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Abstract

Programmed death-1 (PD-1) receptor system represents a part of recently reported immu-

noregulatory pathway. PD-1 is an immune checkpoint molecule, which plays an important

role in downregulating the immune system proinflammatory activity. Until recently, PD-1

expression was not established on immune cells of the preterm infants. The study objectives

were to confirm expression of the PD-1 receptors on the monocytes isolated from very low

birth weight newborns (VLBW), and to analyze their expression during the first week of life

and late-onset sepsis. Peripheral blood mononuclear cells were isolated from 76 VLBW

patients without early-onset sepsis on their 5th day of life (DOL). PD-1 expression was deter-

mined on the monocyte subsets (classical, intermediate, non-classical) by flow cytometry.

In case of late-onset sepsis (LOS), the same analysis was performed. Our results demon-

strated that on the 5th DOL, PD-1 receptors were present in all the monocyte subsets. Chil-

dren, whose mothers had received antenatal steroids, presented higher absolute numbers

of non-classical monocytes with PD-1 expression. Infants born extremely preterm who later

developed LOS, initially showed a lower percentage of PD-1 receptor-positive intermediate

monocytes in comparison to neonates born very preterm. During LOS, we observed a rise

in the percentage of classical monocytes with PD-1 expression. In case of septic shock or

fatal outcome, there was a higher percentage and absolute count of intermediate monocytes

with PD-1 expression in comparison to children without these complications. In conclusion,

monocytes from VLBW children express PD-1 receptors. Antenatal steroid administration

seems to induce PD-1 receptor expression in the non-classical monocytes. PD-1 might play

a role in immunosuppressive phase of sepsis in the prematurely born children with septic

shock and fatal outcome.
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Introduction

Neonates, especially those born preterm, are highly susceptible to systemic infections [1].

Developmental functional immaturity of the immune system is regarded as one of the reasons

for the high rate of sepsis in the prematurely born patients [2]. Circulating monocytes (MO)

are important elements of the innate immunity. MO in the peripheral blood can be divided

into three subsets according to the CD14 and CD16 antigen surface expression: CD14++CD16-

(classical, CL MO), CD14++CD16+ (intermediate, IM MO) and CD14+CD16++ (non-classical,

NC MO) [3]. The major population are CL MO, which constitute about 90% of the entire

monocyte pool, whereas the IM and NC MO subsets account for about 10% under physiologi-

cal conditions in adults [4]. CL MO show high phagocytic activity. The CD16+ MO population

(IM and NC) can significantly increase during infection and inflammation [5], which was doc-

umented both in adult [6], as well as neonatal [7] patients with bacterial sepsis.

High rates of morbidity and mortality in sepsis result from a prolonged immunosuppres-

sion after a rapid proinflammatory response; it is associated with attenuated pathogen clear-

ance and/or susceptibility to superinfection [8]. The programmed death receptor-1 (PD-1)

pathway seems to play a role in sepsis-induced immune suppression [9]. PD-1 (CD279) is a

cell surface receptor that belongs to the immunoglobulin superfamily, first described by Ishida

and colleagues in 1992 [10]. It is one of the key negative regulators of the immune response,

maintains immune tolerance [11], prevents development of autoimmune diseases [12], and

controls extend of healthy tissue damage during infection [13]. It is an inducible molecule

expressed on the surface of activated cells, mainly T cells, B cells, NK cells, but also monocytes

and dendritic cells [14–15]. A negative signal transmitted from the activated PD-1 receptor

leads to decreased activity of the immune system by inhibition of the TCR or BCR connected

signaling pathways, decreased production of the cytokines and proteins promoting immune

cell survival (e.g. Bcl-2), and increased synthesis of IL-10, which inhibits the immune response

[13].

MO from adult subjects during sepsis display increased expression of PD-1 simultaneously

with decreased HLA-DR expression. Inhibition of PD-1 in the pre-clinical studies appears to

restore defects of the immune functions and to improve survival in sepsis [16–18].

