to examine how different motivations for drug use (e.g. coping, social engagement, etc.) 

contribute to different patterns of brain activity underlying social influence and drug use. 

Finally, a myriad of other factors (e.g. age of onset of cannabis use, gender, comorbid 

psychopathology, educational attainment) should also be taken into account when 

considering how social cognition interacts with cannabis. In addition, age likely plays a 

prominent role in the mechanisms underlying social influence, as many studies have shown 

that regions underlying reward, such as the ventral striatum, is heightened in adolescents 

during risk decision-making [39] and during social interaction tasks [40]. It will therefore be 

critical to study the neuroscience of peer influence in cannabis users with a wide age range.

Conclusions

The neuroscience of social influence in cannabis users is in its infancy, and future research 

needs to be conducted to better understand the role of social influence in initiation and 

maintenance of cannabis use. The limited literature identifies structures such as the striatum 

and insula as possible biomarkers for altered social cognition, which raises hypotheses that 

can be tested in future studies. Larger populations of cannabis users, such as individuals of 

different ages and different cannabis use trajectories, should be furthered studied, as social 

influence may prove to be an important predictor of the development of, and recovery from, 

cannabis use disorders.
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Figure 1. 
Heuristic model of decision-making. This schematic outlines a set of processes that occur 

during decision-making, each of which can be affected by social influence.
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Figure 2. 
Brain structures involved in social cognition (shown in blue), cannabis use (shown in green), 

and with both social cognition and cannabis use (shown in red). This figure emphasizes 

structures discussed in this review, but is likely incomplete, as future studies may show other 

structures/networks that are important in social cognition and are impacted by cannabis use.
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