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Abstract

As data sets of related studies become more easily accessible, combining data sets of similar 

studies is often undertaken in practice to achieve a larger sample size and higher power. A major 

challenge arising from data integration pertains to data heterogeneity in terms of study population, 

study design, or study coordination. Ignoring such heterogeneity in data analysis may result in 

biased estimation and misleading inference. Traditional techniques of remedy to data 

heterogeneity include the use of interactions and random effects, which are inferior to achieving 

desirable statistical power or providing a meaningful interpretation, especially when a large 

number of smaller data sets are combined. In this paper, we propose a regularized fusion method 

that allows us to identify and merge inter-study homogeneous parameter clusters in regression 

analysis, without the use of hypothesis testing approach. Using the fused lasso, we establish a 

computationally efficient procedure to deal with large-scale integrated data. Incorporating the 

estimated parameter ordering in the fused lasso facilitates computing speed with no loss of 

statistical power. We conduct extensive simulation studies and provide an application example to 

demonstrate the performance of the new method with a comparison to the conventional methods.
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1. Introduction

Combining data sets collected from multiple studies is undertaken routinely in practice to 

achieve a larger sample size and higher statistical power. Such information integration is 

commonly seen in biomedical research, for example, the study of genetics or rare diseases 

where data repositories are available. The motivation of this paper arises from the 

consideration of data heterogeneity during data integration. Although data integration has 

different meanings, in here, we consider the concatenation of data sets of similar studies 

over different subjects, where the number of integrated data sets can be very large.

Inter-study heterogeneity can result from the differences in study environment, population, 

design and protocols (Leek and Storey, 2007; Sutton and Higgins, 2008; Liu et al., 2015). 

Data heterogeneity is likely attributed to population parameter heterogeneity, where the 

association of interest can differ across different study populations from which data sets are 

collected. Examples include multi-center clinical trials when participant data from different 

sites are combined (Shekelle et al., 2003) and genetics studies when genomic data from 

HHS Public Access
Author manuscript
J Mach Learn Res. Author manuscript; available in PMC 2017 October 19.

Published in final edited form as:
J Mach Learn Res. 2016 ; 17: .

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



multiple similar studies are combined (Lohmueller et al., 2003; Sullivan et al., 2000). 

Discrepancies in treatment effect or trait-gene association may arise due to the differences in 

facilities, practices and patient characteristics across studies, albeit the adjustment of 

confounding (Leek and Storey, 2007). The parameter heterogeneity introduced in data 

integration compromises the power of the larger sample size and may even lead to biased 

results and misleading scientific conclusions. Thus, counterintuitively, the model obtained 

from the combined studies may not serve as a proper prediction model for each individual 

study in the case of heterogeneous study populations.

Traditional treatments of parameter heterogeneity are not optimal. Meta-analysis methods 

such as combining summary statistics (Glass, 1976), estimating functions (Hansen, 1982; 

Qin and Lawless, 1994) or p-values functions (Xie et al., 2012) are built upon the 

assumption of complete parameter homogeneity, as shown in the left panel of Figure 1. This 

assumption is hardly valid in practice. When individual participant data from multiple data 

sets are available, a retreat to the classical meta-analysis methods is necessary, because in 

this case assessing the assumption of inter-study homogeneity becomes possible. The two 

most common approaches to handling parameter heterogeneity include (i) specifying study-

specific effects by including interaction terms between study indicator and covariates (e.g., 

Lin et al. (1998)), and (ii) utilizing random covariate effects by allowing variations across 

studies as random variables (e.g., DerSimonian and Kacker (2007)). Both approaches 

essentially assume fully heterogeneous covariate effects, namely, each study having its own 

set of regression coefficients, as shown in the right panel of Figure 1.

When study-specific effects are of interest, the interaction-based formulation may lead to 

over-parameterization, which impairs statistical power. The most straightforward way to 

reduce the number of parameters is to identify clusters of homogeneous parameters through 

exhaustive tests for the differences between every pair of study-specific coefficients. 

However, when the number of data sets is large, the use of hypothesis testing to determine 

parameter clusters becomes untrackable in addition to the multiple-testing problem. One 

may draw different or even conflicting conclusions due to different orders of hypotheses 

performed.