To our knowledge, expression of the PD-1 receptors on the circulating monocytes has

never been investigated in prematurely born infants. Here, we would like to present results of

a prospective cohort study designed to determine expression changes of PD-1 receptors on the

monocyte subpopulations in the very low birth weight (VLBW) preterm children soon after

birth and in the subgroup with late-onset sepsis (LOS).

Materials and methods

Study design and setting

This was a prospective observational study performed at a 30-bed Neonatal Intensive Care

Unit (NICU), Department of Paediatrics, Institute of Paediatrics, Faculty of Medicine, Jagiello-

nian University Medical College, Krakow, Poland, between 2014 and 2016. Protocol of the

study was approved by the Jagiellonian University Ethic Committee.

Patient selection

The newborns enrolled to this study were recruited from the patients consecutively admitted

to NICU.

Inclusion criteria were:

1. Signed informed consent by the parents,

Analysis of PD-1 in VLBW neonates

PLOS ONE | https://doi.org/10.1371/journal.pone.0186819 October 19, 2017 2 / 13

https://doi.org/10.1371/journal.pone.0186819


2. Birthweight < 1500g,

3. Gestational age (GA)� 32 weeks,

4. Age� 72 hours at the time of enrolment.

Exclusion criteria were:

1. Early-onset sepsis (defined as a blood culture-proven clinical sepsis occurring up to 3 days

of life),

2. Multiple congenital malformations.

Monitoring during hospitalization

All the subjects enrolled in the study underwent careful clinical monitoring for symptoms of

LOS. LOS was defined as a blood culture-proven clinical sepsis occurring� 72 hours of age.

Clinical symptoms of LOS were first identified by an attending neonatologist, and then verified

with a positive blood culture. Septic shock definition was based on this mentioned in the Sur-

viving Sepsis Campaign, adjusted for age range based on the criteria of Goldstein as deter-

mined by the consensus [19–20].

Data collection

Data regarding baby’s perinatal history, hospitalization course, laboratory results and other

LOS pertaining data were collected in our hospital database.

Blood collection/Division into groups

First sample of blood was drawn from all the study participants on the 5th day of life (DOL).

The blood sample (500 μl) was collected into EDTA-containing tubes (Vacutainer System1,

Becton Dickinson Biosciences, San Jose) and processed in the laboratory at Department of

Clinical Immunology, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University

Medical College, Krakow, within 2 hours from the draw. For this study, the samples were ret-

rospectively categorized into 2 groups depending on whether the patients did or did not

develop LOS during their hospitalization:

• Non-LOS group—samples collected on the 5th DOL from newborns, who did not develop

LOS during hospitalization in the NICU

• Before-LOS group—samples collected on the 5th DOL from newborns, who developed the

episode of culture-proven LOS during hospitalization in the NICU.

Children, who were diagnosed with LOS during hospitalization, had their second blood

sample collected within 24 hours from the onset of LOS symptoms. Once LOS was confirmed

by a positive blood culture, these samples formally formed a third, LOS-group.

Flow cytometry

Undiluted whole blood samples were washed by addition of 3 ml of 0.9% NaCl in polypropyl-

ene round-bottom tubes (BD Biosciences) and centrifuged (1000 × g). Then, blood sample was

put into a TruCOUNT™ Tube (BD Biosciences, San Jose, USA) and stained on ice for 30 min

with: anti-CD45-APC, anti- HLA-DR-PerCP, anti-CD14-FITC, anti-CD16-PE (BD Biosci-

ences) and anti-PD1-PE-Cy7 (eBioscience) monoclonal antibodies (mAbs). The samples were
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then treated with FACS Lysing Solution (BD) until erythrocytes were lysed, and the cells were

immediately processed in the FACSCanto flow cytometer (Becton Dickinson, San Jose, USA)

along with 10.000 of beads per tube. The absolute numbers of CD14++CD16-, CD14++CD16+

and CD14+CD16++ monocytes were calculated with reference to the bead count. The percent-

age and the absolute numbers of PD-1- positive cells were estimated in each of the monocyte

subset. Flow cytometric data were analyzed using FlowJo software (Tree Star, Inc, Ashland,

OR). The gating strategy and analysis of MO subsets was previously described by us [21] and

others [22] and is presented on Fig 1.

Statistical analysis

Basic demographic data were compared using the Wilcoxon test or two-sided t-test as appro-

priate. Qualitative values were compared by the chi-square test. Student’s t-test was used to

establish differences in the continuous variables with normal distribution between studied

groups. For data with distribution other than normal, Wilcoxon test was used. Extreme values

Fig 1. Gating strategy for studying monocyte subsets and differential expression of PD-1 in

monocyte subsets. (A) Gating strategy of monocyte subsets. The CD45-positive monocytes (“monocytic

gate”) together with adjacent lymphocytes were further analyzed. The cells were then gated to exclude

CD14-HLA-DR- NK cells and finally divided into CD14++CD16- (classical), CD14++CD16+ (intermediate) and

CD14+CD16++ (non-classical) monocytes. The absolute numbers of monocyte subsets were estimated

based on acquired bead count (“beads gate” on plot no 1). (B) PD-1 expression on monocyte subsets. PD-1

expression pattern is shown on each of the monocyte subsets (classical, intermediate and non-classical

subsets) in a patient analyzed on 5th DOL, a patient that developed LOS, and a patient with septic shock.

https://doi.org/10.1371/journal.pone.0186819.g001
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defined as lower than Q1-3IQR, or as higher than Q3+3IQR were excluded from the analyses.

A probability value of p<0.05 was considered statistically significant. JMP1 13.1.0 (SAS Insti-

tute Inc., 2016) was used for statistical analysis.

Results

Study population

A group of 76 preterm-born infants without early-onset sepsis with mean gestational age 27.7

(SD 2.4) weeks and mean birth weight 1042 (SD 257) grams was enrolled to the study. Thirty

nine infants developed LOS during hospitalization, mostly caused by Gram-positive bacteria.

LOS occurred on 17th DOL (IQR 12–21.5 DOL; range: 8–34 DOL). Five infants diagnosed

with LOS developed septic shock, and a total of eight patients from the entire study group died

during hospitalization at NICU (Table 1).

Comparison of median levels of monocyte PD-1 expression on 5th day of

life

Analysis of the blood collected on the 5th DOL showed that the majority of the isolated mono-

cytes constituted the CL subtype, whereas IM and NC monocytes were present in smaller

counts. There were cells positive for PD-1 receptors’ expression in all the monocyte subsets on

the 5th DOL. The IM MO subset showed the highest expression of PD-1 receptor (Table 2).

We did not find significant differences in percentages or numbers of the MO subsets

expressing PD-1 receptor in regards to as function of the newborns’ gender or mode of their

delivery. Interestingly, even though there was no difference in absolute counts of any MO sub-

set in infants whose mothers had received prenatal steroids (n = 21) compared to those who

Table 1. Comparison of selected demographic variables and hospitalization data of the patients in the two studied groups.

Group non-LOS

n = 37

Group before-LOS

n = 39

P value and statistical test used

Perinatal history

Birth weight [g], mean (SD) 1142 (241) 948 (237) 0.0011T

Gestational age [weeks], mean (SD) 28.6 (2.2) 26.8 (2.3) 0.0015T

Male gender 21 (57%) 16 (41%) 0.169C

Vaginal delivery 13 (35%) 10 (26%) 0.407C

Antenatal steroids 9 (24%) 12 (31%) 0.577C

Hospitalization

Peripheral lymphocyte count on 5th DOL [cells/μl], median (IQR) 2640.5 (1256.5–3363.8) 1964.5 (1420–2350) 0.350W

Late-onset sepsis - 39

Gram-positive - 28 (72%)

Gram-negative - 7 (18%)

Polymicrobial - 4 (10%)

Septic shock - 5 (13%)

Outcome

Death during hospitalization at NICU 2 (5%) 6 (15%) 0.147C

T–two-sided T test,

C—Chi-square test,
W–Wilcoxon test.