In reality, covariate effects from multiple studies are likely to form groups, a scenario falling 

in between the complete heterogeneity and the complete homogeneity. This leads to the 

following two essential yet related analytic tasks: (i) to assess the inter-study heterogeneity, 

so to determine an appropriate form of parsimonious parameterization in model 

specification; and (ii) to identify and merge groups of homogeneous parameters for better 

statistical power for parameter estimation and inference based on a more parsimonious 

model. Along the idea of lasso shrinkage estimator (Tibshirani, 1996), fused lasso methods 

(Tibshirani et al., 2005; Friedman et al., 2007; Yang et al., 2012) have been introduced to 

achieve covariate grouping, where covariate adjacencies are naturally defined by a metric of 

time, location or network structure. In our problem of data integration, there does not exist a 

natural metric to define the ordering of regression coefficients from different studies. Shen 

and Huang (2010) proposed the grouping pursuit via penalization of all pairwise coefficient 

differences in a single study, where covariate orderings are not considered. To reduce the 

computational burden in the all-pairs based regularization, Wang et al. (2016) and Ke et al. 
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(2015) used the initial coefficient estimates to establish certain ordering and then to define 

parameter adjacencies. However, most of these studies have been entirely focusing on a 

single cohort of subjects from a single study. For example, Shin et al. (2016) proposed to 

fuse regression coefficients of different loss functions obtained from a single study, such as 

coefficients from different quantile regression models. Limited publication of fusion 

learning and grouping pursuit has been available in the literature, except Wang et al. (2016), 

to assess the differences and similarities among regression coefficients across multiple 

studies in the scenario of data integration.

In this paper, we propose an agglomerative clustering method for regression coefficients in 

the context of data integration, named as the Fused Lasso Approach in Regression 
Coefficients Clustering (FLARCC). FLARCC is proposed to identify heterogeneity patterns 

of regression coefficients across studies (or data sets) and to provide estimates of all 

regression coefficients simultaneously. It is interesting to draw a connection between our 

method and Pan et al. (2013) where they consider a classic clustering problem of individual 

responses by pairwise coefficient fusion via penalized regression. Their method aims at 

clustering subjects, while our method focuses on clustering regression coefficients across 

multiple data sets, and these two methods coincide only in a special case where each study is 

composed of only one subject. FLARCC achieves clustering of study-specific effects by 

penalizing the ℓ1-norm differences of adjacent coefficients, with adjacency defined by the 

estimated ranks. Our method extends the bCARDS method in Ke et al. (2015) from one 

study to multiple studies as well as from the linear model to the generalized linear models, 

and focuses on simultaneous clustering of regression coefficients of individual covariates 

from multiple studies in data integration. An R package metafuse is created as part of our 

methodology development to perform the proposed integrated data analysis which can be 

downloaded from the Comprehensive R Archive Network (web link https://cran.r-

project.org/web/packages/metafuse).

In the proposed method, tuning parameter is used to determine the clustering pattern of 

coefficients across data sets. Specifically, let λ be the tuning parameter of regularization. If 

λ = 0 (i.e., no penalty), FLARCC becomes a method under the setting of complete 

heterogeneity, so that study-specific regression coefficients for each covariate are assumed 

different across data sets. If λ is large enough that all differences of regression coefficients 

are shrunk to zero, FLARCC reduces to a homogeneous model in that a common regression 

coefficient for each covariate is assumed for all studies. In light of the hierarchical clustering 

scheme, these two extreme cases above correspond to the start and end of an agglomerative 

clustering, respectively; however, the reality is believed to reside in between. Analogous to 

dendrograms in the hierarchical clustering, we propose a new tree-type graphic display, 

named as fusogram, which presents tree-based coefficient clusters according to solution 

paths obtained from FLARCC. The selection of optimal λ pertains to pruning of clustering 

trees, which can be based on certain model selection criterion. We use the extended 

Bayesian information criterion (EBIC) proposed by Chen and Chen (2008) as our model 

selection criterion and show that EBIC exhibits better performance than BIC when the 

number of studies (or data sets) is large. In addition, we propose a scaling strategy to 

“harmonize” solution paths by covariate-wise adaptive weights to allow flexible tuning, 

which further improves the clustering performance.
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The rest of this paper is organized as follows. Section 2 describes FLARCC in detail under 

the generalized linear models (GLM) framework. Section 3 presents the theoretical 

properties of the proposed method (with technical proofs presented in the Appendix). 

Section 4 discusses the interpretation and selection of the tuning parameter. In Section 5, we 

use simulation studies to evaluate the performance of our method. A real data analysis is 

given in Section 6 with interpretation of coefficient estimates and illustration of fusograms. 

Discussion and concluding remarks are in Section 7.

2. Method of Parameter Fusion

In this section, we present the method and algorithm of FLARCC.

2.1 Notations and Method

We start by introducing necessary notations. Throughout this paper, i, j and k are used to 

index subject, covariate and study, respectively. For instance,  denotes the measurement 

of the jth covariate from the ith individual from study k, and  is the measurement of a 

response variable from the ith individual from study k. The total number of studies is 

denoted as K and the number of covariates involved is p. The sample size for study k is nk, k 

= 1, …, K, and the combined sample size is . The collection of all coefficients 

(covariates-wise) is denoted as  with βj,· = (βj,1, …, βj,K)⊤ for j = 

1, …, p. An indicator vector c = (c1, …, cp)⊤ is used to flag heterogeneous covariates, 

namely if the jth covariate is treated as heterogeneous (i.e., all different coefficients across K 
studies) then cj = 1 and as homogeneous (a common coefficient across K studies) otherwise. 