DOL—day of life, NICU—Neonatal Intensive Care Unit

https://doi.org/10.1371/journal.pone.0186819.t001
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had not undergo such a treatment, they had a significantly higher absolute count of NC MO

expressing PD-1 (1000/ml [0–5000] vs. 110/ml [0–1000]; Wilcoxon, p = 0.0371).

Following LOS diagnosis, the study group was retrospectively divided into two groups with

or without sepsis. There was no difference in PD-1 expression on the 5th DOL in the non-LOS

and before-LOS populations. There was also no correlation between PD-1 expression and cor-

responding gestational age on the 5th DOL. However, we noticed that level of maturity at birth

affected PD-1 expression in the before-LOS group. The neonates born as extremely preterm

(� 27 gestational week) presented higher absolute counts of the IM MO (101/μl [58–288] vs.

59/μl [33–89]; Wilcoxon, p = 0.0105) and lower percentages of IM PD-1-positive MO (7.95%

[1.8–14] vs. 15.8% [7.7–45.7]; Wilcoxon, p = 0.0136) in comparison to these who were born

very preterm (� 28 gestational week) (Fig 2).

PD-1 expression levels in patients with late-onset sepsis

The next step in our study was to analyze the MO subsets and PD-1 expression in children,

who developed LOS during hospitalization. We observed increase in absolute count of IM and

NC MO during LOS in comparison with the results on the 5th DOL, although the above

Table 2. Counts of monocyte subsets, monocyte subsets with PD-1 expression, and a percentage of PD-1+ cells within each monocyte subset in

the blood samples from VLBW infants collected on the 5th DOL. Data presented as median and IQR.

CL MO IM MO NC MO p

MO count (cell/μl); median [IQR] 850 [463–1921] 75 [35–134] 41 [12–106] p < 0.0001*, Post-hoc tests**: p < 0.0001 for CL

MO vs. IM MO, p < 0.0001 for CL MO vs. NC MO,

p = 0.0009 for IM MO vs. NC MO

PD-1-positivecount (cell/μl); median[IQR] 2 [0.2–5.42] 8.5 [3–15] 0.33 [0–2] p < 0.0001*, Post-hoc tests**: p < 0.0001 for CL

MO vs. IM MO, p = 0.0011 for CL MO vs. NC MO,

p < 0.0001 for IM MO vs. NC MO

PD-1-positive (%); median [IQR] 0.29 [0.05–0.58] 11.6 [6.34–22.6] 1.53 [0.17–4.81] p < 0.0001*, Post-hoc tests**: p < 0.0001 for CL

MO vs. IM MO, p < 0.0001 for CL MO vs. NC MO,

p < 0.0001 for IM MO vs. NC MO

*—Kruskal—Wallis test,

**—nonparametric comparisons for each pair using Wilcoxon method

CL MO—classical monocytes, IM MO—intermediate monocytes, NC MO—non-classical monocytes

https://doi.org/10.1371/journal.pone.0186819.t002

Fig 2. Monocyte populations and PD-1 expression in the before-LOS group of VLBW infants. Patients were subdivided into groups

based on the level of their gestational age at birth. (A) Absolute numbers of monocyte subsets. (B) Percentages of PD-1 expressing

monocytes. (C) Absolute numbers of PD-1 expressing monocytes. Data presented as median and IQR (box), compared with Wilcoxon test.