Thus cj = 0 for some j ∈ {1, …, p} implies that coefficient vector βj,· reduces to a common 

scalar parameter βj for all K studies.

For illustration, let us consider a simple scenario of c = (1, 1, 0, …, 0)⊤, in which the first 

two covariates are set as heterogeneous and the remaining p − 2 covariates are set as 

homogeneous. The resulting coefficient vector is . Then the 

corresponding design matrix X can be written as

where , j = 1, …, p, k = 1, …, K. The specification of c is can be 

dependent on the study interest. For example, in a multi-center clinical trial where we 

believe that the differences between the services provided across centers are non-negligible, 

but the study participants are similar, we can specify the clinic-related variables (e.g., 

treatment and cost) to be heterogeneous and the patient-related variables (e.g., age and 

gender) to be homogeneous. In addition, the specification of c can be dependent on 
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preliminary marginal analysis of the homogeneousness of each variable, such as tests for 

random effects. When the homogeneousness of a covariate is unclear, we suggest specifying 

it as heterogeneous rather than homogeneous.

Under the assumption that both within-study and between-study samples are independent, 

for any c = (c1, …, cp)⊤ with cj ∈ {0, 1}, j = 1, …, p, the initial estimate of β, which gives 

the starting level of clustering (i.e., λ = 0), can be consistently estimated by the maximum 

likelihood estimator

(1)

where , k = 1, …, K are the study-specific likelihoods from the given 

GLMs. For the purpose of parameter grouping and fusion, we propose the regularized 

maximum likelihood estimation for β by minimizing the following objective function:

(2)

where P(β) is a penalty function of certain form. Here we adopt weighting  to balance the 

contribution from each study so to avoid the dominance of large studies. Other types of 

weighting schemes may be considered to serve for different purposes, such as the inverse of 

estimated variances of initial estimates, which helps to achieve better estimation precision.

To achieve parameter fusion, Shen and Huang (2010) proposed the grouping pursuit 

algorithm, which specifies the sum of ℓ1-norm differences of all study-specific coefficient 

pairs among individual heterogeneous coefficient vectors βj,·, where cj = 1, as the penalty:

with λ ≥ 0. In this penalty, there are  terms of pairwise differences for each 

heterogeneous covariate and the total number of terms increases by an order of O(K2), given 

p fixed. This penalty contains many redundant constraints and imposes great computational 

challenges as pointed out in Shen and Huang (2010) and Ke et al. (2015).

Following arguments in Wang et al. (2016) and Ke et al. (2015), we develop the method of 

FLARCC by a simplified penalty function that uses the information on the ordering of 

coefficients. For the jth covariate, let Uj = (Uj,1, …, Uj,K)⊤ be the ranking with no ties of βj,· 

= (βj,1, …, βj,K)⊤, from the smallest to the largest. Specifically, 
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if there are no ties in βj,·; otherwise, the ties in Uj are resolved by the first-occurrence-wins 

rule according to k to ensure rank uniqueness. Then, the fusion penalty in FLARCC with 

parameter orderings Uj, j = 1, …, p, takes the form:

(3)

where the constraints occur effectively only on adjacent ordered pairs. Clearly, the penalty in 

(3) only involves K − 1 terms for each case of cj = 1, which is of an order O(K), given p 
fixed. The νj’s and μj,k,k′’s in (3) are weights. Following Zou (2006), we choose adaptive 

weights μ̂j,k,k′ = 1/|β̂j,k − βĵ,k′|r, r > 0, so that parameters with smaller difference will be 

penalized more than those with larger differences. Similarly, for a group of parameters βj,· = 

(βj,1, …, βj,K)⊤, νj is an adaptive weight to characterize the degree of heterogeneousness of 

βj,·. Specifically, in this paper we let ν̂
j = 1/|βĵ,(K)− β̂j,(1)|s, the inverse of the range of the 

estimates, with s ≥ 0; when a covariate is homogeneous, the differences of study-specific 

coefficients will be penalized more than those that are heterogeneous. In this way, we can 

“harmonize” solution paths so to greatly improve the performance by a single tuning 

parameter. We compare s = 0 and s = 1 in the simulation experiments and show in Section 5 

that the introduction of such group-wise weights νj, j = 1, …, p, gives rise to improvement 

on the performance of identifying homogeneous covariates when K and p are large.

A sparse version of FLARCC can also be achieved by including the traditional lasso penalty 

in (3) for covariate selection. In order to minimize the interference between fusion and 

sparsity penalties, we only encourage sparsity for the coefficient closest to zero in each βj,· = 

(βj,1, …, βj,K)⊤, for j = 1, …, p. Similar to the definition of Uj, let Vj = (Vj,1, …, Vj,K)⊤ be 

the ranking with no ties, from the smallest to the largest, of the absolute values of βj,·, i.e., (|

βj,1|, …, |βj,K|)⊤. First we calculate Vj by , then we resolve 

the ties in Vj by the first-occurrence-wins rule according to k. Thus we can extend (3) to 

achieve variable selection by the following penalty function:

(4)

where α ≥ 0 is another tuning parameter that controls the relative ratio between fusion and 

sparsity penalties, and μ̂j,k = 1/|βĵ,k|r. The sparsity penalty, although only enforced on the 

smallest coefficient in absolute value of βj,·, is capable of shrinking a group of coefficients to 

zero when combined with the fusion penalty.

In practice, the weights (νj, μj,k,k′ and μj,k) and the parameter orderings (Uj and Vj) are 

unknown, for j = 1, …, p. We replace them with their estimates based on root-n consistent 
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estimates , such as those from (1). In the simulation experiments and the 

real data application of this paper, we set r = 1 in μ̂j,k,k′ and μ̂j,k.

2.2 Algorithm

Optimization problem (2) with P(β) = Pλ,α(β) given in (4) can be carried out by a lasso 

regression through suitable reparameterization. Let the ordered coefficients of βj,· in an 

ascending order based on ranking Uj be (βj,(1), …, βj,(K))⊤, j = 1, …, p. For the jth covariate, 

consider a set of transformed parameters θj,· = (θj,1, …, θj,K)⊤ defined by

Then the Pλ,α(β) in (4) can be rewritten as

(5)

where

(6)

for j = 1, …, p. Since no ties are allowed in the parameter ordering of FLARCC, one-to-one 

transformation exists between  and  by 

suitable sorting matrix S and reparameterization matrix R; that is, θ = RSβ and β = (RS)−1θ 
with both S and R being full-rank square matrices. Thus, a solution to the fused lasso 

problem can be obtained equivalently by solving a routine lasso problem with respect to 

coefficient vector θ and a transformed design matrix X(RS)−1. As aforementioned, the 

estimated parameter ordering is used to construct S. It is obvious that the constraint in (5) is 

convex, thus FLARCC does not suffer from multiple local minimal issue. The optimization 

is done using R package glmnet (version 2.0–2) (Friedman et al., 2010), which 

accommodates GLMs with Gaussian, binomial and Poisson distributions.

3. Large-sample Properties

First we present the oracle property of our method when the parameter ordering is known, 

then we prove that the same large-sample properties are preserved when consistently 

estimated parameter ordering is used. Here we assume K is fixed. Theorems will be stated 
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under the setting of all coefficients being heterogeneous, i.e., c = (1, …, 1)⊤. The large-

sample theories for other specification of c can be established as a special case.

Denote the true parameter values as β* and θ*. Let the collection of true parameter orderings 

of all covariates and their absolute values be , and the estimated orderings 

based on the root-n consistent estimator β̂ from (1) as . Denote the 

FLARCC estimator of θ* as θ̂W when W is known, and θ̂Ŵ when the estimated parameter 

ordering Ŵ is used. Let  be the index set of nonzero values in θ*, where 

, and c be the complement of . Thus, θ* can be partitioned into two 

subsets, the true-zero set  and the nonzero set . Similarly, let 𝒜̂W and 𝒜̂Ŵ be the index 

sets of nonzero elements in θ̂W and θ̂Ŵ, respectively. Let , and 

λN = Nλ.

Theorem 1

Suppose that tuning parameter λN satisfies  and λNN(r−1)/2 → ∞. Then under 
some mild regularity conditions (see Appendix A), the FLARCC estimator θ̂W based on the 
true parameter ordering W satisfies

i. (Selection Consistency) limn P(𝒜̂W = ) = 1;

ii.
(Asymptotic Normality)  as n → ∞, where I11 is 
the submatrix of Fisher information matrix I corresponding to set .

Theorem 1 states that when the coefficient orderings W of β is known, under mild regularity 

conditions, the FLARCC estimator θŴ enjoys selection consistency and asymptotic 

normality. The proof of Theorem 1 follows Zou (2006) and is given in Appendix A. Now we 

present Theorem 3, which states that the same properties of Theorem 1 hold for θ̂Ŵ, the 

FLARCC estimator of θ* based on the estimated parameter ordering Ŵ. In effect, Theorem 

3 is a consequence of the following lemma.

Lemma 2

If β̂ is a root-n consistent estimator of β, then limn P(Ûj = Uj) = 1 and limn P(V̂
j = Vj) = 1 for 

j = 1, …, p.

The proof of Lemma 2 is given in Appendix A. Lemma 2 implies that the parameter 

ordering can be consistently estimated. Using Lemma 2, we are able to extend the properties 

of θ̂W in Theorem 1 to the proposed FLARCC estimator θŴ̂.

Theorem 3

Suppose that  and λNN(r−1)/2 →∞. Let the estimated parameter ordering Ŵ be 
the ranks from a root-n initial consistent estimator β̂. Under the same regularity conditions 
of Theorem 1, the FLARCC estimator θ̂Ŵ satisfies

i. (Selection Consistency) limn P(𝒜̂Ŵ = ) = 1;
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ii.
(Asymptotic Normality)  as n → ∞, where I11 is 
the submatrix of Fisher information matrix I corresponding to set .