Whiskers—range within 1.5 IQR. Classical monocytes are presented as a black graph, intermediate monocytes are presented as a graph

with horizontal lines, whereas non-classical monocytes are presented as a graph with vertical lines. P-value was significant in case of

*p<0.05.

https://doi.org/10.1371/journal.pone.0186819.g002
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differences did not reach statistical significance. Moreover, there was an increase in percentage

(LOS group vs. before-LOS group: 0.47% [0.017–0.85] vs. 0.23% [0.04–0.61]; Wilcoxon,

p = 0.043) and absolute count (LOS group vs. before-LOS group: 3.53/μl [2.1–8.3] vs. 2.24/μl

[0–4.25]; Wilcoxon p = 0.0177) of the CL MO with PD-1 expression (Fig 3).

There was no difference in PD-1 expression on the circulating MO during LOS between

samples taken from the children with either Gram-positive or Gram-negative systemic

infections.

PD-1 expression levels in LOS patients with septic shock and/or fatal

outcome

In a LOS-group, we observed significant differences in MO counts and PD-1 expression

between patients who developed septic shock (n = 5) vs. those without this complication

(n = 34). We observed a lower absolute number of NC subset in septic shock patients (31/μl

[2–51] vs. 88/μl [51–134]; Wilcoxon, p = 0.0386). Moreover, they presented with a higher per-

centage (19.3% [8.59–57.5] vs. 4.44% [1.57–15.6]; Wilcoxon, p = 0.0498) as well as increased

absolute number of the IM monocytes with PD-1 expression (36.8 cells/μl [28.7–45] vs. 12

cells/μl [5.2–15.5]; Wilcoxon, p = 0.0335) in comparison to these, whose sepsis was not compli-

cated by septic shock (Fig 4).

Finally, we demonstrated significant increase in the absolute number of PD-1 positive IM

MO in the terminal patients compared to the infants who survived (Fig 5).

Discussion

In our study, we showed that PD-1 receptor is expressed on the monocytes isolated from pre-

maturely born VLBW children. We analyzed monocyte subsets in the above population on

their 5th DOL and during LOS.

The analysis of MO isolated from the VLBW infants five days after birth revealed that the

CL subset constituted the majority of the monocytes, whereas IM and NC MO were present in

smaller numbers. It was previously reported that the CL MO subset was predominant under

stable clinical condition and without ongoing sepsis in adult population [23]. Our results

matched also the findings of another study by Wisgrill et al. [24] who showed that the majority

of the monocytes from the cord blood of the VLBW babies constituted the CL MO subset.

Fig 3. Monocyte subsets and PD-1 expression in the VLBW infants before and during late-onset sepsis. (A) Absolute numbers of

monocyte subsets. (B) Percentages of PD-1 expressing monocytes. (C) Absolute counts of PD-1 positive cells Data presented as median

and IQR (box), compared with Wilcoxon test. Whiskers—range within 1.5 IQR. Classical monocytes are presented as a black graph,

intermediate monocytes are presented as a graph with horizontal lines, whereas non-classical monocytes are presented as a graph with

vertical lines. P-value was significant in case of *p<0.05.

https://doi.org/10.1371/journal.pone.0186819.g003
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We would like to emphasize our novel finding which demonstrates that variable PD-1

expression is dependent on the maturation state of the monocytes and that PD-1 receptor is

present on the monocytes—cells that should present the ligand.

PD-1 expression is a marker of cell exhaustion [25], but PD-1 holds several other important

functions, such as regulation of the immune tolerance phenomenon and normal processes of

the immune cells such as their differentiation/maturation and activation [26]. Therefore, PD-1

expression on the immune cells’ surface appeared to be justified from the biological point of

view even in the premature infants. Monocytes are a source of tissue macrophages that drive

the inflammatory process [27]. It is hypothesized that a PD-1 dependent mechanism can limit

the pro-inflammatory activity of these cells within tissues. Furthermore, the PD-1 dependent

mechanism may also contribute to the production and release of pro-inflammatory cytokines

in microcirculation by CD16+ monocytes.