The proof of Theorem 3 is given in Appendix A. The asymptotic normality for β̂ can also be 

derived by a simple linear transformation.

4. Tuning Parameter

In this section, we provide interpretation of the tuning parameter λ and discuss the selection 

criteria used for selecting λ.

4.1 Interpretation of νj’s

Intuitively speaking, the study-specific coefficients of a homogeneous covariate tend to be 

fused at a small λ value, say λ1, but the fusion of a heterogeneous covariate requires another 

λ value, λ2, assuming λ2 > λ1. The region to draw correct clustering conclusion is [λ1, λ2], 

that is, any λ within this region will produce the correct clustering result. However, when the 

number of covariates p is large, the region that λ can take value from to ensure the correct 

clustering of all p coefficient vectors simultaneously becomes narrower and may even be 

empty. For example, when λ2 < λ1 in the above case, no single λ is able to correctly cluster 

both sets of parameters. The introduction of νj’s in (4) creates larger separation between 

homogeneous and heterogeneous groups, so that the range for λ to identify the correct 

clustering pattern for all covariates is better established than the case with s = 0, namely no 

use of weighting νj’s. When the number of covariates p is large, νj plays a more important 

role in harmonizing solution paths across covariates, and the performance will be greatly 

improved by simultaneous tuning via a single λ.

4.2 Model Selection

In the current literature, the tuning parameter λ may be selected by multiple model selection 

criteria, such as Bayesian information criterion (BIC) (Schwarz, 1978) and generalized 

cross-validation (GCV) (Golub et al., 1979). In this paper, we consider the widely used BIC 

and its modification, extended BIC, i.e., EBIC (Chen and Chen, 2008; Gao and Song, 2010), 

which has showed the benefit of achieving sparse solutions.

Following the derivation of BIC for weighted likelihoods in Lumley and Scott (2015), the 

conventional BIC for FLARCC is defined as follows:

(7)

where n̄ = N/K is the average sample size per study, Lk(β) is the study-specific likelihood, 

β̂(λ) is the estimation of β at tuning parameter value λ, and  is 

the total number of distinct parameters in β̂(λ). The study-specific log-likelihoods for three 

most common models are listed below:
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To improve the BIC by further controlling model size and encouraging sparer models, we 

adapt the EBIC for FLARCC, which takes the following form:

(8)

where γ ∈ [0, 1] is a tuning parameter that is typically fixed at 1 as done in our numerical 

experiments. Note that EBIC reduces to BIC when γ = 0. The last term in (8) encourages a 

sparser solution in comparison to the conventional BIC. Simulation studies in Section 5 

provide numerical evidence to elucidate the difference between BIC and EBIC in terms of 

their performance on achieving sparsity.

In a view of hierarchical clustering, the solution path of each covariate can be thought of as a 

hierarchical clustering tree. For the jth covariate, λ = 0 corresponds to the bottom of the 

clustering tree; and λ = λFuse,j, the smallest λ value to achieve complete parameter fusion, 

corresponds to the top of the clustering tree. The completely heterogeneous model 

corresponds to the position on the solution path at λ = 0 and the completely homogeneous 

model corresponds to the model at .

5. Simulation Studies

This section presents results from two simulation experiments. The first simulation 

compares the performance of FLARCC under different GLM regression models. The second 

simulation is a more complicated scenario with large K and more non-important covariates, 

where covariate selection is also of interest.

5.1 Simulation Experiment 1

The first simulation study aims to assess the performance of our method for different GLM 

regression models. For this, we consider combining data sets from K = 10 different studies 

with, for simplicity, equal sample size n1 = ⋯ = n10 = 100. Data are simulated from the 

following mean regression model:

where the true coefficient vectors have the following clustering structures:
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The true values in β2 and β3 are heterogeneous, while the true values in β1 are homogeneous 

across studies. The three covariates are correlated with exchangeable correlation of 0.3 and 

marginally distributed according to the standard normal distributions, (0, 1). Three types 

of GLM regression models are considered: linear model for continuous normal outcomes 

(with errors simulated from (0, 1)), logistic model for binary outcomes and Poisson model 

for count outcomes.

To evaluate the performance of FLARCC to correctly detect patterns of all covariates, we 

assume all covariates are heterogeneous across studies with no prior knowledge on 

clustering structure of any covariate. Intercept is fitted and assumed to be homogeneous. No 

sparsity penalty is applied on the covariates (i.e., α = 0) in this simulation experiment. 

Coefficients of all three covariates are fused simultaneously, and the optimal tuning 

parameter λopt is selected by EBIC. We report sensitivity and specificity as metrics of the 

performance of FLARCC to identify similar and distinct coefficient pairs. Sensitivity 

measures the proportion of equal coefficient pairs that are correctly identified. Similarly, 

specificity measures the proportion of unequal coefficients pairs that are correctly identified; 

however, specificity is not defined for homogeneous covariates which have no unequal 

coefficient pairs. In addition, we calculate the mean squared error (MSE) for each β̂j, · across 

all K studies, defined as , j = 1, …, p, and compare with the 

MSE of each estimate based on homogeneous model (λ = λFuse) and heterogeneous model 

(λ = 0).

Table 1 shows the results of simulation experiment 1 from 1,000 simulation replicates. The 

MSE of all estimated covariates based on FLARCC (λ = λopt) are consistently and 

significantly smaller than those based on the homogeneous (λ = λFuse) and heterogeneous 

(λ = 0) models, regardless of the model type. FLARCC performs very well in the linear and 

Poisson regressions in terms of identifying the correct clustering, with the sensitivity and 

specificity both above 95% for all covariates (specificity is not reported for β1 since there is 

no unequal pair within β1, ·). Sensitivity and specificity of FLARCC drop in the logistic 

regression, especially as the level of heterogeneity increases. One reason for the reduced 

performance of FLARCC in the logistic regression is that the estimated variances of 

regression coefficients in the logistic model are larger than in the linear and Poisson models, 

given the same coefficient setting. Therefore, the estimated parameter ordering for which our 

method is based on may be less accurate. For the logistic regression, increasing sample sizes 

is one of the possible ways to improve the performance. The performance difference 

between scaling weight parameter s = 0 and s = 1 in (4) is small in this case because of the 

relatively small number of covariates p = 3. Additionally, since K is small in this case, the 
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optimal λ selected by BIC and EBIC are very close, thus we only display results based on 

EBIC. As p and K become larger, FLARCC will increasingly benefit from the additional 

weights νj (i.e., s = 1) and EBIC, as will be shown in Section 5.2. A sensitivity analysis to 

investigate how the initial ordering affect the performance of FLARCC is conducted, with 

results shown in Appendix B. We show that when the initial parameter ordering is slightly 

distorted, our method still achieves satisfactory performance.

5.2 Simulation Experiment 2

The second simulation study aims to evaluate the performance of FLARCC in a more 

challenging setting. More specifically, we consider data sets from K = 100 studies, each with 

a sample size 100, totaling 10,000 subject-level observations. Comparing to the previous 

setting, we increase the number of covariates and reduce the gaps between heterogeneous 

coefficients. For each study, we simulate data from the following linear regression model:

The signals are set sparse; only the first four covariates with coefficient vectors, β1 to β4, are 

influential to Y with the true clustered effect patterns given as follows:

whereas β5 to β8 are all zero, i.e., βj, · = (0, …, 0)⊤, for j = 5, 6, 7, 8. All covariates are 

equally correlated with an exchangeable correlation of 0.3 and marginally distributed 

according to (0, 1). We set β1 to β8 as being heterogeneous from the start and fuse all of 

them simultaneously. We apply the additional sparsity penalty to all covariates by setting α 
= 1. The intercept is assumed to be homogeneous in the analysis.

Since K is large, we also present results from individual covariate K-means clustering. This 

is a two-step method where we first estimate regression coefficients within each study, and 

then separately for each covariate, we perform the K-means clustering on the estimated 

study-specific coefficients of each covariate. The number of clusters is selected by the 

generalized cross-validation criterion , with β̂c(k) being the 

cluster center of βk̂ and GDF is the generalized degrees of freedom estimated according to 

Ye (1998), where purturbations are generated independently from (0, 0.01). The cluster 

centroids are then used as the estimates of the group-level parameters.
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Table 2 summarizes the simulation results for linear model where the errors are generated 

independently from (0, 1). Similar to simulation 1, FLARCC gives the smallest MSE for 

heterogeneous covariates, β1 to β4, among all three models, and has comparable MSE as the 

homogeneous model for homogeneous covariates, β5 to β8. More interestingly, when K is 

large, BIC does not provide satisfactory model selection, erring on the lack of parsimony, 

while EBIC encourages stronger fusion and improves the ability to detect equal coefficient 

pairs in all eight covariates, regardless of their levels of heterogeneity. In addition, EBIC 

improves the sparsity detection among both the important and nonimportant covariates. It is 

interesting to note that the choice between BIC and EBIC does not alter solution paths, but 

only model selection. FLARCC with scaling weight parameter s = 1 has the best clustering 

performance among all compared methods. The difference between the choices of s = 0 and 

s = 1 is substantial in simulation 2, in contrast to the results from simulation 1. This 

indicates that the covariate-specific weights for heterogeneity  are very effective to 

improve the performance of the proposed fusion learning, especially when K and p are large. 

Sensitivity and specificity of the two-step K-means clustering method are higher than those 

of FLARCC with s = 0, but lower than those of FLARCC with s = 1. The two-step K-means 

has larger MSE than FLARCC because it does not consider the correlation between 

covariates. More importantly, the K-means clustering is a model-free method, so the results 

obtained from this method cannot be plugged in back to the model for prediction. As 

suggested from the empirical results of both simulation experiments, EBIC tends to provide 

better model selection for FLARCC than the conventional BIC.