In our study, infants with a lower gestational age (�27 gestational weeks) presented higher

absolute number of IM MO and had lower percentage of PD-1 positive IM MO in comparison

to the cells isolated from the children born�28 gestational week. A potential link between

lower gestational age and higher count of IM MO was also observed by the previously cited

study by Wisgrill et al [24]. However, the reasons of the observed shift towards the IM MO

Fig 4. Analysis of the monocyte subpopulations in the patients with or without septic shock. (A) Absolute numbers of monocyte

subsets. (B) Percentages of PD-1 positive cells. (C) Absolute numbers of PD-1 positive cells. Data presented as median and IQR (box),

compared with Wilcoxon test. Whiskers—range within 1.5 IQR. Classical monocytes are presented as a black graph, intermediate

monocytes are presented as a graph with horizontal lines, whereas non-classical monocytes are presented as a graph with vertical lines. P-

value was significant in case of *p<0.05.

https://doi.org/10.1371/journal.pone.0186819.g004

Fig 5. Analysis of the monocyte subpopulations in VLBW infants who either did nor did not survived LOS. (A) Absolute numbers of

monocyte subsets. (B) Percentages of PD-1-positive cells. (C) Absolute numbers of PD-1 positive cells. Data presented as median and IQR

(box), compared with Wilcoxon test. Whiskers—range within 1.5 IQR. Classical monocytes are presented as a black graph, intermediate

monocytes are presented as a graph with horizontal lines, whereas non-classical monocytes are presented as a graph with vertical lines. P-

value was significant in case of *p<0.05.

https://doi.org/10.1371/journal.pone.0186819.g005
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subset in the preterm neonates require further studies. It was suggested that IM MO chemo-

kine receptor pattern indicated their possible role in angiogenesis [28]. On the other hand,

since they typically increased in inflammatory state, their higher number might also indicate

inflammation that initially caused premature labor.

Taking into consideration our finding that PD-1 expression was diminished on the IM MO

in the study population, we suggest the following explanation. According to the exome analysis

of the sorted MO subsets, the IM and NC MO display a higher apoptotic potential than the CL

MO subset [29], [30]. In concordance with the hypothesis of Zhao at al. [29] this finding may

highlight a mechanism used to limit the pro-inflammatory response associated with CD16+

monocytes. As the PD-1 pathway is important in triggering apoptosis [31], our study supports

and expands the above mentioned theory. We further propose that the apoptosis of CD16+

MOs is dependent on the level of PD-1 expression. As such, before differentiation into the NC

MO, the IM MOs with high PD-1 expression may have already undergone apoptosis, and

therein cannot be observed within the NC MO pool. Such a response may be beneficial in neo-

nates who present with a constitutionally lower fraction of PD-1-positive IM MO. These neo-

nates are more likely to have an early proinflammatory response, even to subliminal infectious

agents, as the mechanism of elimination of major proinflammatory cytokine manufacturers is

less effective. In this context, further research is necessary to evaluate the levels of PD-1-posi-

tive IM MO levels in newborns born full term.

We observed that there was higher count of PD-1 positive NC MO subset on the 5th DOL

in the infants exposed to antenatal steroid administration. According to Fingerle-Rowson et al.

[32], and Dayyani et al. [33], glucocorticoid treatment led to decreased number of NC MO due

to a selective induction of their apoptosis. We did not observe any decline in NC MO, however

our study differed from the researches cited above in the dosage and timing of steroid adminis-

tration prior to analysis of MO subsets. There were conflicting studies in regard to steroid

effect on the monocyte function. In animal studies by Kramer et al. [34], there was a time-

dependent suppression of MO functions, such as phagocytic capacity, hydrogen peroxide pro-

duction or Il-6 production, in preterm-born lambs after antenatal glucocorticoids administra-

tion. In contrast, Kavelaars et al. [35] analyzed cord blood from 38 preterm-born children

whose mothers had received full course of betamethasone due to threatened preterm labor and

showed lack of effect of the antenatal steroid treatment on Il-6 production by MO. Xing et al.

[36], who studied immunosuppressive effects of glucocorticoids in anti-cancer therapy,

showed that dexamethasone and hydrocortisone could enhance PD-1 expression both in

mouse and human activated T cells in a dose-dependent manner. Further studies are needed

to evaluate whether similar mechanisms are present in MO.

In our study, we observed a higher count of IM and NC MO subsets in the second blood

sample collected within 24 hours after onset of LOS. Similar results were reported by Skrzec-

zyńska et al. [7] in their studies of the MO subsets changes during neonatal sepsis. Moreover,

we observed a significant rise in percentage and absolute number of IM MO with PD-1

expression in a subgroup of patients who developed septic shock. Also, children who died in

the course of septic shock had increased absolute number of PD-1 positive IM MO. Our find-

ings were consistent with the report by Huang and colleagues [16] who demonstrated that

PD-1 expression on the circulating MO was higher in adult patients with septic shock than in

healthy volunteers. Similarly, Guignant et al [37]. in their study of 64 patients with septic

shock reported increased expression of PD-1 and its ligands on the MO and CD4+T lympho-

cytes on days 1–2 and 3–5 after the onset of septic shock. Increased PD-1 and PD-1 ligands’

expression was associated with typical sepsis-related immune dysfunctions, such as decreased

monocyte HLA-DR expression, decreased circulating CD4+ T-cell count, increased percent-

age of the T regulatory cells, as well as increased rates of secondary nosocomial infections
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and mortality. In contrast, the study by Zhang et al. [38] observed up-regulation of solely

ligands for PD-1 (PD-L1), but not PD-1, on CD14+ MO in septic shock adult patients in

comparison to healthy volunteers. The only study to evaluate PD-1 expression in neonatal

sepsis was performed in PD-1 knockout murine neonates with sepsis caused by cecal slurry

[39]; it showed improved survival of the septic PD-1 knockout mice in comparison with the

wild-type. In general, it is assumed that increased activity of the PD1/PD-L1 system in sepsis

could lead to depletion of the key cells, such as monocytes and T cells, necessary for proper

response to infection, therefore impairing essential anti-microbial and regulatory activities

[37]. Data from ex-vivo experiments [40], animal experiments [41], as well as from the clini-

cal trials with oncologic patients [42] showed that both antibodies blocking the PD-1 pathway

and selected hormones (ghrelin, growth hormone) [43] not only diminished expression of

PD-1 related molecules, but also restored function of the MO, neutrophils, T cells, and natu-

ral killer cells, which may restore immune function and diminish immunosuppression dur-

ing sepsis.

We also showed an increase of PD-1-positive CL monocytes. During sepsis, there is an

increase in PD-1 expression on the classical MO, and, as they mature, they differentiate into

CD16+ (intermediate and non-classical) MO. These MO subsets perpetuate shock mechanisms

that develop during sepsis progression. This may be viewed as a physiological “safety mecha-

nism”, such as, less CL MO are able to mature into pro-inflammatory IM and NC MO since

they are susceptible to apoptosis at the classical stage.

In summary, the data presented herein demonstrate that 1) MO from VLBW children show

expression of PD-1, 2) children whose mothers had received antenatal steroids presented with

higher absolute number of PD-1 positive NC MO subset on the 5th DOL, 3) extremely prema-

ture infants (born�27 gestational week) diagnosed with LOS during their hospitalization

showed lower percentage of PD-1 positive IM MO compared to the population born after 28th

week of pregnancy 4) there was a rise in the percentage of PD-1 positive CL MO during LOS,

5) prematurely born infants with septic shock or fatal outcome showed a higher percentage

and absolute numbers of IM MO with PD-1 expression.

We believe that further research is needed to evaluate changes in expression of PD-1 system

on MO subsets during sepsis and septic shock in infant population. Identification of the fac-

tors, which may regulate and/or temporarily inhibit PD-1 receptors might provide a valuable

tool to fight severe inflammatory diseases, such as neonatal sepsis.
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