6. Application: Clustering of Cohort Effects

In this data analysis example, we like to demonstrate the use of our method to derive clusters 

of cohort effects. Here we consider the Panel Study of Income Dynamics (PSID), which is a 

household survey study following thousands of families across different states in the US. 

PSID collects information of employment, income, health, and so on. In this data analysis, 

we focus on the association of household income with body mass index (BMI) on school-

aged children between age of 11 and 19, adjusted for age, gender and birth weight. Data of 

1880 children were gathered from four census regions (1-Northeast, 2-Midwest, 3-South and 

4-West), as defined by U.S. Census Bureau (2015). All variables are standardized before 

model fitting. We are interested in investigating if regional heterogeneity exists and if the 

effects of interest differ across regions with region-dependent patterns.

Table 3 shows the results of coefficient estimates obtained from three different models: (A) 

homogeneous model (λ = λFuse), coefficients estimated by combining data sets from four 

regions, (B) heterogeneous model (λ = 0), coefficients estimated separately by region-

specific data, and (C) FLARCC (λ = λEBIC). Model A suggests that age and birth weight 

are positively associated with BMI for the subjects, but income was negatively associated 

with BMI. The estimates from Model B suggest that heterogeneous coefficient patterns exist 

among these associations since conclusions differ between regions. Model C appears more 

sensible when regression coefficients are heterogeneous across these regions. Since K and p 
are small in this data application, we apply FLARCC with s = 0 on the PSID data, assuming 
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effects of income, age, gender and birth weight are heterogeneous across regions, and set 

sparsity parameter α = 1 for variable selection.

Based on the results from FLARCC, the estimated mean of standardized BMI in the South is 

0.168 higher (or 0.97 higher in original scale of BMI) than that of the other three regions, 

which share the same mean. The effects of age are consistent across four regions. The effects 

of gender are classified into two clusters. The mean of standardized BMI of females is 0.036 

lower (or 0.42 lower in original scale) than that of males in the Northeast and the West, but 

males and females have the same mean BMI in the Midwest and the South. Standardized 

BMI increases by 0.021 for every standard deviation increase of birth weight (or BMI 

increases by 0.19 for every unit increase of birth weight) in all regions except the Northeast. 

Similarly, standardized BMI decreases by 0.047 for every standard deviation increase of log 

income (or BMI decreases by 0.27 for every unit increase of income) in all regions except 

the Northeast where BMI is not affected by income. The leave-one-out mean squared 

prediction errors for model A, B and C are 0.953, 0.945 and 0.950, respectively. The 

differences between the prediction errors are small because of the relatively small effect 

sizes of the heterogeneous covariates identified by FLARCC, i.e., sex, birth weight and 

income. The most significant covariate, age, is homogeneous thus it does not differentiate 

the prediction power among the three models. Solution paths and fusograms of all covariates 

are shown in Figure 2 and Figure 3, respectively, for illustration. In summary, FLARCC 

ensures parsimony where necessary to maximize the prediction power of the final model; 

and it provides more informative interpretation and better visualization than the other two 

traditional models.

7. Concluding Remarks

The proposed method brings a new perspective to model fitting when combining multiple 

data sets from different sources is of primary interest. As data volumes and data sources 

grow fast, more and more opportunities and demands emerge in practice to borrow strengths 

of combined data sets. In such case, traditional methods are challenged by the complex data 

structures and do not provide desirable treatments and meaningful interpretations to data 

heterogeneity, especially when the number of data sets is very large. FLARCC allows the 

flexibility to explore the heterogeneity pattern of parameters among large number of data 

sets by tuning the shrinkage parameter.

When K and p are small, weights  do not contribute to much difference in terms of 

clustering and estimation. However, since only one tuning parameter is used to regularize the 

fusion of all covariates, when both K and p are large, we suggest letting s > 0 to allow 

covariate-specific weights adapting to the heterogeneousness of coefficients from individual 

covariates to achieve better results. In addition, the estimation consistency of rank estimator 

is a critical component needed to determine adjacent pairs. The current consistency is 

established under the case of K being fixed, and the validity of its property is unknown when 

K increases along the total sample size.

FLARCC can be applied to various scientific problems, such as the detection of outlying 

studies by singling out outlying coefficients; it can also be applied to the clustering of 
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patient trajectories by viewing the time series data of patients as individual studies. 

Essentially, all study that are interested in the group-specific effects may be analyzed from 

the perspective of parameter fusion using the proposed method.
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Appendix A. Theorem Proofs

Proof of Theorem 1

The proof of Theorem 1 closely follows arguments given in Zou (2006). Without loss of 

generality, we assume n1 = ··· = nK = n and N = Kn. As K is fixed, n → ∞ implies N → ∞ 
in the same order. We assume the following regularity conditions:

i. The Fisher information matrix is finite and positive definite,

Here,  is the true parameters, X(N×Kp) is the design matrix corresponding 

to θ and ϕ is the link function (i.e., ϕ′ = h−1) defined in the following 

optimization problem

Tang and Song Page 16

J Mach Learn Res. Author manuscript; available in PMC 2017 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.census.gov/econ/census/help/geography/regions_and_divisions.html
http://www.census.gov/econ/census/help/geography/regions_and_divisions.html


with Pλ,α(θ) as defined in (4), and θ̂W is the estimator with true ordering W 
given.

ii. There is a sufficiently large open set  that contains θ* such that ∀θ ∈ ,

for a suitable function M and all 1 ≤ j, k, l ≤ Kp.

First we prove asymptotic normality. For ∀s ≥ 0 and r > 0, let . 

Define

where ω̂
j,k is specified in (6). Let û(N) = argminu ΓN(u); then . By 

Taylor expansion, we have ΓN(u) − ΓN(0) = H(N)(u), where

with

where θ̃* is between θ* and . The asymptotic limits of  and  is 

exactly the same as those in the proof of Theorem 4 in Zou (2006). It suffice to show that 

 has the same asymptotic limit. If 

 for k = 2, …, K, and 
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. Thus by Slutsky’s theorem, . If , 

for k = 1, since ; for k = 2, …, K, if 

 (i.e., homogeneous), , thus 

; similarly, if  (i.e., 

heterogeneous),  still holds. And since 

, we have the following result summary:

Following same arguments in Zou (2006)’s proof of Theorem 4, we have 

 and . The proof of the consistency part is similar and thus 

omitted.

Proof of Lemma 2

The estimated ordering Ûj of  is only determined by the differences between distinct 

parameter groups within . First note that for any 0 < ε < 1, if two parameters  and 

 are in the same parameter group (i.e., ), assigning arbitrary ordering between 

them will not affect the estimated ordering of the parameters between groups, because the 

ordering within the same parameter group is exchangeable. On the other hand, when two 

parameters  and  are from different parameter groups, without loss of generality, let 

, the probability of estimating a wrong ordering

as n → ∞ since β̂j,k′ and β̂j,k are independent and consistent estimators. Similarly, the 

consistency of the estimated ordering V̂
j of the absolute values in vector  can be derived 

by taking the square of the absolute values and following the same argument as for Ûj.

Proof of Theorem 3

Here we assume the same regularity condition as in Theorem 1. To complete this proof, we 

first define the event  when the orderings of all p covariates are correctly assigned as
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Let θ̂Ŵ be θ̂  when  occurs; otherwise, denote it as θ̂ c. Then, the estimator can be 

rewritten as

and therefore

(9)

By Theorem 1, we have  and  as n → ∞. By 

Lemma 2, we have P( ) → 1 and P( c) → 0 as n → ∞. Therefore, by Slutsky’s 

Theorem, (9) converge to the same distribution as . Similarly, by results from 

Theorem 1 and Lemma 2, we have selection consistency

as n → ∞. This completes the proof of the Theorem 3.

Appendix B. Performance with Distorted Parameter Ordering

Under the same setting as simulation experiment 1 in Section 5.1 with α = 0 and s = 0, we 

conduct a sensitivity analysis to evaluate the performance of FLARCC when parameter 

ordering is incorrectly specified. Specifically, we report results of sensitivity, specificity and 

MSE for the linear regression model when the coefficient ordering is determined from the 

initial estimate with distortion through an added disturbance ε, β̂ + ε, where β̂ from (1) and 

ε ~ (0, v2). As v2 increases, the percent of order switching in initial estimates increases. 

Sensitivity, specificity and MSE in relation to the percentage of wrongly ordered parameters 

are displayed in Figure 4 for the two heterogeneous effects β2 and β3, and the homogeneous 

parameter β1 is not included in the comparison because of no effect from the distortion on 

its performance. As the percentage of wrongly ordered parameters increases, as expected, 

sensitivity becomes lower and MSE becomes larger. However, specificity remains 

unaffected. When the distortion of ordering is mild (≤ 10%), the performance of FLARCC 

appears satisfactory in this simulation setting.
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Figure 1. 
Homogeneous assumption (left) versus heterogeneous assumption (right).
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Figure 2. 
FLARCC solution paths of all covariates over the transformed tuning parameter λ̃ = log10(λ
+1), with s = 0. The vertical dotted line denotes the optimal tuning parameter value λ̃

EBIC.
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Figure 3. 
Fusograms of all covariates based on FLARCC solution paths. The horizontal dotted lines 

denote the optimal regression coefficient clustering determined by EBIC.
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Figure 4. 
Clustering sensitivity and mean squared error of two heterogeneous slope parameters β2 and 

β3 based on FLARCC with λ selected by EBIC, as the percent of distorted ordering 

increases. Results are summarized from 100 replications.
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